Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4199

Size: px
Start display at page:

Download "Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4199"

Transcription

1 Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4199 Keywords: 8051,single-cycle,upgrade,flash,high speed,performance APPLICATION NOTE 4199 Porting Applications from the High-Speed Micro Family to Ultra-High-Speed Flash Microcontrollers Mar 28, 2008 Abstract: There are many reasons to upgrade older 8051 designs that use high-speed microcontrollers (DS80C310/DS80C320/DS80C323/DS8xC520) to the newer ultra-high-speed flash microcontrollers (DS89C430/DS89C450). Incentives to upgrade include higher performance, additional features and peripherals, and the flexibility of internal flash memory. This application note discusses some important differences between the two microcontroller families and explains how to upgrade from the high-speed to the ultra-high-speed devices. Overview Maxim's high-speed microcontroller family includes a wide variety of 8051 microcontrollers which execute instructions at a faster 4 clocks-per-machine-cycle rate compared to the 8051's original 12 clocks-permachine cycle speed. Some of the high-speed microcontrollers operate entirely from external program memory, such as the DS80C310, while others contain internal EPROM or ROM program memory, such as the DS87C520/DS83C520. All of these high-speed devices are pin-compatible with existing 8051 microcontrollers, so designs can be upgraded in most cases simply by dropping in a faster device and making minor software adjustments. In a similar manner, the ultra-high-speed flash microcontrollers can be used as drop-in upgrades for high-speed microcontroller designs. These newer, more powerful microcontrollers, which include the DS89C430/DS89C450, offer important improvements: expanded internal program flash memory (up to 64kB); and a redesigned, ultra-high-speed microcontroller core capable of executing instructions in a single clock cycle for up to a 12x speed improvement over the original 8051 design. This application note discusses how to upgrade from the high-speed microcontrollers to ultra-high-speed flash devices. The article also outlines differences in feature sets, pinout details, and SFR changes that must be considered when upgrading a design. General References For general programming guidelines for the following devices, consult the High-Speed Microcontroller User's Guide (PDF). DS80C310 High-Speed Microcontroller DS80C320 High-Speed Low-Power Microcontroller DS80C323 High-Speed Low-Power Microcontroller Page 1 of 10

2 DS83C520 High-Speed ROM Microcontroller DS87C520 High-Speed EPROM Microcontroller For general programming guidelines for the following devices, consult the Ultra-High-Speed Flash Microcontroller User's Guide (PDF). DS89C430 Ultra-High-Speed Flash Microcontroller DS89C450 Ultra-High-Speed Flash Microcontroller Basic Device Features Table 1. Comparison of Device Features Feature DS80C310 DS80C320 DS87C520 DS89C430 DS80C323 DS83C520 DS89C450 Clocks per Machine Cycle Operating Voltage Range (V) 4.5 to to 5.5 (DS80C320) 4.5 to to to 5.5 (DS80C323) Clock Rate (MHz, max) (DS80C320) 18 (DS80C323) Instruction Execution Time (ns, min) (DS80C320) 222 (DS80C323) Crystal Multiplier (x2 or x4) Ring Oscillator Internal Program Memory None None 16kB 16kB (DS89C430) 64kB (DS89C450) Internal Register Memory (Bytes) Internal MOVX Memory None None 1kB 1kB Serial Ports (UARTs) External Interrupts Port Pins (with Bus Active) Port Pins (max) Timer/Counters Three/16- bit Three/16-bit Three/16- bit Watchdog Dual Data Pointers Autoincrement/Decrement Stop Mode Power-On Reset Power-Fail Interrupt Three/16-bit Page 2 of 10

3 Device Pinout Scheme Table 2. Device Pinout Differences DIP PLCC TQFP DS80C310 DS80C320 DS80C323 DS87C520 DS83C520 DS89C430 DS89C P1.0 (T2) P1.0 (T2) P1.0 (T2) P1.0 (T2) P1.1 (T2EX) P1.1 (T2EX) P1.1 (T2EX) P1.1 (T2EX) P1.2 P1.2 (RXD1) P1.2 (RXD1) P1.2 (RXD1) P1.3 P1.3 (TXD1) P1.3 (TXD1) P1.3 (TXD1) P1.4 (INT2) P1.4 (INT2) P1.4 (INT2) P1.4 (INT2) P1.5 (nint3) P1.5 (nint3) P1.5 (nint3) P1.5 (nint3) P1.6 (INT4) P1.6 (INT4) P1.6 (INT4) P1.6 (INT4) P1.7 (nint5) P1.7 (nint5) P1.7 (nint5) P1.7 (nint5) RST RST RST RST P3.0 (RXD0) P3.0 (RXD0) P3.0 (RXD0) P3.0 (RXD0) P3.1 (TXD0) P3.1 (TXD0) P3.1 (TXD0) P3.1 (TXD0) P3.2 (nint0) P3.2 (nint0) P3.2 (nint0) P3.2 (nint0) P3.3 (nint1) P3.3 (nint1) P3.3 (nint1) P3.3 (nint1) P3.4 (T0) P3.4 (T0) P3.4 (T0) P3.4 (T0) P3.5 (T1) P3.5 (T1) P3.5 (T1) P3.5 (T1) P3.6 (nwr) P3.6 (nwr) P3.6 (nwr) P3.6 (nwr) P3.7 (nrd) P3.7 (nrd) P3.7 (nrd) P3.7 (nrd) XTAL2 XTAL2 XTAL2 XTAL XTAL1 XTAL1 XTAL1 XTAL , 23 16, 17 GND GND GND GND 1 39 GND N/C (can be connected to GND if desired) GND GND A8 (P2.0) A8 (P2.0) A8 (P2.0) A8 (P2.0) A9 (P2.1) A9 (P2.1) A9 (P2.1) A9 (P2.1) A10 (P2.2) A10 (P2.2) A10 (P2.2) A10 (P2.2) A11 (P2.3) A11 (P2.3) A11 (P2.3) A11 (P2.3) A12 (P2.4) A12 (P2.4) A12 (P2.4) A12 (P2.4) A13 (P2.5) A13 (P2.5) A13 (P2.5) A13 (P2.5) A14 (P2.6) A14 (P2.6) A14 (P2.6) A14 (P2.6) A15 (P2.7) A15 (P2.7) A15 (P2.7) A15 (P2.7) npsen npsen npsen npsen ALE ALE ALE ALE/nPROG nea nea nea nea AD7 AD7 AD7 (P0.7) AD7 (P0.7) AD6 AD6 AD6 (P0.6) AD6 (P0.6) AD5 AD5 AD5 (P0.5) AD5 (P0.5) Page 3 of 10

4 AD4 AD4 AD4 (P0.4) AD4 (P0.4) AD3 AD3 AD3 (P0.3) AD3 (P0.3) AD2 AD2 AD2 (P0.2) AD2 (P0.2) AD1 AD1 AD1 (P0.1) AD1 (P0.1) AD0 AD0 AD0 (P0.0) AD0 (P0.0) V CC (+5V) V CC +5V (DS80C320) V CC +3V (DS80C323) V CC (+5V) V CC (+5V) 12 6 N/C N/C N/C V CC (+5V) N/C N/C N/C GND Device Registers Table 3. SFR Map Comparisons Address DS80C310 DS80C320 DS87C520 DS89C430 DS80C323 DS83C520 DS89C450 80h P0 P0 81h SP SP SP SP 82h DPL DPL DPL DPL 83h DPH DPH DPH DPH 84h DPL1 DPL1 DPL1 DPL1 85h DPH1 DPH1 DPH1 DPH1 86h DPS DPS DPS DPS 87h PCON PCON PCON PCON 88h TCON TCON TCON TCON 89h TMOD TMOD TMOD TMOD 8Ah TL0 TL0 TL0 TL0 8Bh TL1 TL1 TL1 TL1 8Ch TH0 TH0 TH0 TH0 8Dh TH1 TH1 TH1 TH1 8Eh CKCON CKCON CKCON CKCON 90h P1 P1 P1 P1 91h EXIF EXIF EXIF EXIF 96h CKMOD 98h SCON SCON0 SCON0 SCON0 99h SBUF SBUF0 SBUF0 SBUF0 9Dh ACON A0h P2 P2 P2 P2 A8h IE IE IE IE A9h SADDR0 SADDR0 SADDR0 SADDR0 AAh SADDR1 SADDR1 SADDR1 B0h P3 P3 P3 P3 Page 4 of 10

5 B1h IP1 B8h IP IP IP IP0 B9h SADEN0 SADEN0 SADEN0 SADEN0 BAh SADEN1 SADEN1 SADEN1 C0h SCON1 SCON1 SCON1 C1h SBUF1 SBUF1 SBUF1 C2h ROMSIZE ROMSIZE C4h PMR PMR C5h STATUS STATUS STATUS STATUS C7h TA TA TA C8h T2CON T2CON T2CON T2CON C9h T2MOD T2MOD T2MOD T2MOD CAh RCAP2L RCAP2L RCAP2L RCAP2L CBh RCAP2H RCAP2H RCAP2H RCAP2H CCh TL2 TL2 TL2 TL2 CDh TH2 TH2 TH2 TH2 D0h PSW PSW PSW PSW D5h FCNTL D6h FDATA D8h WDCON WDCON WDCON WDCON E0h ACC ACC ACC ACC E8h EIE EIE EIE EIE F0h B B B B F1h EIP1 F8h EIP EIP EIP EIP0 Table 4. SFR Function Differences SFR Bit(s) Differences P0 DS8xC520/DS89C430/DS89C450 only; controls Port 0 pins. 4 (AID) DS89C430/DS89C450 only; controls the autoincrement/decrement function for the active data pointer. DPS 5 (TSL) DS89C430/DS89C450 only; enables automatic toggling between data pointers after certain opcodes. 6 (ID0) DS89C430/DS89C450 only; controls the effect of INC DPTR (increment or decrement) on DPTR. 7 (ID1) DS89C430/DS89C450 only; controls the effect of INC DPTR (increment or decrement) on DPTR1. PCON 4 (OFDE) DS89C430/DS89C450 only; crystal oscillator fail detection enable. 5 (OFDF) DS89C430/DS89C450 only; crystal oscillator fail detection flag. CKCON 7 (WD1) 6 (WD0) On all devices except the DS80C310; these bits control the watchdog timer period. Page 5 of 10

6 EXIF CKMOD ACON IE 0 (BGS) 1 (RGSL) 2 (RGMD) 3 SADDR1 IP1 SADEN1 SCON1 SBUF1 ROMSIZE 3 (T0MH) 4 (T1MH) 5 (T2MH) 5 (PAGES0) 6 (PAGES1) 7 (PAGEE) 6 (ES1) 2:0 (RMS2:0) 3 (PRAME) 1:0 (DME1:0) 2 On all devices except the DS80C310; this bit enables/disables the bandgap reference during stop mode. On all devices except the DS80C310; this bit controls execution from the ring oscillator during the crystal warmup period. On all devices except the DS80C310; this flag indicates the current clock source (ring or crystal). DS8xC520 (XT/nRG); selects the ring oscillator or crystal as the desired clock source. DS89C430/DS89C450 (CKRY); indicates that the crystal oscillator or crystal multiplier has completed its warmup period. DS89C430/DS89C450 only; allows Timer 0 to run directly from the system clock (clock/1). DS89C430/DS89C450 only; allows Timer 1 to run directly from the system clock (clock/1). DS89C430/DS89C450 only; allows Timer 2 to run directly from the system clock (clock/1). DS89C430/DS89C450 only; selects the page-mode configuration for external bus operations. DS89C430/DS89C450 only; enables page mode (as opposed to the standard 8051 expanded bus mode) for external bus operations. On all devices except the DS80C310; this bit enables/disables the serial port 1 interrupt. On all devices except the DS80C310; this register controls the slave address for serial port 1. DS89C430/DS89C450 only; this register combines with the settings in IP0/IP to provide four priority-level settings for each interrupt (as opposed to two settings with IP only). On all devices except the DS80C310; this register sets the slave address mask for serial port 1. On all devices except the DS80C310; this register controls mode settings for serial port 1. On all devices except the DS80C310; this register provides the input/output buffer for serial port 1. DS8xC520/DS89C430/DS89C450 only; selects the range of on-chip EPROM/flash that maps into program space. DS89C430/DS89C450 only; enables/disables mapping of the 1kB internal RAM into program space. DS8xC520/DS89C430/DS89C450 only; controls mapping of internal data memory into data space. DS8xC520 (ALEOFF); when set to 1, disables ALE during on-board memory access. DS89C430/DS89C450 (ALEON); when set to 0, disables ALE during on-board memory access. DS8xC520 (XTOFF); when set to 1, disables the crystal oscillator (must run from Page 6 of 10

7 PMR 3 ring). DS89C430/DS89C450 (4X/n2X); sets the mode for the crystal multiplier. STATUS TA WDCON EIE EIP 4 (CTM) DS89C430/DS89C450 only; when set to 1, enables the crystal multiplier. 5 (SWB) DS8xC520/DS89C430/DS89C450 only; when set to 1, enables automatic switchback mode. 7:6 (CD1:0) 0 (SPRA0) 1 (SPTA0) 2 (SPRA1) 3 (SPTA0) 4 (XTUP) 5 (LIP) 6 (HIP) 7 (PIP) 7:5 (PIS2:0) DS8xC520/DS89C430/DS89C450 only; controls the clock division or multiplier mode. Note that the available settings are different on the DS8xC520/DS89C430/DS89C450. DS8xC520/DS89C430/DS89C450 only; indicates that a character is currently being received on serial port 0. DS8xC520/DS9C430/DS89C450 only; indicates that a character is currently being transmitted on serial port 0. DS8xC520/DS89C430/DS89C450 only; indicates that a character is currently being received on serial port 1. DS8xC520/DS89C430/DS89C450 only; indicates that a character is currently being transmitted on serial port 1. DS8xC520 only; indicates whether the crystal oscillator has completed its warmup cycle. DS80C320/DS80C323/DS8xC520 only; indicates that a low-priority interrupt is currently being serviced. DS80C320/DS80C323/DS8xC520 only; indicates that a high-priority interrupt is currently being serviced. DS80C320/DS80C323/DS8xC520 only; indicates that a power-fail priority interrupt is currently being serviced. DS89C430/DS89C450 only; indicates that the priority level of the interrupt is being serviced. On all except the DS80C310; controls the Timed Access register protection mechanism. 0 (RWT) On all devices except the DS80C310; resets the watchdog timer. 1 (EWT) On all devices except the DS80C310; enables/disables the watchdog timer. 2 (WTRF) On all devices except the DS80C310; indicates that a watchdog timer reset has occurred. 3 (WDIF) On all devices except the DS80C310; indicates that a watchdog timer interrupt has occurred. 4 (PFI) On all devices except the DS80C310; indicates that a power-fail interrupt has occurred. 5 (EPFI) On all devices except the DS80C310; enables/disables the power-fail interrupt. 6 (POR) On all devices; indicates that a power-on reset has occurred. 7 On all devices except the DS80C310; enables/disables baud-rate doubling mode (SMOD_1) for serial port 1. 4 (EWDI) On all devices except the DS80C310; enables/disables interrupts from the watchdog timer. 3:0 (PX5:2) On all devices except the DS89C430/DS89C450; sets high/low priority for external interrupts 2, 3, 4, and 5. DS80C320/DS80C323/DS8xC520 only; sets high/low priority for the watchdog Page 7 of 10

8 EIP1, EIP0 4 (PWDI) timer interrupt. DS89C430/DS89C450 only; these registers set priority levels 0 3 for the watchdog timer interrupt and external interrupts 2, 3, 4, and 5. Single-Cycle Execution The ultra-high-speed DS89C430/DS89C450 processors require only a single clock to execute a singlecycle instruction, which is a 4x speed improvement over the DS80C310/DS80C320/DS80C323/DS8xC520. These latter high-speed microcontrollers require 4 clocks to complete a machine cycle. This difference in clock speed means that simply replacing one of the highspeed devices with the DS89C430/DS89C450 will result in up to a 4x increase in execution speed at the same crystal frequency. Nonvolatile Memory The DS80C310/DS80C320/DS80C323 have no programmable internal code memory and require external memory for code storage. The DS8xC520 improves on this memory scheme by including 16kB of program EPROM. When porting from the DS80C310/DS80C320/DS80C323 to the DS89C430/DS89C450, application code that was stored in external ROM, flash, or EPROM memory can be relocated to the internal flash memory of the ultra-high-speed processors. The DS89C430 provides the same amount of internal program memory (16kB) as the DS8xC520, so any applications stored in the DS8xC520 should fit into the DS89C430 without modification. Applications stored in external program memory will fit in the 64kB internal flash memory of the DS89C450, as long as port-pin banking was not used to expand program memory beyond 64kB. Finally, since the DS89C430/DS89C450 still support the standard 8051 multiplexed address bus scheme, external code and program memory can still be used in the application, if desired. Serial Bootloader While the DS8xC520 includes internal EPROM program memory, there is no provision for in-system or in-application programming (IAP) of the internal EPROM. A stand-alone programmer must be used to load the EPROM, and the DS8xC520 must be removed from (or electrically isolated from) the rest of the system for reprogramming to occur. (It is possible, however, to implement a user loader on the DS8xC520 which allows an external program or data EPROM or nonvolatile RAM to be reloaded under application control. See application note 102, "Using the High-Speed Microcontroller as a Bootstrap Loader," for more details.) The DS89C430/DS89C450 improve on this programming process by including a serial bootloader function. This function allows program memory to be reloaded by using a simple ASCII-based protocol. The serial bootloader is implemented in the microcontroller's on-board ROM, so no code space is consumed by this feature. In addition, the FCNTL and FDATA registers can be used for IAP, so parts of the flash can be erased and rewritten under user control. GPIO Port 0 Since the DS89C430/DS89C450 (like the DS8xC520) can operate without external code or data memory if desired, their eight Port 0 pins (which act as AD[7:0] when the multiplexed bus is active) can be used Page 8 of 10

9 as general-purpose I/O (GPIOs). There are other I/O pins that can be reclaimed for general-purpose use when the external bus is not used: the eight Port 2 pins (P2[7:0]); the P3.6 (nwr) pins; and P3.7 (nrd) pins. Unlike the Port 2 and Port 3 pins, however, the Port 0 pins use open-drain output drivers. This means that pullup resistors must be used, if these pins are to act as outputs. If the Port 0 pins will be used as inputs (driven externally), no pullup resistors are required. Divide-by-1 Timer Clocks The CKMOD register on the DS89C430/DS89C450 adds the ability to drive the three timers (Timer 0, Timer 1, and Timer 2) directly from the system clock (as opposed to the standard divide-by-4 and divideby-12 options). This high-speed select mode (controlled by the bits T0MH, T1MH, and T2MH) defaults to disable following reset to make the timers compatible with code written for the DS80C310/DS80C320/DS80C323/DS8xC520. Crystal Multiplier The DS89C430/SD89C450 include an on-board crystal multiplier which allows the crystal frequency to be boosted by 2x or 4x. This means that a 5MHz crystal can be used to generate a 5MHz, 10MHz, or 20MHz clock as needed. Five-Level Interrupt Priority The DS89C430/DS89C450 expand the programmable interrupt priority scheme to allow any of the external interrupts, timer interrupts, serial port interrupts, or the watchdog interrupt to be assigned a userdefined priority level from 0 (lowest) to 3 (highest nonpower-fail priority). The highest priority level, level 4, is reserved for the power-fail interrupt. This system is backwards compatible with the low-/highprogrammable priority scheme used by the DS80C310/DS80C320/DS80C323/DS8xC520. Power-Supply Considerations With their increased processing power, the DS89C430/DS89C450 have higher power-supply requirements than the microcontrollers in the high-speed family. At the maximum crystal frequency in active mode, the DS89C430/DS89C450 can draw up to 110mA (75mA, typ) in supply current. Consequently, when upgrading to the DS89C430/DS89C450, their power consumption may require changes to the power-supply circuit of a high-speed design. Refer to the device's data sheet for more details. Digital Noise Considerations The improved performance of the ultra-high-speed flash microcontrollers is the result of a core redesign that reduces machine cycle time and significantly increases internal switching speeds. Because of this, system designers can see a slight increase in digital noise when an ultra-high-speed flash microcontroller directly replaces a high-speed microcontroller. System designers should investigate what, if any, effect the increase in performance will have on their design. In some cases, it may be necessary to add additional bypass capacitors at the microcontroller or apply some other filtering method to reduce digital noise. Page 9 of 10

10 Software Timing Loops Application code that generates precise timing using software loops may need to be adjusted when moving from the high-speed microcontrollers to the ultra-high-speed devices. Timing loops of this type must be examined on a case-by-case basis, however, since not all instructions show the maximum 4x speed improvement when moving to the DS89C430/DS89C450. For example, while "ADD A, R0" executes in 4 clock cycles on any of the high-speed microcontrollers and in 1 clock cycle on the DS89C430/DS89C450 (a 4x speed increase), the instruction "ADD goes from 4 cycles on the high-speed devices to 2 cycles on the DS89C430/DS89C450 (a 2x speed increase). Refer to the "Instruction Timing" sections in both the High-Speed Microcontroller User's Guide and the Ultra-High- Speed Flash Microcontroller User's Guide for more details. Related Parts DS80C310 High-Speed Microcontroller Free Samples DS80C320 High-Speed/Low-Power Microcontrollers Free Samples DS80C323 High-Speed/Low-Power Microcontrollers Free Samples DS83C520 EPROM/ROM High-Speed Microcontrollers DS87C520 EPROM/ROM High-Speed Microcontrollers Free Samples DS89C430 Ultra-High-Speed Flash Microcontrollers Free Samples DS89C450 Ultra-High-Speed Flash Microcontrollers Free Samples More Information For Technical Support: For Samples: Other Questions and Comments: Application Note 4199: APPLICATION NOTE 4199, AN4199, AN 4199, APP4199, Appnote4199, Appnote 4199 Copyright by Maxim Integrated Products Additional Legal Notices: Page 10 of 10

High-Speed Microcontroller User s Guide

High-Speed Microcontroller User s Guide Rev: 338 High-Speed Microcontroller User s Guide Maxim Integrated Products 1 TABLE OF CONTENTS High-Speed Microcontroller User s Guide 1. INTRODUCTION...9 2. ORDERING INFORMATION...1 3. ARCHITECTURE...11

More information

ULTRA-HIGH-SPEED FLASH MICROCONTROLLER USER S GUIDE

ULTRA-HIGH-SPEED FLASH MICROCONTROLLER USER S GUIDE ULTRA-HIGH-SPEED FLASH MICROCONTROLLER USER S GUIDE 33 FLASH MEMORY SRAM 25 MIPS DECREMENT 851 MICROPROCESSOR 5 PORTS 1 ORIGINAL 851 ULTRA-HIGH-SPEED FLASH MICROCONTROLLER The Ultra-High-Speed Flash should

More information

DS89C420 Ultra High-Speed Microcontroller User s Guide

DS89C420 Ultra High-Speed Microcontroller User s Guide DS89C42 Ultra High-Speed Microcontroller User s Guide www.maxim-ic.com SECTION 1: INTRODUCTION The Dallas Semiconductor DS89C42 is an 851-compatible microcontroller that provides improved performance and

More information

High-Speed Microcontroller User s Guide

High-Speed Microcontroller User s Guide . www.maxim-ic.com High-Speed Microcontroller User s Guide TABLE OF CONTENTS. INTRODUCTION...6 2. ORDERING INFORMATION...7 3. ARCHITECTURE...8 3. ALU... 8 3.2 SPECIAL FUNCTION REGISTERS (SFRS)... 8 4.

More information

DS87C520/DS83C520 EPROM/ROM High-Speed Micro

DS87C520/DS83C520 EPROM/ROM High-Speed Micro EPROM/ROM High-Speed Micro www.dalsemi.com FEATURES 80C52-compatible - 8051 pin- and instruction set-compatible - Four 8-bit I/O ports - Three 16-bit timer/counters - 256 bytes scratchpad RAM Large on-chip

More information

SECTION 1: INTRODUCTION 5 SECTION 2: ORDERING INFORMATION 5 SECTION 3: ARCHITECTURE 5

SECTION 1: INTRODUCTION 5 SECTION 2: ORDERING INFORMATION 5 SECTION 3: ARCHITECTURE 5 Rev: 6, 2/4 Ultra-High-Speed Flash 6kB FLASH MEMORY kb SRAM 33 DUAL DATA POINTERS WITH AUTO- SELECT INCREMENT/ DECREMENT HIGH-SPEED ONE CLOCK-CYCLE 85 MICROPROCESSOR FOUR 8-BIT PARALLEL PORTS MIPS 25 5

More information

DS87C520/DS83C520. EPROM/ROM High Speed Micro PRELIMINARY PACKAGE OUTLINE FEATURES

DS87C520/DS83C520. EPROM/ROM High Speed Micro PRELIMINARY PACKAGE OUTLINE FEATURES PRELIMINARY DS87C520/DS83C520 EPROM/ROM High Speed Micro FEATURES 80C52 compatible 8051 pin and instruction set compatible Four 8 bit I/O ports Three 16 bit timer/counters 256 bytes scratchpad RAM Large

More information

7.2.1 Timer 2 Capture LSB... 24

7.2.1 Timer 2 Capture LSB... 24 Data Sheet 8-BIT MICROCONTROLLER Table of Contents-. GENERAL DESCRIPTION... 3 2. FEATURES... 3 3. PIN CONFIGURATIONS... 4 4. PIN DESCRIPTION... 5 5. FUNCTIONAL DESCRIPTION... 6 6. MEMORY ORGANIZATION...

More information

DS89C420 Ultra High Speed Microcontroller

DS89C420 Ultra High Speed Microcontroller PRELIMINARY Ultra High Speed Microcontroller www.dalsemi.com FEATURES 80C52 compatible 8051 pin and instruction set compatible Four bidirectional I/O ports Three 16 bit timer counters 256 bytes scratchpad

More information

Preliminary W77E58 8 BIT MICROCONTROLLER. Table of Contents-- Publication Release Date: March Revision A1

Preliminary W77E58 8 BIT MICROCONTROLLER. Table of Contents-- Publication Release Date: March Revision A1 8 BIT MICROCONTROLLER Table of Contents-- GENERAL DESCRIPTION...2 FEATURES...2 PIN CONFIGURATION...3 PIN DESCRIPTION...4 BLOCK DIAGRAM...6 FUNCTIONAL DESCRIPTION...7 MEMORY ORGANIZATION...8 INSTRUCTION...29

More information

W77LE58/W77L058A Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Publication Release Date: April 17, Revision A7

W77LE58/W77L058A Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Publication Release Date: April 17, Revision A7 Data Sheet 8-BIT MICROCONTROLLER Table of Contents-. GENERAL DESCRIPTION... 2 2. FEATURES... 2 3. PIN CONFIGURATIONS... 3 4. PIN DESCRIPTION... 4 5. FUNCTIONAL DESCRIPTION... 5 6. MEMORY ORGANIZATION...

More information

W77IE58 8-BIT MICROCONTROLLER. Table of Contents-- Publication Release Date: December Revision A2

W77IE58 8-BIT MICROCONTROLLER. Table of Contents-- Publication Release Date: December Revision A2 8-BIT MICROCONTROLLER Table of Contents-- GENERAL DESCRIPTION... 2 FEATURES... 2 PIN CONFIGURATIONS... 3 PIN DESCRIPTION... 4 BLOCK DIAGRAM... 6 FUNCTIONAL DESCRIPTION... 7 MEMORY ORGANIZATION... 8 Instruction...

More information

Preliminary W77C32 8 BIT MICROCONTROLLER GENERAL DESCRIPTION FEATURES

Preliminary W77C32 8 BIT MICROCONTROLLER GENERAL DESCRIPTION FEATURES GENERAL DESCRIPTION 8 BIT MICROCONTROLLER The W77C32 is a fast 805 compatible microcontroller with a redesigned processor core without wasted clock and memory cycles. As a result, it executes every 805

More information

DS87C530/DS83C530 EPROM/ROM Micro with Real Time Clock

DS87C530/DS83C530 EPROM/ROM Micro with Real Time Clock EPROM/ROM Micro with Real Time Clock www.dalsemi.com FEATURES 80C52-compatible - 8051 instruction set-compatible - Four 8-bit I/O ports - Three 16-bit timer/counters - 256 bytes scratchpad RAM Large on-chip

More information

W77E058A Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

W77E058A Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Data Sheet 8-BIT MICROCONTROLLER Table of Contents-. GENERAL DESCRIPTION... 3 2. FEATURES... 3 3. PIN CONFIGURATIONS... 4 4. PIN DESCRIPTION... 5 5. FUNCTIONAL DESCRIPTION... 7 6. MEMORY ORGANIZATION...

More information

DS87C530/DS83C530 EPROM/ROM Microcontrollers with Real-Time Clock

DS87C530/DS83C530 EPROM/ROM Microcontrollers with Real-Time Clock www.maxim-ic.com FEATURES 80C52 Compatible 8051 Instruction-Set Compatible Four 8-Bit I/O Ports Three 16-Bit Timer/Counters 256 Bytes Scratchpad RAM Large On-Chip Memory 16kB EPROM (OTP) 1kB Extra On-Chip

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52

8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52 Features Compatible with MCS -51 Products 8K Bytes of In-System Programmable (ISP) Flash Memory Endurance: 10,000 Write/Erase Cycles 4.0V to 5.5V Operating Range Fully Static Operation: 0 Hz to 33 MHz

More information

W77E532/W77E532A DATA SHEET 8-BIT MICROCONTROLLER. Table of Contents-

W77E532/W77E532A DATA SHEET 8-BIT MICROCONTROLLER. Table of Contents- DATA SHEET 8-BIT MICROCONTROLLER Table of Contents-. GENERAL DESCRIPTION...2 2. FEATURES...2 3. PIN CONFIGURATIONS...3 4. PIN DESCRIPTION...4 5. FUNCTIONAL DESCRIPTION...6 6. MEMORY ORGANIZATION...8 7.

More information

W77L516A DATA SHEET 8-BIT MICROCONTROLLER. Table of Contents-

W77L516A DATA SHEET 8-BIT MICROCONTROLLER. Table of Contents- DATA SHEET 8-BIT MICROCONTROLLER Table of Contents-. GENERAL DESCRIPTION... 2 2. FEATURES... 2 3. PIN CONFIGURATIONS... 3 4. PIN DESCRIPTION... 4 5. FUNCTIONAL DESCRIPTION... 6 6. MEMORY ORGANIZATION...

More information

W79E201 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

W79E201 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Data Sheet Table of Contents- 8-BIT MICROCONTROLLER. GENERAL DESCRIPTION... 3 2. FEATURES... 3 3. PIN CONFIGURATION...4 4. PIN DESCRIPTION... 5 5. BLOCK DIAGRAM... 6 6. FUNCTIONAL DESCRIPTION... 7 7. MEMORY

More information

8.1.1 External Data Memory Access Timing...32

8.1.1 External Data Memory Access Timing...32 Data Sheet 8-BIT MICROCONTROLLER Table of Contents- 1. GENERAL DESCRIPTION... 3 2. FEATURES... 3 3. PIN CONFIGURATIONS... 4 4. PIN DESCRIPTION... 5 5. BLOCK DIAGRAM... 7 6. FUNCTIONAL DESCRIPTION... 8

More information

DS80C320/DS80C323. High Speed/Low Power Micro FEATURES PIN ASSIGNMENT

DS80C320/DS80C323. High Speed/Low Power Micro FEATURES PIN ASSIGNMENT DS80C320/DS80C323 High Speed/Low Power Micro FEATURES 80C32 Compatible 8051 Pin and instruction set compatible Four 8 bit I/O ports Three 16 bit timer/counters 256 bytes scratchpad RAM Addresses 64KB ROM

More information

W77E532 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

W77E532 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Data Sheet Table of Contents- 8-BIT MICROCONTROLLER GENERAL DESCRIPTION FEATURES 3 PIN CONFIGURATIONS 3 4 PIN DESCRIPTION 4 5 BLOCK DIAGRAM 6 6 FUNCTIONAL DESCRIPTION 7 7 MEMORY ORGANIZATION 8 8 INSTRUCTION

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families The Microcontroller Lecture Set 3 Architecture of the 8051 Microcontroller Microcontrollers can be considered as self-contained systems with a processor, memory and I/O ports. In most cases, all that is

More information

High-Speed Microcontroller User s Guide: DS80C390 Supplement

High-Speed Microcontroller User s Guide: DS80C390 Supplement AVAILABLE High-Speed Microcontroller User s Guide: DS80C390 Supplement This document is provided as a supplement to the High-Speed Microcontroller User s Guide, covering new or modified features specific

More information

DS80C320/DS80C323 High-Speed/Low-Power Microcontrollers

DS80C320/DS80C323 High-Speed/Low-Power Microcontrollers DS80C320/DS80C323 High-Speed/Low-Power Microcontrollers www.maxim-ic.com FEATURES 80C32-Compatible 8051 Pin and Itruction Set Compatible Four 8-Bit I/O Ports Three 16-Bit Timer/Counters 256 Bytes Scratchpad

More information

PGT302 Embedded Software Technology. PGT302 Embedded Software Technology

PGT302 Embedded Software Technology. PGT302 Embedded Software Technology PGT302 Embedded Software Technology 1 PART 4 Hardware Platform 2 2 Objectives for Part 4 Need to DISCUSS and ANALYZE the following topics: Board (GTUC51B001) specifications startup sequence, bootloader

More information

DS80C390 High-Speed Microcontroller User s Guide Supplement

DS80C390 High-Speed Microcontroller User s Guide Supplement www.dalsemi.com DS80C390 High-Speed Microcontroller User s Guide Supplement ADDENDUM TO SECTION 1: INTRODUCTION This document is provided as a supplement to the High-Speed Microcontroller User s Guide,

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

High-Speed Microcontroller User s Guide: DS80C400 Supplement

High-Speed Microcontroller User s Guide: DS80C400 Supplement COMMUNICATE WITH NEW AND LEGACY EQUIPMENT x3 SERIAL UARTs NETWORKED MICROCONTROLLER 8051 µc WITH TCP/IPv4/6 NETWORK STACK IN ROM 10/100 ETHERNET MAC REMOTE MONITORING AND CONTROL VIA THE NETWORK DS80C400

More information

MEGAWIN MPC89L516X2. 8-bit micro-controller. Features

MEGAWIN MPC89L516X2. 8-bit micro-controller. Features MPC89L516X2 8-bit micro-controller Features 8-bit 80C52-compatible Microcontroller Fully instruction set compatible Pin-to-pin package compatible Power voltage range: V CC = 2.4V ~ 3.6V Optional 12 clocks

More information

Rev. No. History Issue Date Remark

Rev. No. History Issue Date Remark Preliminary Bar Code Reader Document Title Bar Code Reader Revision History Rev. No. History Issue Date Remark 0.0 Initial issue June 5, 2000 Preliminary 0.1 Change document title from Bar Code Reader

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

DS80C310 High-Speed Microcontroller

DS80C310 High-Speed Microcontroller High-Speed Microcontroller www.maxim-ic.com GENERAL DESCRIPTION The DS80C310 is a fast 80C31/80C32-compatible microcontroller. It features a redesigned processor core without wasted clock and memory cycles.

More information

Three criteria in Choosing a Microcontroller

Three criteria in Choosing a Microcontroller The 8051 Microcontroller architecture Contents: Introduction Block Diagram and Pin Description of the 8051 Registers Some Simple Instructions Structure of Assembly language and Running an 8051 program

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture Department of Electrical Engineering Lecture 4 The 8051 Architecture 1 In this Lecture Overview General physical & operational features Block diagram Pin assignments Logic symbol Hardware description Pin

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

DS80C310 High-Speed Micro

DS80C310 High-Speed Micro www.maxim-ic.com FEATURES 80C32-compatible - 8051 pin- and itruction set-compatible - Full duplex serial port - Three 16-bit timer/counters - 256 bytes scratchpad RAM - Multiplexed address/data bus - Addresses

More information

TDA General description. 2. Features. Low power single card reader

TDA General description. 2. Features. Low power single card reader Rev. 03 22 February 2005 Product data sheet 1. General description The is a complete one chip, low cost, low power, robust smart card reader. Its different power reduction modes and its wide supply voltage

More information

8XC51RA RB RC Hardware Description

8XC51RA RB RC Hardware Description 8XC51RA RB RC Hardware Description February 1995 Order Number 272668-001 Information in this document is provided in connection with Intel products Intel assumes no liability whatsoever including infringement

More information

ISSI. IS89C51 CMOS SINGLE CHIP 8-BIT MICROCONTROLLER with 4-Kbytes of FLASH ISSI IS89C51 NOVEMBER 1998 FEATURES GENERAL DESCRIPTION

ISSI. IS89C51 CMOS SINGLE CHIP 8-BIT MICROCONTROLLER with 4-Kbytes of FLASH ISSI IS89C51 NOVEMBER 1998 FEATURES GENERAL DESCRIPTION IS89C51 CMOS SINGLE CHIP 8-BIT MICROCONTROLLER with 4-Kbytes of FLASH NOVEMBER 1998 FEATURES 80C51 based architecture 4-Kbytes of on-chip Reprogrammable Flash Memory 128 x 8 RAM Two 16-bit Timer/Counters

More information

ENE 334 Microprocessors

ENE 334 Microprocessors Page 1 ENE 334 Microprocessors Lecture 7: MCS-51 Architecture I : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Architecture I Page 2 Outlines: 8051 Microcontroller Hardware

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. 8051 8052 and 80C51 Hardware Description December 1992 Order Number 270252-006

More information

MSM80C154S MSM83C154S MSM85C154HVS USER'S MANUAL

MSM80C154S MSM83C154S MSM85C154HVS USER'S MANUAL MSM8C54S MSM83C54S MSM85C54HVS USER'S MANUAL Copyright 988, OKI ELECTRIC INDUSTRY COMPANY, LTD. OKI makes no warranty for the use of its products and assumes no responsibility for any errors which may

More information

UNIT IV MICROCONTROLLER

UNIT IV MICROCONTROLLER UNIT IV 8051- MICROCONTROLLER Prepared by R. Kavitha Page 1 Application Prepared by R. Kavitha Page 2 Pin Description of the 8051 UNIT IV- 8051 MICROCONTROLLER P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST

More information

Introduction To MCS-51

Introduction To MCS-51 Introduction To MCS-51 By Charoen Vongchumyen Department of Computer Engineering Faculty of Engineering KMITLadkrabang 8051 Hardware Basic Content Overview Architechture Memory map Register Interrupt Timer/Counter

More information

8051 Memory Organization BY D. BALAKRISHNA, Research Assistant, IIIT-H Chapter 1: Memory Organization There are 2 types of memories available in 8051 microcontroller. Program memory/c code memory (ROM)

More information

Lecture 1. Course Overview and The 8051 Architecture

Lecture 1. Course Overview and The 8051 Architecture Lecture 1 Course Overview and The 8051 Architecture MCUniversity Program Lectures 8051 architecture t System overview of C8051F020 8051 instruction set System clock, crossbar and GPIO Assembler directives

More information

CS 320. Computer Architecture Core Architecture

CS 320. Computer Architecture Core Architecture CS 320 Computer Architecture 8051 Core Architecture Evan Hallam 19 April 2006 Abstract The 8051 is an 8-bit microprocessor designed originally in the 1980 s by the Intel Corporation. This inexpensive and

More information

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051: DEPARTMENT OF ECE MICROPROCESSORS AND MICROCONTROLLERS MATERIAL UNIT V 8051 MICROCONTROLLERS To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to add other

More information

8-BIT MICROCONTROLLER

8-BIT MICROCONTROLLER 8-BIT MICROCONTROLLER Table of Contents- 1 GENERAL DESCRIPTION... 4 2 FEATURES... 5 3 PARTS INFORMATION LIST... 6 3.1 Lead Free (RoHS) Parts information list... 6 4 PIN CONFIGURATIONS... 7 5 PIN DESCRIPTIONS...

More information

8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253

8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253 Features Compatible with MCS -51 Products 12K Bytes of In-System Programmable (ISP) Flash Program Memory SPI Serial Interface for Program Downloading Endurance: 10,000 Write/Erase Cycles 2K Bytes EEPROM

More information

20uA at VDD=5.5V 5uA at VDD=3.6V. 1T up to 20 (1T~8T can change on fly) RC ( 24MHz) Program Flash ( byte) 4K 4K RAM( byte)

20uA at VDD=5.5V 5uA at VDD=3.6V. 1T up to 20 (1T~8T can change on fly) RC ( 24MHz) Program Flash ( byte) 4K 4K RAM( byte) SM894051 SM39R4051 SM39R4051 SM39R4051 SM894051 SM894051 SM39R4051 MCU ( 1) Feature SM894051 SM39R4051 (V) 3.0~5.5 2.7~5.5 I DD (Power Down) 20uA at VDD=5.5V 5uA at VDD=3.6V 3.5uA at VDD=5.0V System clock(mhz)

More information

Preliminary N79E352/N79E352R Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

Preliminary N79E352/N79E352R Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- 8-BIT MICROCONTROLLER Table of Contents- 1. GENERAL DESCRIPTION... 4 2. FEATURES... 5 3. PARTS INFORMATION LIST... 6 3.1 Lead Free (RoHS) Parts information list... 6 4. PIN CONFIGURATIONS... 7 5. PIN DESCRIPTIONS...

More information

SH57K12. High Performance 8031 Microcontroller. Preliminary. Features. General Description

SH57K12. High Performance 8031 Microcontroller. Preliminary. Features. General Description Preliminary Features 8031 MCU core embedded DC to 24 MHz operating frequency EV: ROM-less 16 KB MASK ROM for program storage 384 bytes on-chip data RAM: 256 bytes accessed as in the 8031 128 bytes accessed

More information

Lecture 2. Silicon Labs C8051F020 System Overview

Lecture 2. Silicon Labs C8051F020 System Overview Lecture 2 Silicon Labs C8051F020 System Overview 2 C8051F020 System Overview Introduction to CIP-51 C8051F020 system overview Memory organization Program and internal data memories Special function registers

More information

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC.

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC. MICROCONTROLLERS AND APPLICATIONS 1 Module 1 Module I Introduction to Microcontrollers: Comparison with Microprocessors Harvard and Von Neumann Architectures - 80C51 microcontroller features - internal

More information

P89V52X2. 1. General description. 2. Features. 8-bit 80C51 low power 8 kb flash microcontroller with 256 B RAM, 192 B data EEPROM

P89V52X2. 1. General description. 2. Features. 8-bit 80C51 low power 8 kb flash microcontroller with 256 B RAM, 192 B data EEPROM 8-bit 80C51 low power 8 kb flash microcontroller with 256 B RAM, 192 B data EEPROM Rev. 01 7 June 2007 Preliminary data sheet 1. General description The is an 80C51 microcontroller with 8 kb flash, 256

More information

Intel 8051 Family Standard PODs

Intel 8051 Family Standard PODs Intel 8051 Family Standard PODs All 8051 family PODs are 8-bit PODs that can be used on ic181, ic1000 and the PowerEmulator unit with the exception of a few PODs, that can not be used on the ic181 unit.

More information

Migrating from the 8XC251Sx to the 8XC251Tx

Migrating from the 8XC251Sx to the 8XC251Tx Migrating from the 8XC251Sx to the 8XC251Tx Application Note May 1999 Order Number: 273252-001 Information in this document is provided in connection with Intel products. No license, express or implied,

More information

7.1.1 External Data Memory Access Timing...52

7.1.1 External Data Memory Access Timing...52 DATA SHEET 8-BIT MICROCONTROLLER Table of Contents- 1. GENERAL DESCRIPTION... 4 2. FEATURES... 4 3. PIN CONFIGURATION... 6 4. PIN DESCRIPTION... 7 4.1 Port 4... 8 5. MEMORY ORGANIZATION... 10 5.1 Program

More information

7.1.1 External Data Memory Access Timing...51

7.1.1 External Data Memory Access Timing...51 DATA SHEET 8-BIT MICROCONTROLLER Table of Contents- 1. GENERAL DESCRIPTION... 4 2. FEATURES... 4 3. PIN CONFIGURATION... 5 4. PIN DESCRIPTION... 6 4.1 Port 4... 7 5. MEMORY ORGANIZATION... 9 5.1 Program

More information

INTEGRATED CIRCUITS DATA SHEET. P89C738; P89C739 8-bit microcontrollers Dec 15. Product specification File under Integrated Circuits, IC20

INTEGRATED CIRCUITS DATA SHEET. P89C738; P89C739 8-bit microcontrollers Dec 15. Product specification File under Integrated Circuits, IC20 INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC20 1997 Dec 15 CONTENTS 1 FEATURES 2 GENERAL DESCRIPTION 3 ORDERING INFORMATION 4 BLOCK DIAGRAM 5 FUNCTIONAL DIAGRAM 6 PINNING INFORMATION

More information

8XC151SA and 8XC151SB Hardware Description

8XC151SA and 8XC151SB Hardware Description 8XC151SA and 8XC151SB Hardware Description June 1996 Order Number 272832-001 Information in this document is provided in connection with Intel products Intel assumes no liability whatsoever including infringement

More information

FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554

FlashFlex51 MCU SST89E564 / SST89V564 / SST89E554 / SST89V554 FEATURES: FlashFlex51 MCU SST89E/V564 SST89E/VE554 FlashFlex51 MCU 8-bit 8051 Family Compatible Microcontroller (MCU) with Embedded SuperFlash Memory SST89E564/SST89E554 is 5V Operation 0 to 40 MHz Operation

More information

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system.

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system. Syllabus: : Introduction to, 8051 Microcontroller Architecture and an example of Microcontroller based stepper motor control system (only Block Diagram approach). (5 Hours) Introduction to A microcontroller

More information

FlashFlex MCU SST89E52RC / SST89E54RC

FlashFlex MCU SST89E52RC / SST89E54RC Not recommended for new designs. Contact Microchip Sales for microcontroller design options. A Microchip Technology Company The are members of the FlashFlex family of 8-bit microcontroller products designed

More information

8-Bit Microcontroller with 8K Bytes Flash AT89S8252. Features. Description

8-Bit Microcontroller with 8K Bytes Flash AT89S8252. Features. Description Features Compatible with MCS-51 Products 8K Bytes of In-System Reprogrammable Downloadable Flash Memory SPI Serial Interface for Program Downloading Endurance: 1,000 Write/Erase Cycles 2K Bytes EEPROM

More information

IA8044/IA8344. SDLC Communications Controller. Data Sheet. SDLC Communications Controller January 9, 2015

IA8044/IA8344. SDLC Communications Controller. Data Sheet. SDLC Communications Controller January 9, 2015 IA8044/IA8344 SDLC Communications Controller Page 1 of 65 1-888-824-4184 Copyright 2015 by Innovasic Semiconductor, Inc. Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque,

More information

8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253. Preliminary

8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253. Preliminary Features Compatible with MCS -51 Products 12K Bytes of In-System Programmable (ISP) Flash Program Memory SPI Serial Interface for Program Downloading Endurance: 10,000 Write/Erase Cycles 2K Bytes EEPROM

More information

CPEG300 Embedded System Design. Lecture 3 Memory

CPEG300 Embedded System Design. Lecture 3 Memory CPEG300 Embedded System Design Lecture 3 Memory Hamad Bin Khalifa University, Spring 2018 Review Von Neumann vs. Harvard architecture? System on Board, system on chip? Generic Hardware Architecture of

More information

AT Bit Spread- Spectrum Microcontroller. Preliminary. Features. Description. Pin Configuration

AT Bit Spread- Spectrum Microcontroller. Preliminary. Features. Description. Pin Configuration Features Compatible with MCS-51 Products 8K bytes of On-Board Program Memory Fully Static Operation: 0 Hz to 16 MHz 256 x 8 Bit Internal RAM 32 Programmable I/O Lines Three 16 Bit Timer/Counters Eight

More information

W78ERD2/W78ERD2A Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

W78ERD2/W78ERD2A Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Data Sheet Table of Contents- 8-BIT MICROCONTROLLER GENERAL DESCRIPTION 3 2 FEATURES 3 3 PIN CONFIGURATIONS 4 4 PIN DESCRIPTION 5 5 FUNCTIONAL DESCRIPTION 6 5 RAM 6 52 Timers/Counters 6 53 Clock 7 54 Power

More information

8051 MICROCONTROLLER

8051 MICROCONTROLLER 8051 MICROCONTROLLER Mr.Darshan Patel M.Tech (Power Electronics & Drives) Assistant Professor Department of Electrical Engineering Sankalchand Patel College of Engineering-Visnagar WHY DO WE NEED TO LEARN

More information

W78ERD2 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

W78ERD2 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Data Sheet Table of Contents- 8-BIT MICROCONTROLLER GENERAL DESCRIPTION 3 FEATURES 3 3 PIN CONFIGURATIONS 4 4 PIN DESCRIPTION 5 5 BLOCK DIAGRAM 6 6 FUNCTIONAL DESCRIPTION 7 6 RAM 7 6 Timers 0, and 7 63

More information

TS80C52X2. 8-bit CMOS Microcontroller 0-60 MHz. Preliminary. 1. Description. 2. Features

TS80C52X2. 8-bit CMOS Microcontroller 0-60 MHz. Preliminary. 1. Description. 2. Features 8-bit CMOS Microcontroller 0-60 MHz TS80C52X2 1. Description TEMIC TS80C52X2 is high performance CMOS ROM, OTP, EPROM and ROMless versions of the 80C51 CMOS single chip 8-bit microcontroller. The TS80C52X2

More information

W78ERD2 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents-

W78ERD2 Data Sheet 8-BIT MICROCONTROLLER. Table of Contents- Data Sheet Table of Contents- 8-BIT MICROCONTROLLER GENERAL DESCRIPTION 3 FEATURES 3 3 PIN CONFIGURATIONS 4 4 PIN DESCRIPTION 5 5 BLOCK DIAGRAM 6 6 FUNCTIONAL DESCRIPTION 7 6 RAM 7 6 Timers/Counters 7

More information

HD C51-based microcontroller

HD C51-based microcontroller 80C51-based microcontroller 16K flash memory In-system programming IAP programming Main Data Memory: 256 bytes AUX Memory: 320 bytes Timers 0, 1, 2, 3 Watchdog timer UART0 and UART1 10-bit ADC 21-channel,

More information

MAX2990 INTEGRATED POWER-LINE DIGITAL TRANSCEIVER PROGRAMMING MANUAL

MAX2990 INTEGRATED POWER-LINE DIGITAL TRANSCEIVER PROGRAMMING MANUAL MAX2990 INTEGRATED POWER-LINE DIGITAL TRANSCEIVER PROGRAMMING MANUAL Maxim Integrated - 1 - TABLE OF CONTENTS MAX2990 Functional... 4 Buffer Manager:... 4 Data Manager:... 4 CRC/DES:... 5 MCU SPR s:...

More information

SECURE MICROCONTROLLER USER S GUIDE... 1

SECURE MICROCONTROLLER USER S GUIDE... 1 TABLE OF CONTENTS SECURE MICROCONTROLLER USER S GUIDE......................................... Section Introduction.......................................................................... 2 Section 2

More information

DQ8051. Revolutionary Quad-Pipelined Ultra High performance 8051 Microcontroller Core

DQ8051. Revolutionary Quad-Pipelined Ultra High performance 8051 Microcontroller Core DQ8051 Revolutionary Quad-Pipelined Ultra High performance 8051 Microcontroller Core COMPANY OVERVIEW Digital Core Design is a leading IP Core provider and a System-on-Chip design house. The company was

More information

Fig 1. Block diagram of a microcomputer

Fig 1. Block diagram of a microcomputer MICRO CONTROLLERS www.bookspar.com VTU NOTES QUESTION PAPERS UNIT - 1 Computer: A computer is a multipurpose programmable machine that reads binary instructions from its memory, accepts binary data as

More information

8-Bit Microcontroller with 8K Bytes QuickFlash Memory

8-Bit Microcontroller with 8K Bytes QuickFlash Memory Features Compatible with MCS-51 Products 8K Bytes of Factory Programmable QuickFlash Memory Fully Static Operation: 0 Hz to 20 MHz Three-Level Program Memory Lock 256 x 8-Bit Internal RAM 32 Programmable

More information

AT89S4D12. 8-Bit Microcontroller with 132K Bytes Flash Data Memory AT89S4D12. Features. Description. Pin Configurations

AT89S4D12. 8-Bit Microcontroller with 132K Bytes Flash Data Memory AT89S4D12. Features. Description. Pin Configurations Features Compatible with MCS-51 Products 128K Bytes of In-System Reprogrammable Flash data memory and 4K Bytes of Downloadable Flash Program Memory Endurance: 1,000 Write/Erase Cycles per Sector Data Retention:

More information

8051 MICROCONTROLLER

8051 MICROCONTROLLER What is a Microcontroller? UNIT 5 8051 MICROCONTROLLER A Microcontroller is a programmable digital processor with necessary peripherals. Both microcontrollers and microprocessors are complex sequential

More information

8-Bit Microcontroller with 1K Bytes Flash. AT89C1051U Preliminary. Features. Description. Pin Configuration

8-Bit Microcontroller with 1K Bytes Flash. AT89C1051U Preliminary. Features. Description. Pin Configuration Features Compatible with MCS-51 Products 1K Bytes of Reprogrammable Flash Memory Endurance: 1,000 Write/Erase Cycles 2.7V to 6V Operating Range Fully Static Operation: 0 Hz to 24 MHz Two-Level Program

More information

CHAPTER 1 MICROCOMPUTER SYSTEMS. 1.1 Introduction. 1.2 Microcontroller Evolution

CHAPTER 1 MICROCOMPUTER SYSTEMS. 1.1 Introduction. 1.2 Microcontroller Evolution CHAPTER 1 MICROCOMPUTER SYSTEMS 1.1 Introduction The term microcomputer is used to describe a system that includes a microprocessor, program memory, data memory, and an input/output (I/O). Some microcomputer

More information

8-bit Microcontroller 8 Kbytes ROM/OTP, ROMless TS80C32X2 TS87C52X2 TS80C52X2 AT80C32X2 AT80C52X2 AT87C52X2. Features. Description

8-bit Microcontroller 8 Kbytes ROM/OTP, ROMless TS80C32X2 TS87C52X2 TS80C52X2 AT80C32X2 AT80C52X2 AT87C52X2. Features. Description Features 80C52 Compatible 8051 Pin and Instruction Compatible Four 8-bit I/O Ports Three 16-bit Timer/Counters 256 Bytes Scratchpad RAM High-speed Architecture 40 MHz at 5V, 30 MHz at 3V X2 Speed Improvement

More information

DATA SHEET. P80CL31; P80CL51 Low voltage 8-bit microcontrollers with UART INTEGRATED CIRCUITS Apr 15

DATA SHEET. P80CL31; P80CL51 Low voltage 8-bit microcontrollers with UART INTEGRATED CIRCUITS Apr 15 INTEGRATED CIRCUITS DATA SHEET Low voltage 8-bit microcontrollers with Supersedes data of January 1995 File under Integrated circuits, IC20 1997 Apr 15 CONTENTS 1 FEATURES 2 GENERAL DESCRIPTION 2.1 Versions:

More information

The Final Word on 8051 Microcontroller

The Final Word on 8051 Microcontroller The Final Word on 8051 Microcontroller This is a book about the Intel 8051 microcontroller and its large family of descendants. It is intended to give you, the reader, some new techniques for optimizing

More information

7.1.1 External Data Memory Access Timing...52

7.1.1 External Data Memory Access Timing...52 DATA SHEET 8-BIT MICROCONTROLLER Table of Contents- 1. GENERAL DESCRIPTION... 4 2. FEATURES... 4 3. PIN CONFIGURATION... 5 4. PIN DESCRIPTION... 6 4.1 Port 4... 7 5. MEMORY ORGANIZATION... 9 5.1 Program

More information

8051 MICROCONTROLLER WITH 64K FLASH AND ISP. Latch PSW ALU. Latch. Instruction Decoder & Sequencer. Bus&Clock Controller. Port 4. Latch.

8051 MICROCONTROLLER WITH 64K FLASH AND ISP. Latch PSW ALU. Latch. Instruction Decoder & Sequencer. Bus&Clock Controller. Port 4. Latch. General Description The TP2804 is an 8-bit microcontroller which has an in-system programmable FLASH EPROM for firmware updated. Its instruction set is fully compatible with the standard 805. It contains

More information

EE6502- MICROPROCESSOR AND MICROCONTROLLER

EE6502- MICROPROCESSOR AND MICROCONTROLLER . EE6502- MICROPROCESSOR AND MICROCONTROLLER UNIT III - 8051 MICROCONTROLLER PART - A 1. What is Microcontroller? A device which contains the microprocessor with integrated peripherals like memory, serial

More information

C8051 Legacy-Speed 8-Bit Processor Core

C8051 Legacy-Speed 8-Bit Processor Core C051 Legacy-Speed -Bit Processor Core General Description The C051 processor core is a single-chip, -bit microcontroller that executes all ASM51 instructions and has the same instruction set and timing

More information

8-Bit CMOS Microcontorller

8-Bit CMOS Microcontorller GMS97C1051 Features Compatible with MCS-51 TM Products 1 Kbytes of programmable EPROM 4.25V to 5.5V Operating Range Version for 12MHz / 24 MHz Operating frequency Two-Level Program Memory Lock with encryption

More information

The Timers/Counters The Serial Interface The Interrupt System Reset P0.0-P0.7 P2.0-P2.7. Port 2 Drivers. Port 2 Latch

The Timers/Counters The Serial Interface The Interrupt System Reset P0.0-P0.7 P2.0-P2.7. Port 2 Drivers. Port 2 Latch HARDWARE DESCRIPTION This chapter provides a detailed description of the 80C51 microcontroller (see Figure 1). Included in this description are: The port drivers and how they function both as ports and,

More information

TK89C668 Microcontroller 64K Flash, 8K RAM, TWI

TK89C668 Microcontroller 64K Flash, 8K RAM, TWI TK89C668 Microcontroller 64K Flash, 8K RAM, TWI DS5 (V.4) May 2, 27 Product Overview Features General Description o o o o o o o o o o o o o o o o o o o o o 8 Bit Microcomputer with 85 architecture Fully

More information