CS549: Cryptography and Network Security

Size: px
Start display at page:

Download "CS549: Cryptography and Network Security"

Transcription

1 CS549: Cryptography and Network Security by Xiang-Yang Li Department of Computer Science, IIT Cryptography and Network Security 1

2 Notice This lecture note (Cryptography and Network Security) is prepared by Xiang-Yang Li. This lecture note has benefited from numerous textbooks and online materials. Especially the Cryptography and Network Security 2 nd edition by William Stallings and the Cryptography: Theory and Practice by Douglas Stinson. You may not modify, publish, or sell, reproduce, create derivative works from, distribute, perform, display, or in any way exploit any of the content, in whole or in part, except as otherwise expressly permitted by the author. The author has used his best efforts in preparing this lecture note. The author makes no warranty of any kind, expressed or implied, with regard to the programs, protocols contained in this lecture note. The author shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these. Cryptography and Network Security 2

3 Cryptography and Network Key Management and generation Xiang-Yang Li Cryptography and Network Security 3

4 Key Exchange Public key systems are much slower than private key system Public key system is then often for short data Signature, key distribution Key distribution One party chooses the key and transmits it to other user Key agreement Protocol such two parties jointly establish secret key over public communication channel Key is the function of inputs of two users Cryptography and Network Security 4

5 Distribution of Public Keys can be considered as using one of: Public announcement Publicly available directory Public-key authority Public-key certificates Cryptography and Network Security 5

6 Public Key Management Simple one: publish the public key Such as newsgroups, yellow-book, etc. But it is not secure, although it is convenient Anyone can forge such a announcement Ex: user B pretends to be A, and publish a key for A Then all messages sent to A, readable by B! Let trusted authority maintain the keys Need to verify the identity, when register keys User can replace old keys, or void old keys Cryptography and Network Security 6

7 Possible Attacks Observe all messages over the channel So assume that all plaintext messages are available to all Save messages for reuse later So have to avoid replay attack Masquerade various users in the network So have to be able to verify the source of the message Cryptography and Network Security 7

8 Public Announcement users distribute public keys to recipients or broadcast to community at large eg. append PGP keys to messages or post to news groups or list major weakness is forgery anyone can create a key claiming to be someone else and broadcast it until forgery is discovered can masquerade as claimed user Cryptography and Network Security 8

9 Publicly Available Directory can obtain greater security by registering keys with a public directory directory must be trusted with properties: contains {name,public-key} entries participants register securely with directory participants can replace key at any time directory is periodically published directory can be accessed electronically still vulnerable to tampering or forgery Cryptography and Network Security 9

10 Public-Key Authority improve security by tightening control over distribution of keys from directory has properties of directory and requires users to know public key for the directory then users interact with directory to obtain any desired public key securely does require real-time access to directory when keys are needed Cryptography and Network Security 10

11 Public-Key Authority Cryptography and Network Security 11

12 Cont. More advanced distribution A sends request-for-key(b) to authority with timestamp, that is, Ida Idb Time Authority replies with key(b) (encrypted by its private key), that is E KTta (KUb Ida Idb Time) A initiates a message to B, including a random number N a, its ID A B then ask authority to get key(a) B sends A (encrypted by A s public key) N a and N b A then replies B N b encrypted by B s public key Cryptography and Network Security 12

13 Cont. In above scheme, the authority is bottleneck New approach: certificate Any user can read certificate, determine name and public key of the certificate s owner Any user can verify the authority of certificate Only the authority can create and update certificate Any user can verify the time-stamp of certificate The certificate is C A =E KR auth [T,ID A, KU A ] Time-stamp is to avoid reuse of voided key Cryptography and Network Security 13

14 Public-Key Certificates certificates allow key exchange without real-time access to public-key authority a certificate binds identity to public key usually with other info such as period of validity, rights of use etc with all contents signed by a trusted Public-Key or Certificate Authority (CA) can be verified by anyone who knows the public-key authorities public-key To validate the certificate, we need another certificate, one that matches the Issuer (of CA) in the first certificate. Then we take the RSA public key from the second (CA) certificate, use it to decode the signature on the first certificate to obtain an MD5 hash, which must match an actual MD5 hash computed over the rest of the certificate. Cryptography and Network Security 14

15 X.509 The structure of a X.509 v3 digital certificate is as follows: Certificate Version Serial Number Algorithm ID Issuer Validity Not Before Not After Subject Subject Public Key Info Public Key Algorithm Subject Public Key Issuer Unique Identifier (Optional) Subject Unique Identifier (Optional) Extensions (Optional)... Certificate Signature Algorithm Certificate Signature Cryptography and Network Security 15

16 Sample Certificate Certificate: Data: Version: 1 (0x0) Serial Number: 7829 (0x1e95) Signature Algorithm: md5withrsaencryption Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification Services Division, CN=Thawte Server CA/ Address=server-certs@thawte.com Validity Not Before: Jul 9 16:04: GMT Not After : Jul 9 16:04: GMT Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft, CN= Subject Public Key Info: Public Key Algorithm: rsaencryption RSA Public Key: (1024 bit) Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f Exponent: (0x10001) Signature Algorithm: md5withrsaencryption 93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d: 92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92: ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67: d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72: 0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1: 5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7: 8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22: 68:9f Cryptography and Network Security 16

17 Security In 2005, Arjen Lenstra and Benne de Weger demonstrated "how to use hash collisions to construct two X.509 certificates that contain identical signatures and that differ only in the public keys," achieved using a collision attack on the MD5 hash function See Certificates/ddl-full.pdf Cryptography and Network Security 17

18 Public-Key Certificates Cryptography and Network Security 18

19 Public-Key Distribution of Secret Keys use previous methods to obtain public-key can use for secrecy or authentication but public-key algorithms are slow so usually want to use private-key encryption to protect message contents hence need a session key have several alternatives for negotiating a suitable session Cryptography and Network Security 19

20 Simple Secret Key Distribution proposed by Merkle in 1979 A generates a new temporary public key pair A sends B the public key and their identity B generates a session key K sends it to A encrypted using the supplied public key A decrypts the session key and both use problem is that an opponent can intercept and impersonate both halves of protocol Cryptography and Network Security 20

21 Secret key Distribution Simple secret key distribution A generates KU A and KR A, sends KU A to B B generates a secret key k s B sends k s to A using A s public key KU A A decrypts the message to get the secret key k s To get more security, the public/private keys can be regenerated when needed But vulnerable to the active attack! Attacker E can compromise the communication between A and B as follows Cryptography and Network Security 21

22 Cont. Attacking A generates KU A and KR A, sends ID A, KU A to B E intercepts the message, transmits ID A, KU E to B B generates a secret key k s B sends k s to A using A s public key KU E E intercepts the message, decrypt it and get k s E sends A the message K s, encrypted by KU A A decrypts the message to get the secret key k s Now E knows K s, but A, B are unaware of it Cryptography and Network Security 22

23 Secret Key Distribution So need confidentiality and authentication A and B need to use a secure method to exchange their public keys Schemes A initiates a message to B, E KU B(N a,id a ) B replies it with E KU A(N a,n b ) A then replies it with E KU B(N b ) A sends B the message E KU B (E KR A(Ks)) Security The first 3 steps are used to assure that A is A, B is B Cryptography and Network Security 23

24 Public-Key Distribution of Secret Keys if have securely exchanged public-keys: Cryptography and Network Security 24

25 Key Predistribution Trusted Authority (TA) generates keys for all pair of users and transmits to them Large overhead (for TA and user) Blom Scheme Keys are chosen from a finite field Z p P is public prime number TA transmits k+1 elements of Z p to each user over secure channel Secure condition: any set of at most k users (not U,V) can not determine any information about K u,v Cryptography and Network Security 25

26 Blom Blom's scheme is currently used by the HDCP copy protection scheme to generate shared keys for high-definition content sources and receivers, such as HD DVD players and high-definition televisions. Cryptography and Network Security 26

27 Blom Scheme Scheme (when k=1) Each user u has distinct element r u from Z p TA choose a,b,c and defines f(x,y)=a+b(x+y)+cxy mod p For each u, TA computes g u (x)=f(x, r u ) mod p TA transmits g u (x) to user u Two users u and v compute the common key f(r u, r v )= a+b(r u + r v )+c r u r v mod p Here f(r u, r v )= g v (r u )= g u (r v ) Cryptography and Network Security 27

28 Security of Blom Scheme Less than k users can not determine keys However, more than k users can compute any keys Solving equations to get a,b,c for k=1 Generally Function f(x,y)=sum a i,j x i y j mod p Here a i,j =a j,i Cryptography and Network Security 28

29 More Practice Trent chooses a random and secret matrix Dk x k over the finite field GF(p), where p is a prime number. D is required when a new user is to be added to the key sharing group. For example, let p = 17, and D = Trent then computes their private keys: galice = (D * IAlice), gbob = (D * IBob). Cryptography and Network Security 29

30 Cont Let IAlice =, and IBob =. Trent will create Alice's and Bob's secret keys as follows galice = Cryptography and Network Security 30

31 Cont She computes the shared key k(alice / Bob) = galice * IBob kalice / Bob = Cryptography and Network Security 31

32 Diffie-Hellman Key Predist. Computationally secure if discrete logarithm is intractable Scheme Assume prime number p public and an integer c public Each user u has secret component a u User u computes b u =c a u mod p TA certifies it by computing (ID(u), b u, sig TA (ID(u), b u )) The common key of two users u and v is K=c a u a v mod p Cryptography and Network Security 32

33 Diffie Hellman Around September 1974, Diffie (Graduate student) had been traveling USA with his wife, Mary, discussing cryptography with anyone who was available. At the time, there was very little published material about modern methods and much was classified. Very few people were interested in the topic and Marty Hellman (at Stanford that time) even says that many of his colleagues felt that it was "born classified," like secrets about the atomic bomb, because it was so important to national security. John Gill gave the idea of exponential Cryptography and Network Security 33

34 Diffie-Hellman Key Exchange Computationally secure if discrete logarithm is intractable Scheme Assume prime number p public and an integer c public Each user u chooses a secret component a u (new!) User u computes b u =c a u mod p User v computes b v =c a v mod p The common key of two users u and v is K=c a u a v mod p Cryptography and Network Security 34

35 Diffie-Hellman Problem Diffie-Hellman problem definition Given b u =g a u mod p, b v =g a v mod p, how to compute g a v a u mod p? Here g is a primitive element of mod p The problem is not harder than the discrete logarithmetic problem, because the later one can always be used to solve it It can be proved that it has the same difficulty as the ElGamal encryption system Cryptography and Network Security 35

36 Middle Attack Intruder w intercept the communications Intruder w communications with u Intruder w communications with v The key computed by u is K=c a u a v mod p c a u c a u u w v c a v c a v Cryptography and Network Security 36

37 Authenticated Key Agreement Introducing the identification scheme before key exchange does not help The attacker remains inactive until identification done Simplified station to station protocol Key agreement protocol itself authenticates the user s identity at the same time the key being defined Cryptography and Network Security 37

38 Station-to-station Protocol Scheme Each user has a certificate C(v)=(Id v,ver v,sig TA (Id v,ver v )) User u selects a u and computes b u =c a u mod p User v selects a v and computes Value b v =c a v mod p Key K=c a u a v mod p Signature y v =sig v (b u,b v ) User v sends (C(V), b v, y v ) to U User u computes K=c a u a v mod p, verifies y v, and C(V) User u computes y u =sig u (b u,b v ), sends (C(u),y u ) to V User v verifies y u, and C(u) Cryptography and Network Security 38

39 MTI Agreement Protocol Scheme Assume prime number p public and an integer c public Each user has certificate c(u)=(id u,b u, sig TA (Id u,b u )) Here b u = c a u mod p Each user u chooses a secret component r u (new!) User u computes s u =c r u mod p, sends (c(u),s u ) User v computes s v =c r v mod p, sends (c(v),s v ) The common key of two users u and v is K=c r v a u+ r u a v mod p= s v a u b v r u mod p= s u a v b u r v mod p Cryptography and Network Security 39

Introduction to Cryptography Lecture 10

Introduction to Cryptography Lecture 10 Introduction to Cryptography Lecture 10 Digital signatures, Public Key Infrastructure (PKI) Benny Pinkas January 1, 2012 page 1 Non Repudiation Prevent signer from denying that it signed the message I.e.,

More information

Key Management and Distribution

Key Management and Distribution CPE 542: CRYPTOGRAPHY & NETWORK SECURITY Chapter 10 Key Management; Other Public Key Cryptosystems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan

More information

Cryptography and Network Security Chapter 10. Fourth Edition by William Stallings

Cryptography and Network Security Chapter 10. Fourth Edition by William Stallings Cryptography and Network Security Chapter 10 Fourth Edition by William Stallings Chapter 10 Key Management; Other Public Key Cryptosystems No Singhalese, whether man or woman, would venture out of the

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown Chapter 10 Key Management; Other Public Key Cryptosystems No Singhalese, whether man or woman, would

More information

EE 418 Network Security and Cryptography Lecture #18

EE 418 Network Security and Cryptography Lecture #18 EE 418 Network Security and Cryptography Lecture #18 December 6, 2016 Public Key Infrastructure. Authentication. Internet Security Lecture notes prepared by Professor Radha Poovendran. Tamara Bonaci Department

More information

Lecture Note 6 KEY MANAGEMENT. Sourav Mukhopadhyay

Lecture Note 6 KEY MANAGEMENT. Sourav Mukhopadhyay Lecture Note 6 KEY MANAGEMENT Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Key Management There are actually two distinct aspects to the use of public-key encryption in this regard:

More information

Cryptography and Network Security Chapter 14

Cryptography and Network Security Chapter 14 Cryptography and Network Security Chapter 14 Fifth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 14 Key Management and Distribution No Singhalese, whether man or woman, would venture

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 17: X509. PGP. Authentication protocols. Key establishment.

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 17: X509. PGP. Authentication protocols. Key establishment. CS355: Cryptography Lecture 17: X509. PGP. Authentication protocols. Key establishment. Public Keys and Trust Public Key:P A Secret key: S A Public Key:P B Secret key: S B How are public keys stored How

More information

WEBD 236 Web Information Systems Programming

WEBD 236 Web Information Systems Programming WEBD 236 Web Information Systems Programming Week 10 Copyright 2013-2017 Todd Whittaker and Scott Sharkey (sharkesc@franklin.edu) Agenda This week s expected outcomes This week s topics This week s homework

More information

Spring 2010: CS419 Computer Security

Spring 2010: CS419 Computer Security Spring 2010: CS419 Computer Security Vinod Ganapathy Lecture 7 Topic: Key exchange protocols Material: Class handout (lecture7_handout.pdf) Chapter 2 in Anderson's book. Today s agenda Key exchange basics

More information

Chapter 7 Public Key Cryptography and Digital Signatures

Chapter 7 Public Key Cryptography and Digital Signatures Chapter 7 Public Key Cryptography and Digital Signatures Every Egyptian received two names, which were known respectively as the true name and the good name, or the great name and the little name; and

More information

Chapter 9. Public Key Cryptography, RSA And Key Management

Chapter 9. Public Key Cryptography, RSA And Key Management Chapter 9 Public Key Cryptography, RSA And Key Management RSA by Rivest, Shamir & Adleman of MIT in 1977 The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on

More information

1. Diffie-Hellman Key Exchange

1. Diffie-Hellman Key Exchange e-pgpathshala Subject : Computer Science Paper: Cryptography and Network Security Module: Diffie-Hellman Key Exchange Module No: CS/CNS/26 Quadrant 1 e-text Cryptography and Network Security Objectives

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.4501 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Stallings: Ch 7.4; 7.3; 10.1 1 The Use

More information

Chapter 9 Public Key Cryptography. WANG YANG

Chapter 9 Public Key Cryptography. WANG YANG Chapter 9 Public Key Cryptography WANG YANG wyang@njnet.edu.cn Content Introduction RSA Diffie-Hellman Key Exchange Introduction Public Key Cryptography plaintext encryption ciphertext decryption plaintext

More information

Data Security and Privacy. Topic 14: Authentication and Key Establishment

Data Security and Privacy. Topic 14: Authentication and Key Establishment Data Security and Privacy Topic 14: Authentication and Key Establishment 1 Announcements Mid-term Exam Tuesday March 6, during class 2 Need for Key Establishment Encrypt K (M) C = Encrypt K (M) M = Decrypt

More information

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography Outline 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography 1. Introduction 2. RSA Outline 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d)

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d) Outline AIT 682: Network and Systems Security 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard Topic 5.2 Public Key Cryptography Instructor: Dr. Kun Sun 2 Public Key

More information

Public-Key Cryptography

Public-Key Cryptography Multimedia Security Mauro Barni University of Siena Private-Key Cryptography Traditional secret key cryptography uses one key shared by both sender and receiver if this key is disclosed communication secrecy

More information

The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who

The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who 1 The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who exchange messages from any third party. However, it does

More information

Chapter 3. Principles of Public-Key Cryptosystems

Chapter 3. Principles of Public-Key Cryptosystems Chapter 3 Principles of Public-Key Cryptosystems The concept of public-key cryptography evolved from an attempt to attack two of the most difficult problems associated with symmetric encryption. key distribution

More information

CSC/ECE 774 Advanced Network Security

CSC/ECE 774 Advanced Network Security Computer Science CSC/ECE 774 Advanced Network Security Topic 2. Network Security Primitives CSC/ECE 774 Dr. Peng Ning 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange;

More information

Lecture 6 - Cryptography

Lecture 6 - Cryptography Lecture 6 - Cryptography CMPSC 443 - Spring 2012 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse443-s12 Question Setup: Assume you and I donʼt know anything about

More information

Chapter 3 Public Key Cryptography

Chapter 3 Public Key Cryptography Cryptography and Network Security Chapter 3 Public Key Cryptography Lectured by Nguyễn Đức Thái Outline Number theory overview Public key cryptography RSA algorithm 2 Prime Numbers A prime number is an

More information

KEY AGREEMENT PROTOCOLS. CIS 400/628 Spring 2005 Introduction to Cryptography. This is based on Chapter 13 of Trappe and Washington

KEY AGREEMENT PROTOCOLS. CIS 400/628 Spring 2005 Introduction to Cryptography. This is based on Chapter 13 of Trappe and Washington KEY AGREEMENT PROTOCOLS CIS 400/628 Spring 2005 Introduction to Cryptography This is based on Chapter 13 of Trappe and Washington DIFFIE-HELLMAN KEY EXCHANGE Alice & want to exchange a ton of data using

More information

Cryptography CS 555. Topic 16: Key Management and The Need for Public Key Cryptography. CS555 Spring 2012/Topic 16 1

Cryptography CS 555. Topic 16: Key Management and The Need for Public Key Cryptography. CS555 Spring 2012/Topic 16 1 Cryptography CS 555 Topic 16: Key Management and The Need for Public Key Cryptography CS555 Spring 2012/Topic 16 1 Outline and Readings Outline Private key management between two parties Key management

More information

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 26. Cryptographic Systems: An Introduction Paul Krzyzanowski Rutgers University Fall 2015 1 Cryptography Security Cryptography may be a component of a secure system Adding cryptography

More information

WEBD 236 Web Information Systems Programming

WEBD 236 Web Information Systems Programming WEBD 236 Web Information Systems Programming Week 11 Copyright 2012 Todd Whittaker (todd.whittaker@franklin.edu) Agenda This week s expected outcomes This week s topics This week s homework Upcoming deadlines

More information

Key Management and Elliptic Curves

Key Management and Elliptic Curves Key Management and Elliptic Curves Key Management Distribution of ublic Keys ublic-key Distribution of Secret Keys Diffie-Hellman Key Echange Elliptic Curves Mathematical foundations Elliptic curves over

More information

CSE 3461/5461: Introduction to Computer Networking and Internet Technologies. Network Security. Presentation L

CSE 3461/5461: Introduction to Computer Networking and Internet Technologies. Network Security. Presentation L CS 3461/5461: Introduction to Computer Networking and Internet Technologies Network Security Study: 21.1 21.5 Kannan Srinivasan 11-27-2012 Security Attacks, Services and Mechanisms Security Attack: Any

More information

L13. Reviews. Rocky K. C. Chang, April 10, 2015

L13. Reviews. Rocky K. C. Chang, April 10, 2015 L13. Reviews Rocky K. C. Chang, April 10, 2015 1 Foci of this course Understand the 3 fundamental cryptographic functions and how they are used in network security. Understand the main elements in securing

More information

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08r. Pre-exam 2 Last-minute Review Cryptography Paul Krzyzanowski Rutgers University Spring 2018 March 26, 2018 CS 419 2018 Paul Krzyzanowski 1 Cryptographic Systems March 26, 2018 CS

More information

Real-time protocol. Chapter 16: Real-Time Communication Security

Real-time protocol. Chapter 16: Real-Time Communication Security Chapter 16: Real-Time Communication Security Mohammad Almalag Dept. of Computer Science Old Dominion University Spring 2013 1 Real-time protocol Parties negotiate interactively (Mutual) Authentication

More information

Module: Cryptographic Protocols. Professor Patrick McDaniel Spring CMPSC443 - Introduction to Computer and Network Security

Module: Cryptographic Protocols. Professor Patrick McDaniel Spring CMPSC443 - Introduction to Computer and Network Security CMPSC443 - Introduction to Computer and Network Security Module: Cryptographic Protocols Professor Patrick McDaniel Spring 2009 1 Key Distribution/Agreement Key Distribution is the process where we assign

More information

UNIT III 3.1DISCRETE LOGARITHMS

UNIT III 3.1DISCRETE LOGARITHMS UNIT III Discrete Logarithms Computing discrete logs Diffie-Hellman key exchange ElGamal Public key cryptosystems Hash functions Secure Hash - MD5 Digital signatures RSA ElGamal Digital signature scheme.

More information

Fall 2010/Lecture 32 1

Fall 2010/Lecture 32 1 CS 426 (Fall 2010) Key Distribution & Agreement Fall 2010/Lecture 32 1 Outline Key agreement without t using public keys Distribution of public keys, with public key certificates Diffie-Hellman Protocol

More information

Key Management and Distribution

Key Management and Distribution 2 and Distribution : Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 20 December 2015 css441y15s2l10, Steve/Courses/2015/s2/css441/lectures/key-management-and-distribution.tex,

More information

KALASALINGAM UNIVERSITY

KALASALINGAM UNIVERSITY KALASALINGAM UNIVERSITY (Kalasalingam Academy of Research and Education) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CLASS NOTES CRYPTOGRAPHY AND NETWOTK SECURITY (CSE 405) Prepared by M.RAJA AP/CSE

More information

Public-Key Cryptography. Professor Yanmin Gong Week 3: Sep. 7

Public-Key Cryptography. Professor Yanmin Gong Week 3: Sep. 7 Public-Key Cryptography Professor Yanmin Gong Week 3: Sep. 7 Outline Key exchange and Diffie-Hellman protocol Mathematical backgrounds for modular arithmetic RSA Digital Signatures Key management Problem:

More information

Lecture 9a: Secure Sockets Layer (SSL) March, 2004

Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Internet and Intranet Protocols and Applications Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu Security Achieved by

More information

Overview. Public Key Algorithms I

Overview. Public Key Algorithms I Public Key Algorithms I Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70810 Durresi@csc.lsu.Edu These slides are available at: http://www.csc.lsu.edu/~durresi/csc4601-04/ Louisiana State

More information

Public Key Algorithms

Public Key Algorithms Public Key Algorithms CS 472 Spring 13 Lecture 6 Mohammad Almalag 2/19/2013 Public Key Algorithms - Introduction Public key algorithms are a motley crew, how? All hash algorithms do the same thing: Take

More information

Diffie-Hellman. Part 1 Cryptography 136

Diffie-Hellman. Part 1 Cryptography 136 Diffie-Hellman Part 1 Cryptography 136 Diffie-Hellman Invented by Williamson (GCHQ) and, independently, by D and H (Stanford) A key exchange algorithm o Used to establish a shared symmetric key Not for

More information

Cryptographic Systems

Cryptographic Systems CPSC 426/526 Cryptographic Systems Ennan Zhai Computer Science Department Yale University Recall: Lec-10 In lec-10, we learned: - Consistency models - Two-phase commit - Consensus - Paxos Lecture Roadmap

More information

Chapter 9: Key Management

Chapter 9: Key Management Chapter 9: Key Management Session and Interchange Keys Key Exchange Cryptographic Key Infrastructure Storing and Revoking Keys Digital Signatures Slide #9-1 Overview Key exchange Session vs. interchange

More information

Cryptographic Checksums

Cryptographic Checksums Cryptographic Checksums Mathematical function to generate a set of k bits from a set of n bits (where k n). k is smaller then n except in unusual circumstances Example: ASCII parity bit ASCII has 7 bits;

More information

Session key establishment protocols

Session key establishment protocols our task is to program a computer which gives answers which are subtly and maliciously wrong at the most inconvenient possible moment. -- Ross Anderson and Roger Needham, Programming Satan s computer Session

More information

CS Computer Networks 1: Authentication

CS Computer Networks 1: Authentication CS 3251- Computer Networks 1: Authentication Professor Patrick Traynor 4/14/11 Lecture 25 Announcements Homework 3 is due next class. Submit via T-Square or in person. Project 3 has been graded. Scores

More information

Public Key Algorithms

Public Key Algorithms Public Key Algorithms 1 Public Key Algorithms It is necessary to know some number theory to really understand how and why public key algorithms work Most of the public key algorithms are based on modular

More information

Cryptography Lecture 9 Key distribution and trust, Elliptic curve cryptography

Cryptography Lecture 9 Key distribution and trust, Elliptic curve cryptography Cryptography Lecture 9 Key distribution and trust, Elliptic curve cryptography Key Management The first key in a new connection or association is always delivered via a courier Once you have a key, you

More information

ECE 646 Lecture 3. Key management

ECE 646 Lecture 3. Key management ECE 646 Lecture 3 Key management Required Reading Stallings, Cryptography and Network Security: Principles and Practice, 5/E or 6/E Chapter 14 Key Management and Distribution Using the same key for multiple

More information

Lecture 2 Applied Cryptography (Part 2)

Lecture 2 Applied Cryptography (Part 2) Lecture 2 Applied Cryptography (Part 2) Patrick P. C. Lee Tsinghua Summer Course 2010 2-1 Roadmap Number theory Public key cryptography RSA Diffie-Hellman DSA Certificates Tsinghua Summer Course 2010 2-2

More information

What did we talk about last time? Public key cryptography A little number theory

What did we talk about last time? Public key cryptography A little number theory Week 4 - Friday What did we talk about last time? Public key cryptography A little number theory If p is prime and a is a positive integer not divisible by p, then: a p 1 1 (mod p) Assume a is positive

More information

Key Establishment. Chester Rebeiro IIT Madras. Stinson : Chapter 10

Key Establishment. Chester Rebeiro IIT Madras. Stinson : Chapter 10 Key Establishment Chester Rebeiro IIT Madras CR Stinson : Chapter 10 Multi Party secure communication C D A B E F N parties want to communicate securely with each other (N=6 in this figure) If sends a

More information

Information Security CS 526

Information Security CS 526 Information Security CS 526 Topic 14: Key Distribution & Agreement, Secure Communication Topic 14: Secure Communication 1 Readings for This Lecture On Wikipedia Needham-Schroeder protocol (only the symmetric

More information

Key Exchange. References: Applied Cryptography, Bruce Schneier Cryptography and Network Securiy, Willian Stallings

Key Exchange. References: Applied Cryptography, Bruce Schneier Cryptography and Network Securiy, Willian Stallings Key Exchange References: Applied Cryptography, Bruce Schneier Cryptography and Network Securiy, Willian Stallings Outlines Primitives Root Discrete Logarithm Diffie-Hellman ElGamal Shamir s Three Pass

More information

Encryption. INST 346, Section 0201 April 3, 2018

Encryption. INST 346, Section 0201 April 3, 2018 Encryption INST 346, Section 0201 April 3, 2018 Goals for Today Symmetric Key Encryption Public Key Encryption Certificate Authorities Secure Sockets Layer Simple encryption scheme substitution cipher:

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Security Handshake Pitfalls Login only Mutual

More information

Kurose & Ross, Chapters (5 th ed.)

Kurose & Ross, Chapters (5 th ed.) Kurose & Ross, Chapters 8.2-8.3 (5 th ed.) Slides adapted from: J. Kurose & K. Ross \ Computer Networking: A Top Down Approach (5 th ed.) Addison-Wesley, April 2009. Copyright 1996-2010, J.F Kurose and

More information

Session key establishment protocols

Session key establishment protocols our task is to program a computer which gives answers which are subtly and maliciously wrong at the most inconvenient possible moment. -- Ross Anderson and Roger Needham, Programming Satan s computer Session

More information

CS 494/594 Computer and Network Security

CS 494/594 Computer and Network Security CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Real-Time Communication Security Network layers

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.159 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Kaufman et al: Ch 11.6; 9.7-9; Stallings:

More information

Keywords Session key, asymmetric, digital signature, cryptosystem, encryption.

Keywords Session key, asymmetric, digital signature, cryptosystem, encryption. Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Review of Diffie

More information

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08. Cryptography Part II Paul Krzyzanowski Rutgers University Spring 2018 March 23, 2018 CS 419 2018 Paul Krzyzanowski 1 Block ciphers Block ciphers encrypt a block of plaintext at a

More information

Digital Signatures. Luke Anderson. 7 th April University Of Sydney.

Digital Signatures. Luke Anderson. 7 th April University Of Sydney. Digital Signatures Luke Anderson luke@lukeanderson.com.au 7 th April 2017 University Of Sydney Overview 1. Digital Signatures 1.1 Background 1.2 Basic Operation 1.3 Attack Models Replay Naïve RSA 2. PKCS#1

More information

CS 470 Spring Security. Mike Lam, Professor. a.k.a. Why on earth do Alice and Bob need to share so many secrets?!?

CS 470 Spring Security. Mike Lam, Professor. a.k.a. Why on earth do Alice and Bob need to share so many secrets?!? 50fb6be35f4c3105 9d4ed08fb86d8887 b746c452a9c9443b 15b22f450c76218e CS 470 Spring 2018 9df7031cdbff9d10 b700a92855f16328 5b757e66d2131841 62fedd7d9131e42e Mike Lam, Professor Security a.k.a. Why on earth

More information

CS 6324: Information Security More Info on Key Establishment: RSA, DH & QKD

CS 6324: Information Security More Info on Key Establishment: RSA, DH & QKD ERIK JONSSON SCHOOL OF ENGINEERING & COMPUTER SCIENCE Cyber Security Research and Education Institute CS 6324: Information Security Dr. Junia Valente Department of Computer Science The University of Texas

More information

CIS 4360 Secure Computer Systems Applied Cryptography

CIS 4360 Secure Computer Systems Applied Cryptography CIS 4360 Secure Computer Systems Applied Cryptography Professor Qiang Zeng Spring 2017 Symmetric vs. Asymmetric Cryptography Symmetric cipher is much faster With asymmetric ciphers, you can post your Public

More information

Public Key Algorithms

Public Key Algorithms CSE597B: Special Topics in Network and Systems Security Public Key Cryptography Instructor: Sencun Zhu The Pennsylvania State University Public Key Algorithms Public key algorithms RSA: encryption and

More information

CS3235 Seventh set of lecture slides

CS3235 Seventh set of lecture slides CS3235 Seventh set of lecture slides Hugh Anderson National University of Singapore School of Computing October, 2007 Hugh Anderson CS3235 Seventh set of lecture slides 1 Warp 9... Outline 1 Public Key

More information

CS 470 Spring Security. Mike Lam, Professor. a.k.a. Why on earth do Alice and Bob need to talk so much?!? Content taken from the following:

CS 470 Spring Security. Mike Lam, Professor. a.k.a. Why on earth do Alice and Bob need to talk so much?!? Content taken from the following: 50fb6be35f4c3105 9d4ed08fb86d8887 b746c452a9c9443b 15b22f450c76218e CS 470 Spring 2017 9df7031cdbff9d10 b700a92855f16328 5b757e66d2131841 62fedd7d9131e42e Mike Lam, Professor Security a.k.a. Why on earth

More information

Security. Alessandro Margara Slides based on previous work by Matteo Migliavacca and Alessandro Sivieri

Security. Alessandro Margara Slides based on previous work by Matteo Migliavacca and Alessandro Sivieri Security Alessandro Margara alessandro.margara@polimi.it Slides based on previous work by Matteo Migliavacca and Alessandro Sivieri Why security in a DS course? Sharing of resources is the motivating factor

More information

This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest

This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest 1 2 3 This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest PKCS, Diffie- Hellman key exchange. This first published

More information

Key Management. Digital signatures: classical and public key Classic and Public Key exchange. Handwritten Signature

Key Management. Digital signatures: classical and public key Classic and Public Key exchange. Handwritten Signature Key Management Digital signatures: classical and public key Classic and Public Key exchange 1 Handwritten Signature Used everyday in a letter, on a check, sign a contract A signature on a signed paper

More information

Security Handshake Pitfalls

Security Handshake Pitfalls Hello Challenge R f(k, R f(k, R Problems: 1. Authentication is not mutual only authenticates Anyone can send the challenge R. f(k, R Problems: 1. Authentication is not mutual only authenticates Anyone

More information

CSC 774 Network Security

CSC 774 Network Security CSC 774 Network Security Topic 2. Review of Cryptographic Techniques CSC 774 Dr. Peng Ning 1 Outline Encryption/Decryption Digital signatures Hash functions Pseudo random functions Key exchange/agreement/distribution

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Giuseppe F. Italiano Universita` di Roma Tor Vergata italiano@disp.uniroma2.it Motivation Until early 70s, cryptography was mostly owned by government and military Symmetric cryptography

More information

Other Topics in Cryptography. Truong Tuan Anh

Other Topics in Cryptography. Truong Tuan Anh Other Topics in Cryptography Truong Tuan Anh 2 Outline Public-key cryptosystem Cryptographic hash functions Signature schemes Public-Key Cryptography Truong Tuan Anh CSE-HCMUT 4 Outline Public-key cryptosystem

More information

Lecture 30. Cryptography. Symmetric Key Cryptography. Key Exchange. Advanced Encryption Standard (AES) DES. Security April 11, 2005

Lecture 30. Cryptography. Symmetric Key Cryptography. Key Exchange. Advanced Encryption Standard (AES) DES. Security April 11, 2005 Lecture 30 Security April 11, 2005 Cryptography K A ciphertext Figure 7.3 goes here K B symmetric-key crypto: sender, receiver keys identical public-key crypto: encrypt key public, decrypt key secret Symmetric

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Public Key Cryptography Modular Arithmetic RSA

More information

Introduction to Network Security Missouri S&T University CPE 5420 Key Management and Distribution

Introduction to Network Security Missouri S&T University CPE 5420 Key Management and Distribution Introduction to Network Security Missouri S&T University CPE 5420 Key Management and Distribution Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University

More information

Key management. Required Reading. Stallings, Cryptography and Network Security: Principles and Practice, 5/E or 6/E

Key management. Required Reading. Stallings, Cryptography and Network Security: Principles and Practice, 5/E or 6/E ECE 646 Lecture 3 Key management Required Reading Stallings, Cryptography and Network Security: Principles and Practice, 5/E or 6/E Chapter 14 Key Management and Distribution 1 Using the same key for multiple

More information

Topics. Number Theory Review. Public Key Cryptography

Topics. Number Theory Review. Public Key Cryptography Public Key Cryptography Topics 1. Number Theory Review 2. Public Key Cryptography 3. One-Way Trapdoor Functions 4. Diffie-Helman Key Exchange 5. RSA Cipher 6. Modern Steganography Number Theory Review

More information

UNIT - IV Cryptographic Hash Function 31.1

UNIT - IV Cryptographic Hash Function 31.1 UNIT - IV Cryptographic Hash Function 31.1 31-11 SECURITY SERVICES Network security can provide five services. Four of these services are related to the message exchanged using the network. The fifth service

More information

Public Key Cryptography, OpenPGP, and Enigmail. 31/5/ Geek Girls Carrffots GVA

Public Key Cryptography, OpenPGP, and Enigmail. 31/5/ Geek Girls Carrffots GVA Public Key Cryptography, OpenPGP, and Enigmail Cryptography is the art and science of transforming (encrypting) a message so only the intended recipient can read it Symmetric Cryptography shared secret

More information

Key Agreement. Guilin Wang. School of Computer Science, University of Birmingham

Key Agreement. Guilin Wang. School of Computer Science, University of Birmingham Key Agreement Guilin Wang School of Computer Science, University of Birmingham G.Wang@cs.bham.ac.uk 1 Motivations As we know, symmetric key encryptions are usually much more efficient than public key encryptions,

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 7. Network Security Network Attacks Cryptographic Technologies Message Integrity and Authentication Key Distribution Firewalls Transport Layer

More information

A SECURE PASSWORD-BASED REMOTE USER AUTHENTICATION SCHEME WITHOUT SMART CARDS

A SECURE PASSWORD-BASED REMOTE USER AUTHENTICATION SCHEME WITHOUT SMART CARDS ISSN 1392 124X INFORMATION TECHNOLOGY AND CONTROL, 2012, Vol.41, No.1 A SECURE PASSWORD-BASED REMOTE USER AUTHENTICATION SCHEME WITHOUT SMART CARDS Bae-Ling Chen 1, Wen-Chung Kuo 2*, Lih-Chyau Wuu 3 1

More information

Grenzen der Kryptographie

Grenzen der Kryptographie Microsoft Research Grenzen der Kryptographie Dieter Gollmann Microsoft Research 1 Summary Crypto does not solve security problems Crypto transforms security problems Typically, the new problems relate

More information

Digital Signatures. Public-Key Signatures. Arbitrated Signatures. Digital Signatures With Encryption. Terminology. Message Authentication Code (MAC)

Digital Signatures. Public-Key Signatures. Arbitrated Signatures. Digital Signatures With Encryption. Terminology. Message Authentication Code (MAC) Message Authentication Code (MAC) Key-dependent one-way hash function Only someone with a correct key can verify the hash value Easy way to turn one-way hash function into MAC is to encrypt hash value

More information

Key Management and Distribution

Key Management and Distribution Key Management and Distribution Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-14/

More information

(2½ hours) Total Marks: 75

(2½ hours) Total Marks: 75 (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Makesuitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

ח'/סיון/תשע "א. RSA: getting ready. Public Key Cryptography. Public key cryptography. Public key encryption algorithms

ח'/סיון/תשע א. RSA: getting ready. Public Key Cryptography. Public key cryptography. Public key encryption algorithms Public Key Cryptography Kurose & Ross, Chapters 8.28.3 (5 th ed.) Slides adapted from: J. Kurose & K. Ross \ Computer Networking: A Top Down Approach (5 th ed.) AddisonWesley, April 2009. Copyright 19962010,

More information

PROTECTING CONVERSATIONS

PROTECTING CONVERSATIONS PROTECTING CONVERSATIONS Basics of Encrypted Network Communications Naïve Conversations Captured messages could be read by anyone Cannot be sure who sent the message you are reading Basic Definitions Authentication

More information

Issues. Separation of. Distributed system security. Security services. Security policies. Security mechanism

Issues. Separation of. Distributed system security. Security services. Security policies. Security mechanism Module 9 - Security Issues Separation of Security policies Precise definition of which entities in the system can take what actions Security mechanism Means of enforcing that policy Distributed system

More information

Secure Sockets Layer (SSL) / Transport Layer Security (TLS)

Secure Sockets Layer (SSL) / Transport Layer Security (TLS) Secure Sockets Layer (SSL) / Transport Layer Security (TLS) Brad Karp UCL Computer Science CS GZ03 / M030 20 th November 2017 What Problems Do SSL/TLS Solve? Two parties, client and server, not previously

More information

Other Uses of Cryptography. Cryptography Goals. Basic Problem and Terminology. Other Uses of Cryptography. What Can Go Wrong? Why Do We Need a Key?

Other Uses of Cryptography. Cryptography Goals. Basic Problem and Terminology. Other Uses of Cryptography. What Can Go Wrong? Why Do We Need a Key? ryptography Goals Protect private communication in the public world and are shouting messages over a crowded room no one can understand what they are saying 1 Other Uses of ryptography Authentication should

More information

Public Key (asymmetric) Cryptography

Public Key (asymmetric) Cryptography Public-Key Cryptography Public Key (asymmetric) Cryptography Luca Veltri (mail.to: luca.veltri@.veltri@unipr.it) Course of Network Security, Spring 2013 http:// ://www.tlc.unipr.it it/veltri Also referred

More information

Outline Key Management CS 239 Computer Security February 9, 2004

Outline Key Management CS 239 Computer Security February 9, 2004 Outline Key Management CS 239 Computer Security February 9, 2004 Properties of keys Key management Key servers Certificates Page 1 Page 2 Introduction Properties of Keys It doesn t matter how strong your

More information