Meet-in-the-middle Attack on the 6-round Variant of the Block Cipher PRINCE

Size: px
Start display at page:

Download "Meet-in-the-middle Attack on the 6-round Variant of the Block Cipher PRINCE"

Transcription

1 Vol.5 (ITCS 204), pp Meet-in-the-middle Attack on the 6-round Variant of the Block Cipher PRINCE Yasutaka Igarashi, Toshinobu Kaneko 2, Satoshi Setoguchi, Seiji Fukushima, and Tomohiro Hachino Kagoshima University, Korimoto, Kagoshima, Japan 2 Tokyo University of Science, 264 Yamazaki, Noda, Chiba, Japan Abstract. We show a meet-in-the-middle (MITM) attack on the 6-round variant of the block cipher PRINCE. PRINCE is proposed by Borghoff et al. in 202, which applies substitution-permutation network (SPN) with 64-bit data block and 28-bit secret key. MITM attack was proposed by Diffie and Hellman in 977 as a generic method to analyze symmetric-key cryptographic algorithms. In this paper we show that PRINCE can be attacked with 2 32 words of memory, 9 pairs of known plain and cipher tets, and times of an encryption operation. Keywords: meet-in-the-middle attack, block cipher PRINCE Introduction We show a meet-in-the-middle (MITM) attack on the 6-round variant of the block cipher PRINCE. PRINCE is proposed by Borghoff et al. in 202, which applies substitutionpermutation network (SPN) with 64-bit data block and 28-bit secret key []. PRINCE is optimized with respect to latency when implemented in hardware for many future pervasive applications with real-time security needs. The designers assessed the resistance of PRINCE core function against MITM attack at up to 4 rounds. MITM attack was proposed by Diffie and Hellman in 977 as a generic method to analyze symmetric-key cryptographic algorithms [2], [3], [4]. Its basic idea is that if a target algorithm can be decomposed into two small consecutive segments and the computation of each segment only involves portions of a master key, then we can check the consistence of the intermediate data of each segment. Because separately analyzing two small segments does not require much effort, the overall time compleity to analyze the whole algorithm could decrease significantly compared to a brute force attack. In this article we decompose 6-round PRINCE into a 3-round forward segment and a 3-round backward segment, and show that PRINCE can be attacked with 2 32 words of memory, 9 pairs of known plain and cipher tets, and times of an encryption operation. 2 Overview of PRINCE Figure shows the encryption process of PRINCE, which consists of XOR ( ), R and R functions, S and S layers, and M layer. RC i (i = 0,,, ) denotes a 64-bit ISSN: ASTL Copyright 204 SERSC

2 Vol.5 (ITCS 204) Fig.. Encryption process of PRINCE []. round constant given by []. k 0 and k denote 64-bit secret keys being independent from each other. k 0 is also a 64-bit key given by k 0 = (k 0 >>> ) (k 0 >> 63) () where ( >>> i) and ( >> i) represent i-bit cyclic and non-cyclic right shifts of a bit string, respectively. Because () is a bijective linear transformation, we can inversely derive k 0 from k 0. S layer consists of 6 pieces of parallel 4-bit S-bo that is a bijective nonlinear function, and S layer is the inverse function of S layer. M layer is a involutional matri given by ˆM (0) M = M 0 ˆM = () ˆM (), (2) ˆM (0) M 0 M M 2 M 3 ˆM (0) = ˆM (0) M = M 2 M 3 M 0 M 2 M 3 M 0 M M 3 M 0 M M M 0 = , M = , ˆM () = ˆM () =, M 2 = M M 2 M 3 M 0 M 2 M 3 M 0 M M 3 M 0 M M 2 M 0 M M 2 M , M 3 = 0 0 0, (3). (4) 0 in (2) is a 6 6 zero matri. Figure 2 shows R function that consists of S layer, M layer, and S R layer. In the case of R the input (output) becomes the output (input). 3 Outline of Meet-in-the-middle Attack and its application to the 6-round variant of PRINCE MITM attack is based on the primary idea that we decompose a cipher algorithm into two consecutive parts. Each part of them only involves partial information of a secret key. We encrypt/decrypt each part separately and check whether the intermediate data from each part correspond to each other. Because separately cryptanalyzing each part requires low computational compleity, the overall compleity to cryptanalyze the whole algorithm could decrease significantly. Figure 3 shows the general model of MITM attack. We suppose an encryption algorithm E(k, P) = C can be decomposed into two consecutive parts E f (k f, P) and E b (k b, C) Copyright 204 SERSC 25

3 Vol.5 (ITCS 204) Fig. 2. R function. where P and C are plain/cipher tets, and k f and k b are subkeys used in E f and E b. f and b denote forward and backward processes. k f and k b are given by k f = (k f, k c) and k b = (k b, k c), respectively where k c is the dependent (common) key on both k f and k b. k f (k b ) is the independent key from k b (k f ). The number of bits of k f and k b are given by k f = k f + k c and k b = k b + k c, respectively where denotes the number of bits of data. v and v are intermediate data of an encryption process. r is the total number of S-boes in the whole algorithm. r f and r b represent the total numbers of S-boes that must be calculated to derive v and v through E f (k f, P) and E b (k b, C), respectively. The detailed steps of MITM attack are as follows [3], [4]:. Prepare one known pair of P and C. 2. For each guess of the common key k c (a) Compute all possible values of v through E f (k f, P) for all possible key k f. And then collect all k f in a set T indeed by v. (b) Compute v through E b (k b, C) for all values of k b and check whether v T. If so output the corresponding key pair (k f, k b ) as a possible key. The time compleity for the step 2(a) in terms of complete encryption/decryption is given by 2 k f r f /r. Similarly the time compleity of the step 2(b) is given by 2 k b r b /r. The memory compleity of T is given by 2 k f. The memory compleity to store possible keys is given by 2 k c + k f + k b v because the total number of possible keys 2 k c + k f + k b is reduced to /2 v through the steps and 2. When we perform these steps n times with different n pairs of P and C, the total number of possible keys is reduced to 2 k c + k f + k b n v. If the following equation (5) is satisfied, we check the remaining possible keys by ehaustive search with a few different m (described later) pairs of P and C. 2 k c + k f + k b n v (2 k f r f /r + 2 k b r b /r). (5) Figure 4 shows the 6-round variant of PRINCE, to which we apply MITM attack. Bold data lines are necessary for the attack. According to the designers recommendation we omit 3 pieces of R with RC i (i = 3, 4, 5) and 3 pieces of R with RC i (i = 6, 7, 8) from the original in order to keep the symmetry around the middle. E f (k f, P) 252 Copyright 204 SERSC

4 Vol.5 (ITCS 204) Fig. 3. General model of MITM attack [3], [4]. consists of the rounds, 2, and 3. E b (k b, C) consists of the rounds 4, 5, and 6. X and Y represent the 64-bit intermediate data at the output of the round 3 and at the input of the round 4, respectively. We set variables k and k y as k = k 0 k at the input part and k y = k 0 k at the output part of Fig. 4. And we decompose k as k = k (5) k (4) k (3) k () k (0) (6) where y represents concatenation of two data and y. k (i) data that is further decomposed as k (i) = k (i,3) k (i,2) k (i,) (i = 0,,, 5) is 4-bit k (i,0) (7) (i, j) where k ( j = 0,, 2, 3) represents -bit data. We also apply these decompositions and notations to k y, k, X, and Y. From Fig. 4 we can derive that k f = k b = 96, k f = k b = 32, k c = 64, and v = v = 2. These reasons are as follows. k f has 96 bits on the bold line in E f (k f, P) given by k f = (k, k (5), k (4), k (3), k (2), k (3), k(2), k() k b also has 96 bits on the bold line in E b (k b, C) given by k b = (k y, k (5), k (4), k (3), k (2), k (3), k(2), k(), k(0), k(0) ). (8) ). (9) k (i) (i = 5, 4, 3, 2, 3, 2,, 0) is common to both k f and k b. Furthermore there are 32-bit common keys, which are and (k c of k f ) (k (5), k (4), k (3), k (2), k (3), k (2), k (), k (0) ) (0) (k c of k b ) (k (5) y, k (4) y, k (3) y, k (2) y, k (2) y, k () y, k (0) y, k (,3) y, k (3,2) y, k (3,) y, k (3,0) y ). () The reason why (0) and () hold is that k c of k y (k c of k ) is uniquely determined by () with k c of k (k c of k y ) and the common key k (i) (i = 5, 4, 3, 2, 3, 2,, 0). Therefore the independent keys k f and k b have the 32 bits given by and k f = (k (), k (0), k (9), k (8), k (7), k (6), k (5), k (4) ) (2) k b = (k(0), k (9), k (8), k (7), k (6), k (5), k (4), k (,2), k (,), k (,0), k (3,3) ). (3) Copyright 204 SERSC 253

5 Vol.5 (ITCS 204) v and v have the 2 bits given by v = (X (5,0) X (2,0), X (3,2) X (2,2) ) and v = (Y (5,0) Y (2,0), Y (3,2) Y (2,2) ). (4) We can derive v = v by (2). Because there are 96 pieces of S-bo in the whole algorithm in Figure 4, we can derive that r = 96. Similarly we can derive that r f = r b = 28 because there are respectively 28 pieces of S-bo on the bold lines in E f (k f, P) and in E b (k b, C). To satisfy (5), we set n as n = 7. In this case the total number of possible keys is reduced to = 2 94 < / These 2 94 pieces of possible key are furthermore reduced to = 2 34 when we check these keys by ehaustive search with different 2 (= m) pairs of P and C because the block size of PRINCE is 64 bits. However the true key definitely survives. Therefore the number of known plain/cipher tets pair required for this MITM attack is derived as 7+2=9. And the time compleity for the attack in terms of complete encryption/decryption is derived as 7 ( / /96) The memory compleity of a set T is derived as Conclusions We have shown MITM attack on the 6-round variant of the block cipher PRINCE. We reviewed the general model of MITM attack and applied it to PRINCE. We decomposed the 6-round PRINCE into a 3-round forward segment and a 3-round backward segment. As a result, we showed that PRINCE can be attacked with 2 32 words of memory, 9 pairs of known plain and cipher tets, and times of an encryption operation, which is more efficient than 2 28 times of simple ehaustive key search. References. Borghoff, J., Canteaut, A., Gneysu, T., et al.: PRINCE A Low-Latency Block Cipher for Pervasive Computing Applications. LNCS, vol. 7658, pp Springer, Heidelberg (202) 2. Diffie, M.E., Hellman, W.: Special Feature Ehaustive Cryptanalysis of the NBS Data Encryption Standard. Computer 0(6), (977) 3. Zhu, B., Gong, G.: Multidimensional Meet-in-the-Middle Attack and Its Applications to KATAN32/48/64. Cryptology eprint Archive: Report 20/69, org/20/69 4. Boztaş, Ö., Karakoç, F., Çoban, M.: Multidimensional Meet-in-the-Middle Attacks on Reduced-Round TWINE-28. LNCS, vol. 862, pp Springer, Heidelberg (203) 254 Copyright 204 SERSC

6 Vol.5 (ITCS 204) Fig round variant of PRINCE. Copyright 204 SERSC 255

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN Shahram Rasoolzadeh and Håvard Raddum Simula Research Laboratory {shahram,haavardr}@simula.no Abstract. We study multidimensional meet-in-the-middle

More information

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN

Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN Improved Multi-Dimensional Meet-in-the-Middle Cryptanalysis of KATAN Shahram Rasoolzadeh and Håvard Raddum Simula Research Laboratory Abstract. We study multidimensional meet-in-the-middle attacks on the

More information

Biclique Attack of the Full ARIA-256

Biclique Attack of the Full ARIA-256 Biclique Attack of the Full ARIA-256 Shao-zhen Chen Tian-min Xu Zhengzhou Information Science and Technology Institute Zhengzhou 450002, China January 8, 202 Abstract In this paper, combining the biclique

More information

Multi-Stage Fault Attacks

Multi-Stage Fault Attacks Multi-Stage Fault Attacks Applications to the Block Cipher PRINCE Philipp Jovanovic Department of Informatics and Mathematics University of Passau March 27, 2013 Outline 1. Motivation 2. The PRINCE Block

More information

Truncated Differential Analysis of Round-Reduced RoadRunneR Block Cipher

Truncated Differential Analysis of Round-Reduced RoadRunneR Block Cipher Truncated Differential Analysis of Round-Reduced RoadRunneR Block Cipher Qianqian Yang 1,2,3, Lei Hu 1,2,, Siwei Sun 1,2, Ling Song 1,2 1 State Key Laboratory of Information Security, Institute of Information

More information

Generalized MitM Attacks on Full TWINE

Generalized MitM Attacks on Full TWINE Generalized MitM Attacks on Full TWINE Mohamed Tolba, Amr M. Youssef Concordia Institute for Information Systems Engineering, Concordia University, Montréal, Québec, Canada. Abstract TWINE is a lightweight

More information

Computer and Data Security. Lecture 3 Block cipher and DES

Computer and Data Security. Lecture 3 Block cipher and DES Computer and Data Security Lecture 3 Block cipher and DES Stream Ciphers l Encrypts a digital data stream one bit or one byte at a time l One time pad is example; but practical limitations l Typical approach

More information

Improved Meet-in-the-Middle Attacks on AES-192 and PRINCE

Improved Meet-in-the-Middle Attacks on AES-192 and PRINCE Improved Meet-in-the-Middle Attacks on AES-92 and PRINCE Leibo Li,2, Keting Jia 2 and Xiaoyun Wang,2,3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong

More information

An Improved Truncated Differential Cryptanalysis of KLEIN

An Improved Truncated Differential Cryptanalysis of KLEIN An Improved Truncated Differential Cryptanalysis of KLEIN hahram Rasoolzadeh 1, Zahra Ahmadian 2, Mahmoud almasizadeh 3, and Mohammad Reza Aref 3 1 imula Research Laboratory, Bergen, Norway, 2 hahid Beheshti

More information

Practical Key Recovery Attack on MANTIS 5

Practical Key Recovery Attack on MANTIS 5 ractical Key Recovery Attack on ANTI Christoph Dobraunig, aria Eichlseder, Daniel Kales, and Florian endel Graz University of Technology, Austria maria.eichlseder@iaik.tugraz.at Abstract. ANTI is a lightweight

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Performance Comparison of Cryptanalysis Techniques over DES

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Performance Comparison of Cryptanalysis Techniques over DES Performance Comparison of Cryptanalysis Techniques over DES Anupam Kumar 1, Aman Kumar 2, Sahil Jain 3, P Kiranmai 4 1,2,3,4 Dept. of Computer Science, MAIT, GGSIP University, Delhi, INDIA Abstract--The

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2018 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2018 Previously on COS 433 Confusion/Diffusion Paradigm f 1 f 2 f 3 f 4 f 5 f 6 Round π 1 f 7 f 8 f 9 f 10 f 11 f 12 π 2 Substitution

More information

Lecture 4: Symmetric Key Encryption

Lecture 4: Symmetric Key Encryption Lecture 4: Symmetric ey Encryption CS6903: Modern Cryptography Spring 2009 Nitesh Saxena Let s use the board, please take notes 2/20/2009 Lecture 1 - Introduction 2 Data Encryption Standard Encrypts by

More information

Lecture 3: Symmetric Key Encryption

Lecture 3: Symmetric Key Encryption Lecture 3: Symmetric Key Encryption CS996: Modern Cryptography Spring 2007 Nitesh Saxena Outline Symmetric Key Encryption Continued Discussion of Potential Project Topics Project proposal due 02/22/07

More information

CSCE 813 Internet Security Symmetric Cryptography

CSCE 813 Internet Security Symmetric Cryptography CSCE 813 Internet Security Symmetric Cryptography Professor Lisa Luo Fall 2017 Previous Class Essential Internet Security Requirements Confidentiality Integrity Authenticity Availability Accountability

More information

Block Ciphers and the Data Encryption Standard (DES) Modified by: Dr. Ramzi Saifan

Block Ciphers and the Data Encryption Standard (DES) Modified by: Dr. Ramzi Saifan Block Ciphers and the Data Encryption Standard (DES) Modified by: Dr. Ramzi Saifan Block ciphers Keyed, invertible Large key space, large block size A block of plaintext is treated as a whole and used

More information

Related-key Attacks on Triple-DES and DESX Variants

Related-key Attacks on Triple-DES and DESX Variants Related-key Attacks on Triple-DES and DESX Variants Raphael C.-W. han Department of Engineering, Swinburne Sarawak Institute of Technology, 1st Floor, State Complex, 93576 Kuching, Malaysia rphan@swinburne.edu.my

More information

A New Improved Key-Scheduling for Khudra

A New Improved Key-Scheduling for Khudra A New Improved Key-Scheduling for Khudra Secure Embedded Architecture Laboratory, Indian Institute of Technology, Kharagpur, India Rajat Sadhukhan, Souvik Kolay, Shashank Srivastava, Sikhar Patranabis,

More information

Linear Cryptanalysis of Reduced Round Serpent

Linear Cryptanalysis of Reduced Round Serpent Linear Cryptanalysis of Reduced Round Serpent Eli Biham 1, Orr Dunkelman 1, and Nathan Keller 2 1 Computer Science Department, Technion Israel Institute of Technology, Haifa 32000, Israel, {biham,orrd}@cs.technion.ac.il,

More information

Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 24

Lecturers: Mark D. Ryan and David Galindo. Cryptography Slide: 24 Assume encryption and decryption use the same key. Will discuss how to distribute key to all parties later Symmetric ciphers unusable for authentication of sender Lecturers: Mark D. Ryan and David Galindo.

More information

Recent Meet-in-the-Middle Attacks on Block Ciphers

Recent Meet-in-the-Middle Attacks on Block Ciphers ASK 2012 Nagoya, Japan Recent Meet-in-the-Middle Attacks on Block Ciphers Takanori Isobe Sony Corporation (Joint work with Kyoji Shibutani) Outline 1. Meet-in-the-Middle (MitM) attacks on Block ciphers

More information

Secret Key Algorithms (DES) Foundations of Cryptography - Secret Key pp. 1 / 34

Secret Key Algorithms (DES) Foundations of Cryptography - Secret Key pp. 1 / 34 Secret Key Algorithms (DES) Foundations of Cryptography - Secret Key pp. 1 / 34 Definition a symmetric key cryptographic algorithm is characterized by having the same key used for both encryption and decryption.

More information

Private-Key Encryption

Private-Key Encryption Private-Key Encryption Ali El Kaafarani Mathematical Institute Oxford University 1 of 50 Outline 1 Block Ciphers 2 The Data Encryption Standard (DES) 3 The Advanced Encryption Standard (AES) 4 Attacks

More information

Introduction to Cryptology. Lecture 17

Introduction to Cryptology. Lecture 17 Introduction to Cryptology Lecture 17 Announcements HW7 due Thursday 4/7 Looking ahead: Practical constructions of CRHF Start Number Theory background Agenda Last time SPN (6.2) This time Feistel Networks

More information

A Related Key Attack on the Feistel Type Block Ciphers

A Related Key Attack on the Feistel Type Block Ciphers International Journal of Network Security, Vol.8, No.3, PP.221 226, May 2009 221 A Related Key Attack on the Feistel Type Block Ciphers Ali Bagherzandi 1,2, Mahmoud Salmasizadeh 2, and Javad Mohajeri 2

More information

A Meet in the Middle Attack on Reduced Round Kuznyechik

A Meet in the Middle Attack on Reduced Round Kuznyechik IEICE TRANS. FUNDAMENTALS, VOL.Exx??, NO.xx XXXX 200x 1 LETTER Special Section on Cryptography and Information Security A Meet in the Middle Attack on Reduced Round Kuznyechik Riham ALTAWY a), Member and

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Improved Meet-in-the-Middle cryptanalysis of KTANTAN (poster) Author(s) Citation Wei, Lei; Rechberger,

More information

Improved Attacks on Full GOST

Improved Attacks on Full GOST Improved Attacks on Full GOST Itai Dinur 1, Orr Dunkelman 1,2 and Adi Shamir 1 1 Computer Science department, The Weizmann Institute, ehovot, Israel 2 Computer Science Department, University of Haifa,

More information

(In)security of ecient tree-based group key agreement using bilinear map

(In)security of ecient tree-based group key agreement using bilinear map Loughborough University Institutional Repository (In)security of ecient tree-based group key agreement using bilinear map This item was submitted to Loughborough University's Institutional Repository by

More information

Improved Attack on Full-round Grain-128

Improved Attack on Full-round Grain-128 Improved Attack on Full-round Grain-128 Ximing Fu 1, and Xiaoyun Wang 1,2,3,4, and Jiazhe Chen 5, and Marc Stevens 6, and Xiaoyang Dong 2 1 Department of Computer Science and Technology, Tsinghua University,

More information

A Weight Based Attack on the CIKS-1 Block Cipher

A Weight Based Attack on the CIKS-1 Block Cipher A Weight Based Attack on the CIKS-1 Block Cipher Brian J. Kidney, Howard M. Heys, Theodore S. Norvell Electrical and Computer Engineering Memorial University of Newfoundland {bkidney, howard, theo}@engr.mun.ca

More information

Differential-Linear Cryptanalysis of Serpent

Differential-Linear Cryptanalysis of Serpent Differential-Linear Cryptanalysis of Serpent Eli Biham 1, Orr Dunkelman 1, and Nathan Keller 2 1 Computer Science Department, Technion, Haifa 32000, Israel {biham,orrd}@cs.technion.ac.il 2 Mathematics

More information

Cryptography and Network Security Block Ciphers + DES. Lectured by Nguyễn Đức Thái

Cryptography and Network Security Block Ciphers + DES. Lectured by Nguyễn Đức Thái Cryptography and Network Security Block Ciphers + DES Lectured by Nguyễn Đức Thái Outline Block Cipher Principles Feistel Ciphers The Data Encryption Standard (DES) (Contents can be found in Chapter 3,

More information

Block Cipher Involving Key Based Random Interlacing and Key Based Random Decomposition

Block Cipher Involving Key Based Random Interlacing and Key Based Random Decomposition Journal of Computer Science 6 (2): 133-140, 2010 ISSN 1549-3636 2010 Science Publications Block Cipher Involving Key Based Random Interlacing and Key Based Random Decomposition K. Anup Kumar and V.U.K.

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 14: Folklore, Course summary, Exam requirements Ion Petre Department of IT, Åbo Akademi University 1 Folklore on

More information

Cryptography Functions

Cryptography Functions Cryptography Functions Lecture 3 1/29/2013 References: Chapter 2-3 Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner Types of Cryptographic Functions Secret (Symmetric)

More information

On the Security of the 128-Bit Block Cipher DEAL

On the Security of the 128-Bit Block Cipher DEAL On the Security of the 128-Bit Block Cipher DAL Stefan Lucks Theoretische Informatik University of Mannheim, 68131 Mannheim A5, Germany lucks@th.informatik.uni-mannheim.de Abstract. DAL is a DS-based block

More information

Analysis of Involutional Ciphers: Khazad and Anubis

Analysis of Involutional Ciphers: Khazad and Anubis Analysis of Involutional Ciphers: Khazad and Anubis Alex Biryukov Katholieke Universiteit Leuven, Dept. ESAT/COSIC, Leuven, Belgium abiryuko@esat.kuleuven.ac.be Abstract. In this paper we study structural

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Secret Key Cryptography Block cipher DES 3DES

More information

Symmetric Key Encryption. Symmetric Key Encryption. Advanced Encryption Standard ( AES ) DES DES DES 08/01/2015. DES and 3-DES.

Symmetric Key Encryption. Symmetric Key Encryption. Advanced Encryption Standard ( AES ) DES DES DES 08/01/2015. DES and 3-DES. Symmetric Key Encryption Symmetric Key Encryption and 3- Tom Chothia Computer Security: Lecture 2 Padding Block cipher modes Advanced Encryption Standard ( AES ) AES is a state-of-the-art block cipher.

More information

Cryptanalysis of Lightweight Block Ciphers

Cryptanalysis of Lightweight Block Ciphers Cryptanalysis of Lightweight Block Ciphers María Naya-Plasencia INRIA, France Šibenik 2014 Outline Introduction Impossible Differential Attacks Meet-in-the-middle and improvements Multiple Differential

More information

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some 3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some popular block ciphers Triple DES Advanced Encryption

More information

Implementation of Full -Parallelism AES Encryption and Decryption

Implementation of Full -Parallelism AES Encryption and Decryption Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption

More information

Design and Implementation of New Lightweight Encryption Technique

Design and Implementation of New Lightweight Encryption Technique From the SelectedWorks of Sakshi Sharma May, 2016 Design and Implementation of New Lightweight Encryption Technique M. Sangeetha Dr. M. Jagadeeswari This work is licensed under a Creative Commons CC_BY-NC

More information

PUFFIN: A Novel Compact Block Cipher Targeted to Embedded Digital Systems

PUFFIN: A Novel Compact Block Cipher Targeted to Embedded Digital Systems PUFFIN: A Novel Compact Block Cipher Targeted to Embedded Digital Systems Huiju Cheng, Howard M. Heys, and Cheng Wang Electrical and Computer Engineering Memorial University of Newfoundland St. John's,

More information

Secret Key Cryptography (Spring 2004)

Secret Key Cryptography (Spring 2004) Secret Key Cryptography (Spring 2004) Instructor: Adi Shamir Teaching assistant: Eran Tromer 1 Background Lecture notes: DES Until early 1970 s: little cryptographic research in industry and academcy.

More information

ISSN: (Online) Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at: www.ijarcsms.com

More information

Symmetric Cryptography. Chapter 6

Symmetric Cryptography. Chapter 6 Symmetric Cryptography Chapter 6 Block vs Stream Ciphers Block ciphers process messages into blocks, each of which is then en/decrypted Like a substitution on very big characters 64-bits or more Stream

More information

On the Design of Secure Block Ciphers

On the Design of Secure Block Ciphers On the Design of Secure Block Ciphers Howard M. Heys and Stafford E. Tavares Department of Electrical and Computer Engineering Queen s University Kingston, Ontario K7L 3N6 email: tavares@ee.queensu.ca

More information

All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-the-Middle Approach

All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-the-Middle Approach All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-the-Middle Approach Takanori Isobe and Kyoji Shibutani Sony Corporation 1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan {Takanori.Isobe,Kyoji.Shibutani}@jp.sony.com

More information

Secret Key Algorithms (DES)

Secret Key Algorithms (DES) Secret Key Algorithms (DES) G. Bertoni L. Breveglieri Foundations of Cryptography - Secret Key pp. 1 / 34 Definition a symmetric key cryptographic algorithm is characterized by having the same key used

More information

Attack on DES. Jing Li

Attack on DES. Jing Li Attack on DES Jing Li Major cryptanalytic attacks against DES 1976: For a very small class of weak keys, DES can be broken with complexity 1 1977: Exhaustive search will become possible within 20 years,

More information

Symmetric Key Algorithms. Definition. A symmetric key algorithm is an encryption algorithm where the same key is used for encrypting and decrypting.

Symmetric Key Algorithms. Definition. A symmetric key algorithm is an encryption algorithm where the same key is used for encrypting and decrypting. Symmetric Key Algorithms Definition A symmetric key algorithm is an encryption algorithm where the same key is used for encrypting and decrypting. 1 Block cipher and stream cipher There are two main families

More information

Chapter 6: Contemporary Symmetric Ciphers

Chapter 6: Contemporary Symmetric Ciphers CPE 542: CRYPTOGRAPHY & NETWORK SECURITY Chapter 6: Contemporary Symmetric Ciphers Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Why Triple-DES?

More information

Delegation Scheme based on Proxy Re-encryption in Cloud Environment

Delegation Scheme based on Proxy Re-encryption in Cloud Environment Vol.133 (Information Technology and Computer Science 2016), pp.122-126 http://dx.doi.org/10.14257/astl.2016. Delegation Scheme based on Proxy Re-encryption in Cloud Environment You-Jin Song Department

More information

Introduction to Network Security Missouri S&T University CPE 5420 Data Encryption Standard

Introduction to Network Security Missouri S&T University CPE 5420 Data Encryption Standard Introduction to Network Security Missouri S&T University CPE 5420 Data Encryption Standard Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of

More information

A New Technique for Sub-Key Generation in Block Ciphers

A New Technique for Sub-Key Generation in Block Ciphers World Applied Sciences Journal 19 (11): 1630-1639, 2012 ISSN 1818-4952 IDOSI Publications, 2012 DOI: 10.5829/idosi.wasj.2012.19.11.1871 A New Technique for Sub-Key Generation in Block Ciphers Jamal N.

More information

Precise Fault-Injections using Voltage and Temperature Manipulation for Differential Cryptanalysis

Precise Fault-Injections using Voltage and Temperature Manipulation for Differential Cryptanalysis Precise Fault-Injections using Voltage and Temperature Manipulation for Differential Cryptanalysis Raghavan Kumar $, Philipp Jovanovic e and Ilia Polian e $ University of Massachusetts, 12 USA e University

More information

Optimized AES Algorithm Using FeedBack Architecture Chintan Raval 1, Maitrey Patel 2, Bhargav Tarpara 3 1, 2,

Optimized AES Algorithm Using FeedBack Architecture Chintan Raval 1, Maitrey Patel 2, Bhargav Tarpara 3 1, 2, Optimized AES Algorithm Using FeedBack Architecture Chintan Raval 1, Maitrey Patel 2, Bhargav Tarpara 3 1, 2, Pursuing M.Tech., VLSI, U.V.Patel college of Engineering and Technology, Kherva, Mehsana, India

More information

Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher under 192 Key Bits

Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher under 192 Key Bits Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher under 192 Key Bits Yongzhuang Wei 1,3,, Jiqiang Lu 2,, and Yupu Hu 3 1 Guilin University of Electronic Technology, Guilin City, Guangxi Province

More information

Secret Key Cryptography

Secret Key Cryptography Secret Key Cryptography General Block Encryption: The general way of encrypting a 64-bit block is to take each of the: 2 64 input values and map it to a unique one of the 2 64 output values. This would

More information

AVRprince - An Efficient Implementation of PRINCE for 8-bit Microprocessors

AVRprince - An Efficient Implementation of PRINCE for 8-bit Microprocessors AVprince - An Efficient Implementation of for 8-bit Microprocessors Aria hahverdi, Cong Chen, and Thomas Eisenbarth Worcester Polytechnic Institute, Worcester, MA, UA {ashahverdi,cchen3,teisenbarth}@wpi.edu

More information

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 4 The Advanced Encryption Standard (AES) ver. October 28, 2009

Understanding Cryptography by Christof Paar and Jan Pelzl. Chapter 4 The Advanced Encryption Standard (AES) ver. October 28, 2009 Understanding Cryptography by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 4 The Advanced Encryption Standard (AES) ver. October 28, 29 These slides were prepared by Daehyun Strobel, Christof

More information

ITUbee : A Software Oriented Lightweight Block Cipher

ITUbee : A Software Oriented Lightweight Block Cipher ITUbee : A Software Oriented Lightweight Block Cipher Ferhat Karakoç 1,2, Hüseyin Demirci 1, A. Emre Harmancı 2 1 TÜBİTAK-BİLGEM-UEKAE 2 Istanbul Technical University May 6, 2013 Outline Motivation ITUbee

More information

A New Attack with Side Channel Leakage during Exponent Recoding Computations

A New Attack with Side Channel Leakage during Exponent Recoding Computations A New Attack with Side Channel Leakage during Exponent Recoding Computations Yasuyuki Sakai 1 and Kouichi Sakurai 2 1 Mitsubishi Electric Corporation, 5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan ysakai@iss.isl.melco.co.jp

More information

From AES-128 to AES-192 and AES-256, How to Adapt Differential Fault Analysis Attacks

From AES-128 to AES-192 and AES-256, How to Adapt Differential Fault Analysis Attacks From AES-128 to AES-192 and AES-256, How to Adapt Differential Fault Analysis Attacks Noémie Floissac and Yann L Hyver SERMA TECHNOLOGIES ITSEF 30, avenue Gustave Eiffel, 33608 Pessac, France Email: {n.floissac;y.lhyver}@serma.com

More information

Cryptographic Algorithms - AES

Cryptographic Algorithms - AES Areas for Discussion Cryptographic Algorithms - AES CNPA - Network Security Joseph Spring Department of Computer Science Advanced Encryption Standard 1 Motivation Contenders Finalists AES Design Feistel

More information

Two Attacks on Reduced IDEA (Extended Abstract)

Two Attacks on Reduced IDEA (Extended Abstract) 1 Two Attacks on Reduced IDEA (Extended Abstract) Johan Borst 1, Lars R. Knudsen 2, Vincent Rijmen 2 1 T.U. Eindhoven, Discr. Math., P.O. Box 513, NL-5600 MB Eindhoven, borst@win.tue.nl 2 K.U. Leuven,

More information

Area Optimization in Masked Advanced Encryption Standard

Area Optimization in Masked Advanced Encryption Standard IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 06 (June. 2014), V1 PP 25-29 www.iosrjen.org Area Optimization in Masked Advanced Encryption Standard R.Vijayabhasker,

More information

RECTIFIED DIFFERENTIAL CRYPTANALYSIS OF 16 ROUND PRESENT

RECTIFIED DIFFERENTIAL CRYPTANALYSIS OF 16 ROUND PRESENT RECTIFIED DIFFERENTIAL CRYPTANALYSIS OF 16 ROUND PRESENT Manoj Kumar 1, Pratibha Yadav, Meena Kumari SAG, DRDO, Metcalfe House, Delhi-110054, India mktalyan@yahoo.com 1 ABSTRACT In this paper, we have

More information

Vortex: A New Family of One-way Hash Functions Based on AES Rounds and Carry-less Multiplication

Vortex: A New Family of One-way Hash Functions Based on AES Rounds and Carry-less Multiplication Vortex: A New Family of One-way Hash Functions Based on AES Rounds and Carry-less ultiplication Shay Gueron 2, 3, 4 and ichael E. Kounavis 1 1 Corresponding author, Corporate Technology Group, Intel Corporation,

More information

Dierential-Linear Cryptanalysis of Serpent? Haifa 32000, Israel. Haifa 32000, Israel

Dierential-Linear Cryptanalysis of Serpent? Haifa 32000, Israel. Haifa 32000, Israel Dierential-Linear Cryptanalysis of Serpent Eli Biham, 1 Orr Dunkelman, 1 Nathan Keller 2 1 Computer Science Department, Technion. Haifa 32000, Israel fbiham,orrdg@cs.technion.ac.il 2 Mathematics Department,

More information

Narrow-Bicliques: Cryptanalysis of Full IDEA. Gaetan Leurent, University of Luxembourg Christian Rechberger, DTU MAT

Narrow-Bicliques: Cryptanalysis of Full IDEA. Gaetan Leurent, University of Luxembourg Christian Rechberger, DTU MAT Narrow-Bicliques: Cryptanalysis of Full IDEA Dmitry Khovratovich, h Microsoft Research Gaetan Leurent, University of Luxembourg Christian Rechberger, DTU MAT Cryptanalysis 101 Differential attacks Linear

More information

Conventional Encryption: Modern Technologies

Conventional Encryption: Modern Technologies Conventional Encryption: Modern Technologies We mentioned that the statistical weakness in substitution ciphers is that they don t change the frequency of alphabetic letters. For example, if a substitution

More information

CS6701- CRYPTOGRAPHY AND NETWORK SECURITY UNIT 2 NOTES

CS6701- CRYPTOGRAPHY AND NETWORK SECURITY UNIT 2 NOTES CS6701- CRYPTOGRAPHY AND NETWORK SECURITY UNIT 2 NOTES PREPARED BY R.CYNTHIA PRIYADHARSHINI AP/IT/SREC Block Ciphers A block cipher is an encryption/decryption scheme in which a block of plaintext is treated

More information

FPGA Implementation of WG Stream Cipher

FPGA Implementation of WG Stream Cipher FPGA Implementation of WG Stream Cipher Anna Johnson Assistant Professor,ECE Department, Jyothi Engineering College,Thrissur Abstract Cryptography is the technique of providing security to a network. The

More information

On the Security of Stream Cipher CryptMT v3

On the Security of Stream Cipher CryptMT v3 On the Security of Stream Cipher CryptMT v3 Haina Zhang 1, and Xiaoyun Wang 1,2 1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100,

More information

Keywords :Avalanche effect,hamming distance, Polynomial for S-box, Symmetric encryption,swapping words in S-box

Keywords :Avalanche effect,hamming distance, Polynomial for S-box, Symmetric encryption,swapping words in S-box Efficient Implementation of Aes By Modifying S-Box Vijay L Hallappanavar 1, Basavaraj P Halagali 2, Veena V Desai 3 1 KLES s College of Engineering & Technology, Chikodi, Karnataka 2 V S M Institute of

More information

A METHOD FOR SECURITY ESTIMATION OF THE SPN-BASED BLOCK CIPHER AGAINST RELATED-KEY ATTACKS

A METHOD FOR SECURITY ESTIMATION OF THE SPN-BASED BLOCK CIPHER AGAINST RELATED-KEY ATTACKS t m Mathematical Publications DOI: 10.2478/tmmp-2014-0023 Tatra Mt. Math. Publ. 60 (2014), 25 45 A METHOD FOR SECURITY ESTIMATION OF THE SPN-BASED BLOCK CIPHER AGAINST RELATED-KEY ATTACKS Dmytro Kaidalov

More information

Update on Tiger. Kasteelpark Arenberg 10, B 3001 Heverlee, Belgium

Update on Tiger. Kasteelpark Arenberg 10, B 3001 Heverlee, Belgium Update on Tiger Florian Mendel 1, Bart Preneel 2, Vincent Rijmen 1, Hirotaka Yoshida 3, and Dai Watanabe 3 1 Graz University of Technology Institute for Applied Information Processing and Communications

More information

The CS 2 Block Cipher

The CS 2 Block Cipher The CS 2 Block Cipher Tom St Denis Secure Science Corporation tom@securescience.net Abstract. In this paper we describe our new CS 2 block cipher which is an extension of the original CS-Cipher. Our new

More information

One round cipher algorithm for multimedia IoT devices

One round cipher algorithm for multimedia IoT devices https://doi.org/10.1007/s11042-018-5660-y One round cipher algorithm for multimedia IoT devices Hassan Noura 1 Ali Chehab 1 Lama Sleem 2 Mohamad Noura 2 Raphaël Couturier 2 Mohammad M. Mansour 1 Received:

More information

Improved differential fault analysis on lightweight block cipher LBlock for wireless sensor networks

Improved differential fault analysis on lightweight block cipher LBlock for wireless sensor networks Jeong et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:151 RESEARCH Improved differential fault analysis on lightweight block cipher LBlock for wireless sensor networks Kitae

More information

Jordan University of Science and Technology

Jordan University of Science and Technology Jordan University of Science and Technology Cryptography and Network Security - CPE 542 Homework #III Handed to: Dr. Lo'ai Tawalbeh By: Ahmed Saleh Shatnawi 20012171020 On: 8/11/2005 Review Questions RQ3.3

More information

Homework 2. Out: 09/23/16 Due: 09/30/16 11:59pm UNIVERSITY OF MARYLAND DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Homework 2. Out: 09/23/16 Due: 09/30/16 11:59pm UNIVERSITY OF MARYLAND DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF MARYLAND DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ENEE 457 Computer Systems Security Instructor: Charalampos Papamanthou Homework 2 Out: 09/23/16 Due: 09/30/16 11:59pm Instructions

More information

Hill Cipher with Parallel Processing Involving Column, Row Shuffling, Permutation and Iteration on Plaintext and Key

Hill Cipher with Parallel Processing Involving Column, Row Shuffling, Permutation and Iteration on Plaintext and Key International Journal of Computer Networks and Security, ISSN:25-6878, Vol.23, Issue.2 7 Hill Cipher with Parallel Processing Involving Column, Row Shuffling, Permutation and Iteration on Plaintext and

More information

Advanced Cryptography 1st Semester Symmetric Encryption

Advanced Cryptography 1st Semester Symmetric Encryption Advanced Cryptography 1st Semester 2007-2008 Pascal Lafourcade Université Joseph Fourrier, Verimag Master: October 22th 2007 1 / 58 Last Time (I) Security Notions Cyclic Groups Hard Problems One-way IND-CPA,

More information

Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee

Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee Introduction to Cryptology Dr. Sugata Gangopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Roorkee Lecture 09 Cryptanalysis and its variants, linear attack Welcome

More information

Block Ciphers. Secure Software Systems

Block Ciphers. Secure Software Systems 1 Block Ciphers 2 Block Cipher Encryption function E C = E(k, P) Decryption function D P = D(k, C) Symmetric-key encryption Same key is used for both encryption and decryption Operates not bit-by-bit but

More information

CSCI 454/554 Computer and Network Security. Topic 3.1 Secret Key Cryptography Algorithms

CSCI 454/554 Computer and Network Security. Topic 3.1 Secret Key Cryptography Algorithms CSCI 454/554 Computer and Network Security Topic 3.1 Secret Key Cryptography Algorithms Outline Introductory Remarks Feistel Cipher DES AES 2 Introduction Secret Keys or Secret Algorithms? Security by

More information

Network Security. Lecture# 6 Lecture Slides Prepared by: Syed Irfan Ullah N.W.F.P. Agricultural University Peshawar

Network Security. Lecture# 6 Lecture Slides Prepared by: Syed Irfan Ullah N.W.F.P. Agricultural University Peshawar Network Security Lecture# 6 Lecture Slides Prepared by: Syed Irfan Ullah N.W.F.P. Agricultural University Peshawar Modern Block Ciphers now look at modern block ciphers one of the most widely used types

More information

Chapter 3 Block Ciphers and the Data Encryption Standard

Chapter 3 Block Ciphers and the Data Encryption Standard Chapter 3 Block Ciphers and the Data Encryption Standard Last Chapter have considered: terminology classical cipher techniques substitution ciphers cryptanalysis using letter frequencies transposition

More information

PGP: An Algorithmic Overview

PGP: An Algorithmic Overview PGP: An Algorithmic Overview David Yaw 11/6/2001 VCSG-482 Introduction The purpose of this paper is not to act as a manual for PGP, nor is it an in-depth analysis of its cryptographic algorithms. It is

More information

New Attacks on Feistel Structures with Improved Memory Complexities

New Attacks on Feistel Structures with Improved Memory Complexities New Attacks on Feistel Structures with Improved Memory Complexities Itai Dinur 1, Orr Dunkelman 2,4,, Nathan Keller 3,4,, and Adi Shamir 4 1 Département d Informatique, École Normale Supérieure, Paris,

More information

Efficient FPGA Implementations of PRINT CIPHER

Efficient FPGA Implementations of PRINT CIPHER Efficient FPGA Implementations of PRINT CIPHER 1 Tadashi Okabe Information Technology Group Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan Abstract This article presents field

More information

Piret and Quisquater s DFA on AES Revisited

Piret and Quisquater s DFA on AES Revisited Piret and Quisquater s DFA on AES Revisited Christophe Giraud 1 and Adrian Thillard 1,2 1 Oberthur Technologies, 4, allée du doyen Georges Brus, 33 600 Pessac, France. c.giraud@oberthur.com 2 Université

More information

Data Encryption Standard (DES)

Data Encryption Standard (DES) Data Encryption Standard (DES) Best-known symmetric cryptography method: DES 1973: Call for a public cryptographic algorithm standard for commercial purposes by the National Bureau of Standards Goals:

More information

LIGHTWEIGHT CRYPTOGRAPHY: A SURVEY

LIGHTWEIGHT CRYPTOGRAPHY: A SURVEY LIGHTWEIGHT CRYPTOGRAPHY: A SURVEY Shweta V. Pawar 1, T.R. Pattanshetti 2 1Student, Dept. of Computer engineering, College of Engineering Pune, Maharashtra, India 2 Professor, Dept. of Computer engineering,

More information

Cryptography MIS

Cryptography MIS Cryptography MIS-5903 http://community.mis.temple.edu/mis5903sec011s17/ Cryptography History Substitution Monoalphabetic Polyalphabetic (uses multiple alphabets) uses Vigenere Table Scytale cipher (message

More information

FPGA Implementation and Evaluation of lightweight block cipher - BORON

FPGA Implementation and Evaluation of lightweight block cipher - BORON FPGA Implementation and Evaluation of lightweight block cipher - BORON 1 Tadashi Okabe 1 Information Technology Group, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan Abstract

More information