Network Security. Chapter 4 Symmetric Encryption. Cornelius Diekmann With contributions by Benjamin Hof. Technische Universität München

Size: px
Start display at page:

Download "Network Security. Chapter 4 Symmetric Encryption. Cornelius Diekmann With contributions by Benjamin Hof. Technische Universität München"

Transcription

1 Networ Security Chapter 4 Symmetric Encryption Cornelius Diemann With contributions by Benjamin Hof Lehrstuhl für Netzarchiteturen und Netzdienste Institut für Informati Version: October 29, 2015 IN2101, WS 15/16, Networ Security 1

2 Symmetric Encryption IN2101, WS 15/16, Networ Security 2

3 Symmetric Encryption Alice and Bob share a secret ey Implicit assumption: Only Alice and Bob now The ey is symmetric Alice and Bob share the same The ey is used to encrypt and decrypt Terminology Plaintext m The message itself Ciphertext c The encrypted plaintext Encryption: c = Enc (m) Decryption: m = Dec (c) Basic correctness requirement: Dec (Enc (m)) = m IN2101, WS 15/16, Networ Security 3

4 Example Alice nows m c m Bob Enc Dec nows m = This is networ security = 95 eb 50 0c f 88 8a f7 0b dd fb d7 64 c = ad 5c 66 d3 55 be c d2 75 3d 93 da fe d ac c1 2c e b4 82 2c b2 Enc = AES-128-ECB What security goals can we fulfill? Confidentiality? Yes. Integrity? No! An attacer could alter c. Authenticity? No. Who are Alice and Bob anyway? Maybe Rogue-Alice is claiming to be Alice? IN2101, WS 15/16, Networ Security 4

5 Example for Enc and Dec: One-Time-Pad IN2101, WS 15/16, Networ Security 5

6 One-Time-Pad: A Perfect Cipher Assumption: Alice and Bob share a perfectly random bitstream otp. = otp Enc otp (m) = m otp Dec otp (c) = c otp Chec: Dec otp (Enc otp (m)) = Dec otp (m otp) = (m otp) otp = m Requirements: Key must have same size as message. Key must only be used once. Note: denotes XOR IN2101, WS 15/16, Networ Security 6

7 Security of Ciphers IN2101, WS 15/16, Networ Security 7

8 Kerchoff s principle The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience. In other words: The cipher (encryption algorithm) is public. Only the ey is secret. IN2101, WS 15/16, Networ Security 8

9 Examples of secure real-world ciphers AES 3DES ChaCha20 One-Time-Pad Why can we trust them? They have been publicly reviewed, analyzed by cryptographers, and standardized. Well-tested implementations are available in your library Using them securely: 1 RTFM 2 eep the ey secret (Kerchoff s principle) IN2101, WS 15/16, Networ Security 9

10 Repetition: Dos and Don ts Do Do use standardized ciphers from your library Be aware of the dangers Unliely: A well-established cipher is broen or bacdoored Liely: Wrong usage of the cipher compromises security (RTFM)! Don t Don t implement your own cipher. It will be broen, I guarantee! Don t claim it s encrypted, it is secure. Forgetting integrity and authenticity may be worse than any information leaage! Don t forget about ey management. IN2101, WS 15/16, Networ Security 10

11 Attacing Symmetric Ciphers IN2101, WS 15/16, Networ Security 11

12 Attacing Symmetric Ciphers Goal: given c, learn something about m Note: if something about can be learned, the attac is successful. Why? Attac Scenarios: Ciphertext-only-attac Attcer nows c Known-plaintext attac For a fixed, the attacer got a pair (m, c) and tries to learn something about other ciphertexts Chosen-plaintext and chosen-ciphertext attac. similar to previous attac, but attacer can chose m or c freely Examples in networs passively sniffing attacer: usually ciphertext-only attacing a server: chosen-plaintext replaying eavesdropped modified messages: chosen-ciphertext IN2101, WS 15/16, Networ Security 12

13 Security of Ciphers Disclaimer: hand-waving idea. This is not a cryptography course. A cipher is secure if the best nown attac is brute-forcing all eys. Brute-Force: exhaustively testing all eys Good eysize (symmetric cipher): 128 bit A 10 Ghz CPU with 1 encryption operation per cycle needs about years to brute-force the whole ey space. On average, only half of the possible eys must be tried,... only years necessary IN2101, WS 15/16, Networ Security 13

14 Example: Security of One-Time-Pad IN2101, WS 15/16, Networ Security 14

15 One-Time-Pad: A Perfect Cipher c of length(c) can be decrypted to any m of length length(c) Only nowledge of reveals the right m OTP is a perfect cipher Attac scenarios in details Ciphertext-only: No attac possible; any possible plaintext can be generated with the ciphertext. Pairs of c and m don t help: The otp can be calculated, but this otp won t be reused! Any statistical attac: due to otp, the ciphertext is perfectly random! IN2101, WS 15/16, Networ Security 15

16 One-Time-Pad: Drawbacs Necessary ey length in bits: length() = length(m) must not be reused Wish list for practical ciphers length() length(m) Key of fixed length, e.g. 128 bit Key reusable for several messages Unavoidable implication (for length(m) length()): Brute-forcing: 2 length() instead of 2 length(c) for otp. Ciphertext-only attac succeeds w.h.p. when a is found which decrypts c to an intelligible m. If m is not perfectly random, c cannot be perfectly random Cipher is still secure IN2101, WS 15/16, Networ Security 16

17 Example: An Insecure Cipher IN2101, WS 15/16, Networ Security 17

18 Example: icry insecure cryptographic cipher B 4 ey of length 4 bit Split m into blocs of 4 bit each: m = m 1 m 2 m 3... Encrypt each bloc individually with Enc (m i ) = m = Dec (c i ) Example: encrypting L m = ord( L ) = 0x4c = 0100b 1100 b = 1010b c = 0xe6 (not an ASCII char) m 1 :0100 m 2 :1100 :1010 :1010 c 1 :1110 c 2 :0110 IN2101, WS 15/16, Networ Security 18

19 Example: Attacing icry Known-plaintext attac Attacer nows: (m, c) = (0100b 1100 b, 1110 b 0110 b ) Attacer can compute = 0100 b 1110 b = 1010 b or = 1100 b 0110 b = 1010 b Attacer can now read all future messages encrypted with this IN2101, WS 15/16, Networ Security 19

20 Example: Attacing icry Ciphertext-only attac: Attacer nows: c = 1110 b 0110 b m = Dec (c) ASCII value [not an ASCII char] [not an ASCII char] [not an ASCII char] [not an ASCII char] [not an ASCII char] [not an ASCII char] [not an ASCII char] [not an ASCII char] n [non-printable ASCII char] L ] * ; [non-printable ASCII char] [non-printable ASCII char] Attacer brute-forces the small ey space Intelligible decryptions: n and L Possible eys: 1000 b or 1010 b Attacer needs more ciphertext to improve the guess of the correct ey (because is reused) IN2101, WS 15/16, Networ Security 20

21 Bloc and Stream Ciphers IN2101, WS 15/16, Networ Security 21

22 Bloc and Stream Cipher Assumes: shared symmetric of fixed length Bloc cipher Encrypts and decrypts inputs of length n to outputs of length n Bloc length n Examples: AES, 3DES Stream cipher Generates a random bitstream, called eystream c = eystream m Examples: ChaCha20, RC4 (broen!) IN2101, WS 15/16, Networ Security 22

23 Example: Bloc Cipher AES-128 AES-128 blocs size: 128 bit (16 bytes) ey size: 128 bit m = This is networ. len(m) = 16 bytes = 128 truly random bits Enc (m) = 2d 3c ab 1b a ec e8 1d 56 0d 09 2b f6 77 IN2101, WS 15/16, Networ Security 23

24 Example: Some Stream Cipher m = HELLO = c 4c 4f = streamcipher.get eystream bytes(5) = 12 a7 f Enc (m) = m = 5a e2 b5 4b 1a IN2101, WS 15/16, Networ Security 24

25 Interlude: Which Crypto Cipher should I use? Probably AES Reasons to use AES Fast: 200 MBit/s in software and > 2 GB/s with Intel AES-NI Hardware implementations for embedded devices available A well-tested implementation is available in your library Secure (attacs exist, but AES is practically secure) AES seems to be the best we have, and it is among the most researched algorithms IN2101, WS 15/16, Networ Security 25

26 Modes of Encryption IN2101, WS 15/16, Networ Security 26

27 Modes of Encryption: Motivation Bloc ciphers handle messages of length x Problem: length(m) x Solution: Modes of Encryption We split m into blocs m i where length(m i ) = x m = m 1 m 2... m n if length(m) is not a multiple of x, the last bloc is filled up Technical Term: padding IN2101, WS 15/16, Networ Security 27

28 Electronic Code Boo Mode ECB c i = Enc (m i ) m 1 m 2... m n Enc Enc... Enc c 1 c 2... c n IN2101, WS 15/16, Networ Security 28

29 ECB Example m = This is networ.this is networ.security Enc = AES-128, mode = ECB c = 2d 3c ab 1b a ec e8 1d 56 0d 09 2b f6 77 2d 3c ab 1b a ec e8 1d 56 0d 09 2b f ea 2c e7 40 db 06 a c 37 0b Why are line 1 and line 2 identical? m 1 = This is networ. m 2 = This is networ. m 3 = Security + padding IN2101, WS 15/16, Networ Security 29

30 ECB Drawbac Identical plaintext blocs are encrypted to identical ciphertext! IN2101, WS 15/16, Networ Security 30

31 Cipher Bloc Chaining Mode CBC m 1 m 2... m n IV c n 1 Enc Enc... Enc c 1 c 2... c n IN2101, WS 15/16, Networ Security 31

32 CBC Discussion CBC Encrypt: c i = Enc (c i 1 m i ) Why the with the previous bloc? Identical plaintext blocs are encrypted to non-identical ciphertext c 0 = IV What is the use of the IV (initialization vector)? Completely identical messages are encrypted to non-identical ciphertexts IV may be public IV must be fresh IN2101, WS 15/16, Networ Security 32

33 CBC Example Sending m encrypted over UDP, using CBC. m is split into blocs for the bloc cipher. m = m 1 m 2 m 3 m 4 m 5 m 6 m is split over two UDP pacets. A new and random IV is put in clear at the beginning of the payload of every pacet. IP header UDP header IV 1 c 1 c 2 c 3 IP header UDP header IV 2 c 4 c 5 c 6 IN2101, WS 15/16, Networ Security 33

34 CBC Decrypt CBC Encrypt: c i = Enc (c i 1 m i ) c 0 = IV Let s do the math: c i = Enc (c i 1 m i ) Dec (c i ) = Dec (Enc (c i 1 m i )) Dec (c i ) = c i 1 m i Dec (c i ) c i 1 = m i CBC-Decrypt: m i = c i 1 Dec (c i ) IN2101, WS 15/16, Networ Security 34

35 CBC Decrypt c 1 c 2... c n Dec Dec... Dec IV c n 1 m 1 m 2... m n IN2101, WS 15/16, Networ Security 35

36 Output Feedbac Mode OFB IV n 1 Enc Enc... Enc 1 2 n m 1 c 1 m 2 c 2... m n c n Transforms a bloc cipher into a stream cipher. IV may be public but must be fresh. IN2101, WS 15/16, Networ Security 36

37 OFB Decrypt IV n 1 Enc Enc... Enc 1 2 n c 1 m 1 c 2 m 2... c n m n IN2101, WS 15/16, Networ Security 37

38 Counter Mode CTR ctr i = IV i ctr 1 ctr 2 ctr n Enc Enc... Enc m 1 c 1 m 2 c 2... m n c n Transforms a bloc cipher into a stream cipher. IV may be public but must be fresh. IN2101, WS 15/16, Networ Security 38

39 CTR Decrypt ctr 1 ctr 2 ctr n Enc Enc... Enc c 1 m 1 c 2 m 2... c n m n IN2101, WS 15/16, Networ Security 39

40 Literature Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography, 2nd edition, CRC Press, 2015 = recommended Filippo Valsorda, The ECB Penguin, PyTux Blog, 2013, Günter Schäfer, Security in Fixed and Wireless Networs: An Introduction to Securing Data Communications, Wiley, 2004 Günter Schäfer, Netzsicherheit, dpunt, 2003 IN2101, WS 15/16, Networ Security 40

Bob k. Alice. CS 558 Lecture Deck(c) = c k. Continuation of Encryption

Bob k. Alice. CS 558 Lecture Deck(c) = c k. Continuation of Encryption CS 558 Lecture 1-26-2017 Continuation of Encryption Review: Schemes - how we do encryption and/or decryption Definition of what it means to be secure(sometimes use to analyze a system) Proof that the scheme

More information

1 Achieving IND-CPA security

1 Achieving IND-CPA security ISA 562: Information Security, Theory and Practice Lecture 2 1 Achieving IND-CPA security 1.1 Pseudorandom numbers, and stateful encryption As we saw last time, the OTP is perfectly secure, but it forces

More information

CIS 4360 Introduction to Computer Security Fall WITH ANSWERS in bold. First Midterm

CIS 4360 Introduction to Computer Security Fall WITH ANSWERS in bold. First Midterm CIS 4360 Introduction to Computer Security Fall 2010 WITH ANSWERS in bold Name:.................................... Number:............ First Midterm Instructions This is a closed-book examination. Maximum

More information

Information Security CS526

Information Security CS526 Information CS 526 Topic 3 Ciphers and Cipher : Stream Ciphers, Block Ciphers, Perfect Secrecy, and IND-CPA 1 Announcements HW1 is out, due on Sept 10 Start early, late policy is 3 total late days for

More information

Stream Ciphers and Block Ciphers

Stream Ciphers and Block Ciphers Stream Ciphers and Block Ciphers Ruben Niederhagen September 18th, 2013 Introduction 2/22 Recall from last lecture: Public-key crypto: Pair of keys: public key for encryption, private key for decryption.

More information

CS155. Cryptography Overview

CS155. Cryptography Overview CS155 Cryptography Overview Cryptography Is n n A tremendous tool The basis for many security mechanisms Is not n n n n The solution to all security problems Reliable unless implemented properly Reliable

More information

CSE 127: Computer Security Cryptography. Kirill Levchenko

CSE 127: Computer Security Cryptography. Kirill Levchenko CSE 127: Computer Security Cryptography Kirill Levchenko October 24, 2017 Motivation Two parties want to communicate securely Secrecy: No one else can read messages Integrity: messages cannot be modified

More information

Cryptography Functions

Cryptography Functions Cryptography Functions Lecture 3 1/29/2013 References: Chapter 2-3 Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner Types of Cryptographic Functions Secret (Symmetric)

More information

Lecture 1 Applied Cryptography (Part 1)

Lecture 1 Applied Cryptography (Part 1) Lecture 1 Applied Cryptography (Part 1) Patrick P. C. Lee Tsinghua Summer Course 2010 1-1 Roadmap Introduction to Security Introduction to Cryptography Symmetric key cryptography Hash and message authentication

More information

CS 161 Computer Security. Week of September 11, 2017: Cryptography I

CS 161 Computer Security. Week of September 11, 2017: Cryptography I Weaver Fall 2017 CS 161 Computer Security Discussion 3 Week of September 11, 2017: Cryptography I Question 1 Activity: Cryptographic security levels (20 min) Say Alice has a randomly-chosen symmetric key

More information

Practical Aspects of Modern Cryptography

Practical Aspects of Modern Cryptography Practical Aspects of Modern Cryptography Lecture 3: Symmetric s and Hash Functions Josh Benaloh & Brian LaMacchia Meet Alice and Bob Alice Bob Message Modern Symmetric s Setup: Alice wants to send a private

More information

Chapter 3 Traditional Symmetric-Key Ciphers 3.1

Chapter 3 Traditional Symmetric-Key Ciphers 3.1 Chapter 3 Traditional Symmetric-Key Ciphers 3.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Objectives To define the terms and the concepts of symmetric

More information

Cryptography CS 555. Topic 8: Modes of Encryption, The Penguin and CCA security

Cryptography CS 555. Topic 8: Modes of Encryption, The Penguin and CCA security Cryptography CS 555 Topic 8: Modes of Encryption, The Penguin and CCA security 1 Reminder: Homework 1 Due on Friday at the beginning of class Please typeset your solutions 2 Recap Pseudorandom Functions

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Lecture 6 Michael J. Fischer Department of Computer Science Yale University January 27, 2010 Michael J. Fischer CPSC 467b, Lecture 6 1/36 1 Using block ciphers

More information

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Symmetric-Key Cryptography CS 161: Computer Security

More information

Symmetric-Key Cryptography

Symmetric-Key Cryptography Symmetric-Key Cryptography CS 161: Computer Security Prof. Raluca Ada Popa Sept 13, 2016 Announcements Project due Sept 20 Special guests Alice Bob The attacker (Eve - eavesdropper, Malice) Sometimes Chris

More information

Lecture 6: Symmetric Cryptography. CS 5430 February 21, 2018

Lecture 6: Symmetric Cryptography. CS 5430 February 21, 2018 Lecture 6: Symmetric Cryptography CS 5430 February 21, 2018 The Big Picture Thus Far Attacks are perpetrated by threats that inflict harm by exploiting vulnerabilities which are controlled by countermeasures.

More information

More on Cryptography CS 136 Computer Security Peter Reiher January 19, 2017

More on Cryptography CS 136 Computer Security Peter Reiher January 19, 2017 More on Cryptography CS 136 Computer Security Peter Reiher January 19, 2017 Page 1 Outline Desirable characteristics of ciphers Stream and block ciphers Cryptographic modes Uses of cryptography Symmetric

More information

Goals of Modern Cryptography

Goals of Modern Cryptography Goals of Modern Cryptography Providing information security: Data Privacy Data Integrity and Authenticity in various computational settings. Data Privacy M Alice Bob The goal is to ensure that the adversary

More information

ECE 646 Lecture 8. Modes of operation of block ciphers

ECE 646 Lecture 8. Modes of operation of block ciphers ECE 646 Lecture 8 Modes of operation of block ciphers Required Reading: I. W. Stallings, "Cryptography and Network-Security," 5 th and 6 th Edition, Chapter 6 Block Cipher Operation II. A. Menezes, P.

More information

Unit 8 Review. Secure your network! CS144, Stanford University

Unit 8 Review. Secure your network! CS144, Stanford University Unit 8 Review Secure your network! 1 Basic Problem Internet To first approximation, attackers control the network Can snoop, replay, suppress, send How do we defend against this? Communicate securely despite

More information

Summary on Crypto Primitives and Protocols

Summary on Crypto Primitives and Protocols Summary on Crypto Primitives and Protocols Levente Buttyán CrySyS Lab, BME www.crysys.hu 2015 Levente Buttyán Basic model of cryptography sender key data ENCODING attacker e.g.: message spatial distance

More information

Symmetric Cryptography

Symmetric Cryptography CSE 484 (Winter 2010) Symmetric Cryptography Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...

More information

COMP4109 : Applied Cryptography

COMP4109 : Applied Cryptography COMP4109 : Applied Cryptography Fall 2013 M. Jason Hinek Carleton University Applied Cryptography Day 4 (and 5 and maybe 6) secret-key primitives symmetric-key encryption security notions and types of

More information

Symmetric Encryption. Thierry Sans

Symmetric Encryption. Thierry Sans Symmetric Encryption Thierry Sans Design principles (reminder) 1. Kerkoff Principle The security of a cryptosystem must not rely on keeping the algorithm secret 2. Diffusion Mixing-up symbols 3. Confusion

More information

Computer Security CS 526

Computer Security CS 526 Computer Security CS 526 Topic 4 Cryptography: Semantic Security, Block Ciphers and Encryption Modes CS555 Topic 4 1 Readings for This Lecture Required reading from wikipedia Block Cipher Ciphertext Indistinguishability

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.2 Secret Key Cryptography CSC 474/574 Dr. Peng Ning 1 Agenda Generic block cipher Feistel cipher DES Modes of block ciphers Multiple encryptions Message

More information

Introduction to Modern Cryptography. Lecture 2. Symmetric Encryption: Stream & Block Ciphers

Introduction to Modern Cryptography. Lecture 2. Symmetric Encryption: Stream & Block Ciphers Introduction to Modern Cryptography Lecture 2 Symmetric Encryption: Stream & Block Ciphers Stream Ciphers Start with a secret key ( seed ) Generate a keying stream i-th bit/byte of keying stream is a function

More information

Block Cipher Operation. CS 6313 Fall ASU

Block Cipher Operation. CS 6313 Fall ASU Chapter 7 Block Cipher Operation 1 Outline q Multiple Encryption and Triple DES q Electronic Codebook q Cipher Block Chaining Mode q Cipher Feedback Mode q Output Feedback Mode q Counter Mode q XTS-AES

More information

Double-DES, Triple-DES & Modes of Operation

Double-DES, Triple-DES & Modes of Operation Double-DES, Triple-DES & Modes of Operation Prepared by: Dr. Mohamed Abd-Eldayem Ref.: Cryptography and Network Security by William Stallings & Lecture slides by Lawrie Brown Multiple Encryption & DES

More information

Cryptography CS 555. Topic 11: Encryption Modes and CCA Security. CS555 Spring 2012/Topic 11 1

Cryptography CS 555. Topic 11: Encryption Modes and CCA Security. CS555 Spring 2012/Topic 11 1 Cryptography CS 555 Topic 11: Encryption Modes and CCA Security CS555 Spring 2012/Topic 11 1 Outline and Readings Outline Encryption modes CCA security Readings: Katz and Lindell: 3.6.4, 3.7 CS555 Spring

More information

ENGI 8868/9877 Computer and Communications Security III. BLOCK CIPHERS. Symmetric Key Cryptography. insecure channel

ENGI 8868/9877 Computer and Communications Security III. BLOCK CIPHERS. Symmetric Key Cryptography. insecure channel (a) Introduction - recall symmetric key cipher: III. BLOCK CIPHERS k Symmetric Key Cryptography k x e k y yʹ d k xʹ insecure channel Symmetric Key Ciphers same key used for encryption and decryption two

More information

CRYPTOLOGY KEY MANAGEMENT CRYPTOGRAPHY CRYPTANALYSIS. Cryptanalytic. Brute-Force. Ciphertext-only Known-plaintext Chosen-plaintext Chosen-ciphertext

CRYPTOLOGY KEY MANAGEMENT CRYPTOGRAPHY CRYPTANALYSIS. Cryptanalytic. Brute-Force. Ciphertext-only Known-plaintext Chosen-plaintext Chosen-ciphertext CRYPTOLOGY CRYPTOGRAPHY KEY MANAGEMENT CRYPTANALYSIS Cryptanalytic Brute-Force Ciphertext-only Known-plaintext Chosen-plaintext Chosen-ciphertext 58 Types of Cryptographic Private key (Symmetric) Public

More information

Chapter 6 Contemporary Symmetric Ciphers

Chapter 6 Contemporary Symmetric Ciphers Chapter 6 Contemporary Symmetric Ciphers "I am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the subject, in which I analyze one hundred and

More information

Symmetric Cryptography

Symmetric Cryptography CSE 484 (Winter 2010) Symmetric Cryptography Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...

More information

Cryptography CS 555. Topic 1: Course Overview & What is Cryptography

Cryptography CS 555. Topic 1: Course Overview & What is Cryptography Cryptography CS 555 Topic 1: Course Overview & What is Cryptography 1 Administrative Note Professor Blocki is traveling and will be back on Wednesday. E-mail: jblocki@purdue.edu Thanks to Professor Spafford

More information

Introduction to Cryptography CS 136 Computer Security Peter Reiher October 9, 2014

Introduction to Cryptography CS 136 Computer Security Peter Reiher October 9, 2014 Introduction to Cryptography CS 136 Computer Security Peter Reiher October 9, 2014 Page 1 Outline What is data encryption? Cryptanalysis Basic encryption methods Substitution ciphers Permutation ciphers

More information

David Wetherall, with some slides from Radia Perlman s security lectures.

David Wetherall, with some slides from Radia Perlman s security lectures. David Wetherall, with some slides from Radia Perlman s security lectures. djw@cs.washington.edu Networks are shared: Want to secure communication between legitimate participants from others with (passive

More information

Introduction to Cryptography

Introduction to Cryptography Introduction to Cryptography 1 2 Definition process data into unintelligible form, reversibly, without data loss typically digitally usually one-to-one in size $ compression analog cryptography: voice

More information

Network Security Essentials Chapter 2

Network Security Essentials Chapter 2 Network Security Essentials Chapter 2 Fourth Edition by William Stallings Lecture slides by Lawrie Brown Encryption What is encryption? Why do we need it? No, seriously, let's discuss this. Why do we need

More information

Course Map. COMP 7/8120 Cryptography and Data Security. Learning Objectives. How to use PRPs (Block Ciphers)? 2/14/18

Course Map. COMP 7/8120 Cryptography and Data Security. Learning Objectives. How to use PRPs (Block Ciphers)? 2/14/18 Course Map Key Establishment Authenticated Encryption Key Management COMP 7/8120 Cryptography and Data Security Lecture 8: How to use Block Cipher - many time key Stream Ciphers Block Ciphers Secret Key

More information

Block Cipher Modes of Operation

Block Cipher Modes of Operation Block Cipher Modes of Operation Luke Anderson luke@lukeanderson.com.au 23 rd March 2018 University Of Sydney Overview 1. Crypto-Bulletin 2. Modes Of Operation 2.1 Evaluating Modes 2.2 Electronic Code Book

More information

05 - WLAN Encryption and Data Integrity Protocols

05 - WLAN Encryption and Data Integrity Protocols 05 - WLAN Encryption and Data Integrity Protocols Introduction 802.11i adds new encryption and data integrity methods. includes encryption algorithms to protect the data, cryptographic integrity checks

More information

n-bit Output Feedback

n-bit Output Feedback n-bit Output Feedback Cryptography IV Encrypt Encrypt Encrypt P 1 P 2 P 3 C 1 C 2 C 3 Steven M. Bellovin September 16, 2006 1 Properties of Output Feedback Mode No error propagation Active attacker can

More information

Cryptography [Symmetric Encryption]

Cryptography [Symmetric Encryption] CSE 484 / CSE M 584: Computer Security and Privacy Cryptography [Symmetric Encryption] Spring 2017 Franziska (Franzi) Roesner franzi@cs.washington.edu Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin,

More information

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08r. Pre-exam 2 Last-minute Review Cryptography Paul Krzyzanowski Rutgers University Spring 2018 March 26, 2018 CS 419 2018 Paul Krzyzanowski 1 Cryptographic Systems March 26, 2018 CS

More information

2.1 Basic Cryptography Concepts

2.1 Basic Cryptography Concepts ENEE739B Fall 2005 Part 2 Secure Media Communications 2.1 Basic Cryptography Concepts Min Wu Electrical and Computer Engineering University of Maryland, College Park Outline: Basic Security/Crypto Concepts

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 5 More About Block Ciphers ver. November 26, 2010 Last modified 10-2-17

More information

Block cipher modes. Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 75

Block cipher modes. Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 75 Block cipher modes Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 75 Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 76 Block cipher modes Block ciphers (like

More information

CS155. Cryptography Overview

CS155. Cryptography Overview CS155 Cryptography Overview Cryptography! Is n A tremendous tool n The basis for many security mechanisms! Is not n The solution to all security problems n Reliable unless implemented properly n Reliable

More information

Cryptography Lecture 4. Attacks against Block Ciphers Introduction to Public Key Cryptography. November 14, / 39

Cryptography Lecture 4. Attacks against Block Ciphers Introduction to Public Key Cryptography. November 14, / 39 Cryptography 2017 Lecture 4 Attacks against Block Ciphers Introduction to Public Key Cryptography November 14, 2017 1 / 39 What have seen? What are we discussing today? What is coming later? Lecture 3

More information

Crypto: Symmetric-Key Cryptography

Crypto: Symmetric-Key Cryptography Computer Security Course. Song Crypto: Symmetric-Key Cryptography Slides credit: Dan Boneh, David Wagner, Doug Tygar Overview Cryptography: secure communication over insecure communication channels Three

More information

Content of this part

Content of this part UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Introduction to Cryptography ECE 597XX/697XX Part 5 More About Block Ciphers Israel Koren ECE597/697 Koren Part.5.1 Content of this

More information

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some 3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some popular block ciphers Triple DES Advanced Encryption

More information

Chapter 6: Contemporary Symmetric Ciphers

Chapter 6: Contemporary Symmetric Ciphers CPE 542: CRYPTOGRAPHY & NETWORK SECURITY Chapter 6: Contemporary Symmetric Ciphers Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Why Triple-DES?

More information

Cryptography Basics. IT443 Network Security Administration Slides courtesy of Bo Sheng

Cryptography Basics. IT443 Network Security Administration Slides courtesy of Bo Sheng Cryptography Basics IT443 Network Security Administration Slides courtesy of Bo Sheng 1 Outline Basic concepts in cryptography systems Secret key cryptography Public key cryptography Hash functions 2 Encryption/Decryption

More information

Using block ciphers 1

Using block ciphers 1 Using block ciphers 1 Using block ciphers DES is a type of block cipher, taking 64-bit plaintexts and returning 64-bit ciphetexts. We now discuss a number of ways in which block ciphers are employed in

More information

Refresher: Applied Cryptography

Refresher: Applied Cryptography Refresher: Applied Cryptography (emphasis on common tools for secure processors) Chris Fletcher Fall 2017, 598 CLF, UIUC Complementary reading Intel SGX Explained (ISE) Victor Costan, Srini Devadas https://eprint.iacr.org/2016/086.pdf

More information

Cryptography & Key Exchange Protocols. Faculty of Computer Science & Engineering HCMC University of Technology

Cryptography & Key Exchange Protocols. Faculty of Computer Science & Engineering HCMC University of Technology Cryptography & Key Exchange Protocols Faculty of Computer Science & Engineering HCMC University of Technology Outline 1 Cryptography-related concepts 2 3 4 5 6 7 Key channel for symmetric cryptosystems

More information

9/30/2016. Cryptography Basics. Outline. Encryption/Decryption. Cryptanalysis. Caesar Cipher. Mono-Alphabetic Ciphers

9/30/2016. Cryptography Basics. Outline. Encryption/Decryption. Cryptanalysis. Caesar Cipher. Mono-Alphabetic Ciphers Cryptography Basics IT443 Network Security Administration Slides courtesy of Bo Sheng Basic concepts in cryptography systems Secret cryptography Public cryptography 1 2 Encryption/Decryption Cryptanalysis

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Midterm 2 Print your name:, (last) (first) I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be

More information

Cryptographic Primitives A brief introduction. Ragesh Jaiswal CSE, IIT Delhi

Cryptographic Primitives A brief introduction. Ragesh Jaiswal CSE, IIT Delhi Cryptographic Primitives A brief introduction Ragesh Jaiswal CSE, IIT Delhi Cryptography: Introduction Throughout most of history: Cryptography = art of secret writing Secure communication M M = D K (C)

More information

2 Secure Communication in Private Key Setting

2 Secure Communication in Private Key Setting CSA E0 235: Cryptography January 11, 2016 Instructor: Arpita Patra Scribe for Lecture 2 Submitted by: Jayam Modi 1 Discrete Probability Background Probability Distribution -A probability distribution over

More information

Cryptography. Recall from last lecture. [Symmetric] Encryption. How Cryptography Helps. One-time pad. Idea: Computational security

Cryptography. Recall from last lecture. [Symmetric] Encryption. How Cryptography Helps. One-time pad. Idea: Computational security Recall from last lecture Cryptography To a first approximation, attackers control network Next two lectures: How to defend against this 1. Communicate securely despite insecure networks cryptography 2.

More information

Homework 2: Symmetric Crypto Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

Homework 2: Symmetric Crypto Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit. Homework 2: Symmetric Crypto February 17, 2015 Submission policy. information: This assignment MUST be submitted as a PDF via websubmit and MUST include the following 1. List of collaborators 2. List of

More information

Block ciphers, stream ciphers

Block ciphers, stream ciphers Block ciphers, stream ciphers (start on:) Asymmetric cryptography CS 161: Computer Security Prof. Raluca Ada Popa Jan 31, 2018 Announcements Project 1 is out, due Feb 14 midnight Recall: Block cipher A

More information

Introduction to Symmetric Cryptography

Introduction to Symmetric Cryptography Introduction to Symmetric Cryptography Tingting Chen Cal Poly Pomona 1 Some slides are from Dr. Cliff Zou. www.cs.ucf.edu/~czou/cis3360-12/ch08-cryptoconcepts.ppt Basic Cryptography Private Key Cryptography

More information

Block Cipher Modes of Operation

Block Cipher Modes of Operation Block Cipher Modes of Operation Luke Anderson luke@lukeanderson.com.au 24th March 2016 University Of Sydney Overview 1. Crypto-Bulletin 2. Modes Of Operation 2.1 Evaluating Modes 2.2 Electronic Code Book

More information

CS 161 Computer Security

CS 161 Computer Security Raluca Popa Spring 2018 CS 161 Computer Security Discussion 3 Week of February 5, 2018: Cryptography I Question 1 Activity: Cryptographic security levels (20 min) Say Alice has a randomly-chosen symmetric

More information

CSE 3461/5461: Introduction to Computer Networking and Internet Technologies. Network Security. Presentation L

CSE 3461/5461: Introduction to Computer Networking and Internet Technologies. Network Security. Presentation L CS 3461/5461: Introduction to Computer Networking and Internet Technologies Network Security Study: 21.1 21.5 Kannan Srinivasan 11-27-2012 Security Attacks, Services and Mechanisms Security Attack: Any

More information

CSC 580 Cryptography and Computer Security

CSC 580 Cryptography and Computer Security CSC 580 Cryptography and Computer Security Encryption Concepts, Classical Crypto, and Binary Operations January 30, 2018 Overview Today: Cryptography concepts and classical crypto Textbook sections 3.1,

More information

Cryptography (cont.)

Cryptography (cont.) CSE 484 / CSE M 584 (Autumn 2011) Cryptography (cont.) Daniel Halperin Tadayoshi Kohno Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others

More information

Computer Security. 10r. Recitation assignment & concept review. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 10r. Recitation assignment & concept review. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 10r. Recitation assignment & concept review Paul Krzyzanowski Rutgers University Spring 2018 April 3, 2018 CS 419 2018 Paul Krzyzanowski 1 1. What is a necessary condition for perfect

More information

RSA Cryptography in the Textbook and in the Field. Gregory Quenell

RSA Cryptography in the Textbook and in the Field. Gregory Quenell RSA Cryptography in the Textbook and in the Field Gregory Quenell 1 In the beginning... 2 In the beginning... Diffie and Hellman 1976: A one-way function can be used to pass secret information over an insecure

More information

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks. Presented by Paul Ruggieri TinySec: A Link Layer Security Architecture for Wireless Sensor Networks Chris Karlof, Naveen Sastry,, David Wagner Presented by Paul Ruggieri 1 Introduction What is TinySec? Link-layer security architecture

More information

Outline Basics of Data Encryption CS 239 Computer Security January 24, 2005

Outline Basics of Data Encryption CS 239 Computer Security January 24, 2005 Outline Basics of Data Encryption CS 239 Computer Security January 24, 2005 What is data encryption? Basic encryption mechanisms Stream and block ciphers Characteristics of good ciphers Page 1 Page 2 Data

More information

Paper presentation sign up sheet is up. Please sign up for papers by next class. Lecture summaries and notes now up on course webpage

Paper presentation sign up sheet is up. Please sign up for papers by next class. Lecture summaries and notes now up on course webpage 1 Announcements Paper presentation sign up sheet is up. Please sign up for papers by next class. Lecture summaries and notes now up on course webpage 2 Recap and Overview Previous lecture: Symmetric key

More information

Cryptography 2017 Lecture 3

Cryptography 2017 Lecture 3 Cryptography 2017 Lecture 3 Block Ciphers - AES, DES Modes of Operation - ECB, CBC, CTR November 7, 2017 1 / 1 What have seen? What are we discussing today? What is coming later? Lecture 2 One Time Pad

More information

PROTECTING CONVERSATIONS

PROTECTING CONVERSATIONS PROTECTING CONVERSATIONS Basics of Encrypted Network Communications Naïve Conversations Captured messages could be read by anyone Cannot be sure who sent the message you are reading Basic Definitions Authentication

More information

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08. Cryptography Part II Paul Krzyzanowski Rutgers University Spring 2018 March 23, 2018 CS 419 2018 Paul Krzyzanowski 1 Block ciphers Block ciphers encrypt a block of plaintext at a

More information

Secret Key Cryptography

Secret Key Cryptography Secret Key Cryptography General Block Encryption: The general way of encrypting a 64-bit block is to take each of the: 2 64 input values and map it to a unique one of the 2 64 output values. This would

More information

Stream Ciphers. Stream Ciphers 1

Stream Ciphers. Stream Ciphers 1 Stream Ciphers Stream Ciphers 1 Stream Ciphers Generate a pseudo-random key stream & xor to the plaintext. Key: The seed of the PRNG Traditional PRNGs (e.g. those used for simulations) are not secure.

More information

Lecture Nov. 21 st 2006 Dan Wendlandt ISP D ISP B ISP C ISP A. Bob. Alice. Denial-of-Service. Password Cracking. Traffic.

Lecture Nov. 21 st 2006 Dan Wendlandt ISP D ISP B ISP C ISP A. Bob. Alice. Denial-of-Service. Password Cracking. Traffic. 15-441 Lecture Nov. 21 st 2006 Dan Wendlandt Worms & Viruses Phishing End-host impersonation Denial-of-Service Route Hijacks Traffic modification Spyware Trojan Horse Password Cracking IP Spoofing DNS

More information

Stream Ciphers and Block Ciphers

Stream Ciphers and Block Ciphers Stream Ciphers and Block Ciphers 2MMC10 Cryptology Fall 2015 Ruben Niederhagen October 6th, 2015 Introduction 2/32 Recall: Public-key crypto: Pair of keys: public key for encryption, private key for decryption.

More information

Cryptology complementary. Symmetric modes of operation

Cryptology complementary. Symmetric modes of operation Cryptology complementary Symmetric modes of operation Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/pierre.karpman/tea.html 2018 05 03 Symmetric modes 2018 05 03

More information

Automated Analysis and Synthesis of Modes of Operation and Authenticated Encryption Schemes

Automated Analysis and Synthesis of Modes of Operation and Authenticated Encryption Schemes Automated Analysis and Synthesis of Modes of Operation and Authenticated Encryption Schemes Alex J. Malozemoff University of Maryland Joint work with Matthew Green, Viet Tung Hoang, and Jonathan Katz Presented

More information

Automated Analysis and Synthesis of Block-Cipher Modes of Operation

Automated Analysis and Synthesis of Block-Cipher Modes of Operation Automated Analysis and Synthesis of Block-Cipher Modes of Operation Alex J. Malozemoff 1 Jonathan Katz 1 Matthew D. Green 2 1 University of Maryland 2 Johns Hopkins University Presented at the IEEE Computer

More information

Cryptography: Symmetric Encryption [continued]

Cryptography: Symmetric Encryption [continued] CSE 484 / CSE M 584: Computer Security and Privacy Cryptography: Symmetric Encryption [continued] Fall 2016 Ada (Adam) Lerner lerner@cs.washington.edu Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann,

More information

CSC574: Computer & Network Security

CSC574: Computer & Network Security CSC574: Computer & Network Security Lecture 3 Prof. William Enck Spring 2016 (Derived from slides by Micah Sherr, Patrick McDaniel, and Peng Ning) Modern Cryptography 2 Kerckhoffs Principles Modern cryptosystems

More information

Encryption and Forensics/Data Hiding

Encryption and Forensics/Data Hiding Encryption and Forensics/Data Hiding 1 Cryptography Background See: http://www.cacr.math.uwaterloo.ca/hac/ For more information 2 Security Objectives Confidentiality (Secrecy): Prevent/Detect/Deter improper

More information

3 Symmetric Cryptography

3 Symmetric Cryptography CA4005: CRYPTOGRAPHY AND SECURITY PROTOCOLS 1 3 Symmetric Cryptography Symmetric Cryptography Alice Bob m Enc c = e k (m) k c c Dec m = d k (c) Symmetric cryptography uses the same secret key k for encryption

More information

Cryptography Introduction

Cryptography Introduction Cryptography Introduction Last Updated: Aug 20, 2013 Terminology Access Control o Authentication Assurance that entities are who they claim to be o Authorization Assurance that entities have permission

More information

1.264 Lecture 27. Security protocols Symmetric cryptography. Next class: Anderson chapter 10. Exercise due after class

1.264 Lecture 27. Security protocols Symmetric cryptography. Next class: Anderson chapter 10. Exercise due after class 1.264 Lecture 27 Security protocols Symmetric cryptography Next class: Anderson chapter 10. Exercise due after class 1 Exercise: hotel keys What is the protocol? What attacks are possible? Copy Cut and

More information

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell Introduction CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell 1 Cryptography Merriam-Webster Online Dictionary: 1. secret writing 2. the enciphering and deciphering

More information

Block Ciphers. Advanced Encryption Standard (AES)

Block Ciphers. Advanced Encryption Standard (AES) Network Security - ISA 656 Angelos Stavrou September 28, 2008 Codes vs. K = {0, 1} l P = {0, 1} m C = {0, 1} n, C C E : P K C D : C K P p P, k K : D(E(p, k), k) = p It is infeasible to find F : P C K Let

More information

Lecture 1: Course Introduction

Lecture 1: Course Introduction Lecture 1: Course Introduction Thomas Johansson T. Johansson (Lund University) 1 / 37 Chapter 9: Symmetric Key Distribution To understand the problems associated with managing and distributing secret keys.

More information

SECRET SHARING SECRET SPLITTING

SECRET SHARING SECRET SPLITTING Clemens H. Cap Universität Rostock clemens.cap (at) uni-rostock (dot) de SECRET SHARING SECRET SPLITTING BaSoTI 2012, Tartu Anecdotal Problem Trent wants to give Alice and Bob access to the safe Trent

More information

Chapter 8. Encipherment Using Modern Symmetric-Key Ciphers

Chapter 8. Encipherment Using Modern Symmetric-Key Ciphers Chapter 8 Encipherment Using Modern Symmetric-Key Ciphers Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 8.1 Chapter 18 Objectives To show how modern standard

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 6 January 25, 2012 CPSC 467b, Lecture 6 1/46 Byte padding Chaining modes Stream ciphers Symmetric cryptosystem families Stream ciphers

More information

Data Encryption Standard (DES)

Data Encryption Standard (DES) Data Encryption Standard (DES) Best-known symmetric cryptography method: DES 1973: Call for a public cryptographic algorithm standard for commercial purposes by the National Bureau of Standards Goals:

More information