Zynq-7000 All Programmable SoC Product Overview

Size: px
Start display at page:

Download "Zynq-7000 All Programmable SoC Product Overview"

Transcription

1 Zynq-7000 All Programmable SoC Product Overview The SW, HW and IO Programmable Platform August 2012 Copyright Xilinx

2 Introducing the Zynq All Programmable SoC Breakthrough Processing Platform Higher system performance, lower total power Flexible and scalable solution Industry Standard Design Environments Well defined SW programming model Familiar SW & HW design flows Flexible Accelerators and IP World class 28nm unified Programmable Logic Standard AMBA 4 AXI interfaces Broad Ecosystem Support Tools, OS s & IPs Middleware, codecs System integrators and training partners. Familiar Processing System + Scalable Programmable Logic Page 2

3 Value of the Zynq-7000 All Programmable SoC Next level of Programmable System Integration All programmable (Hardware and Software) processing platform ARM Cortex -A9 MPCore Processing System with hardened peripherals, ADC and 28nm scalable optimized programmable logic Increased System Performance 1 GHz, dual core processors with NEON and vector floating point units 7 series programmable logic (PL) with built-in DSP High bandwidth, low latency connects enable acceleration of key functions BOM Cost Advantage in an cost optimized 28nm platform Integration for component reduction, PCB simplification and area reduction Platform approach enables aggregation of volumes over several projects Low Total Power solution Industry-leading ARM processors maximize MHz/W and low power states 28nm HPL process and Integration provides ultra-lower power data transfers Software and Hardware programmable power control and operating modes Accelerated Design Productivity for TTM and TIM advantage Industry standard HW and SW development tools for fast Time-To-Market Flexible and scalable platform enables extended Time-In-Market Extensive ecosystem of tools and solutions partners Page 3

4 Zynq-7000 Family Highlights Complete ARM -based Processing System Dual ARM Cortex -A9 MPCore, processor centric Integrated memory controllers & peripherals Fully autonomous to the Programmable Logic Processing System Memory Interfaces 7 Series Programmable Logic Tightly Integrated Programmable Logic Used to extend Processing System Common Peripherals ARM Dual Cortex-A9 MPCore System Common Peripherals Custom Peripherals High performance ARM AXI interfaces Scalable density and performance Common Accelerators Custom Accelerators Flexible Array of I/O Wide range of external multi-standard I/O High performance integrated serial transceivers Analog-to-Digital Converter inputs Software & Hardware & IO Programmable Page 4

5 Complete ARM-based Processing System Processor Core Complex Dual ARM Cortex-A9 MPCore with NEON extensions Single / Double Precision Floating Point support Up to 1 GHz operation High BW Memory Internal L1 Cache 32KB/32KB (per Core) L2 Cache 512KB Unified On-Chip Memory of 256KB Integrated Memory Controllers (DDR3, DDR2, LPDDR2, 2xQSPI, NOR, NAND Flash) Integrated Memory Mapped Peripherals 2x USB 2.0 (OTG) w/dma 2x Tri-mode Gigabit Ethernet w/dma 2x SD/SDIO w/dma 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 32b GPIO AMBA Open Standard Interconnect High bandwidth interconnect between Processing System and Programmable Logic ACP port for enhanced hardware acceleration and cache coherency for additional soft processors Processing System Ready to Program Page 5

6 Powerful Application Processor at Heart The Application Processor Unit (APU) Dual ARM Cortex-A9 MPCore with NEON extensions Up to 1 GHz operation (7030 & 7045) 2.5 DMIPS/MHz per core Multi-issue (up to 4), Out-of-order, Speculative Separate 32KB Instruction and Data Caches with Parity Snoop Control Unit L1 Cache Snoop Control Snoop filtering monitors cache traffic Accelerator Coherency Port Level 2 Cache and Controller Shared 512 KB Cache with parity Lockable NEON / FPU Engine MI Cortex -A9 MPCore O 32/32 KB I/D Caches 512KB L2 Cache Snoop Control Unit On-Chip Memory (OCM) Dual-ported 256KB Low-latency CPU access NEON / FPU Engine Cortex -A9 MPCore 32/32 KB I/D Caches 256 KB OCM Interrupt Controller, Timers, DMA, Debug, etc. Accessible by DMAs, Programmable Logic, etc. Page 6

7 Processing System External Memories Built-in Controllers and dedicated DDR Pins DDR controller DDR3, DDR2, and LPDDR2 16 bit or 32 bit wide; ECC on 16 bit up to DDR1333 up to DDR800 up to DDR dedicated DDR pins NAND Controller ECC 8 bit or 16 bit data widths NOR/SRAM Controller 8 bit data width Quad SPI (QSPI) Controller To MIO Up to 2 QSPI parallel memories for highspeed boot and configuration NAND CTRL From Central Interconnect 2 Chip Selects NOR /SRAM CTRL APU QSPI CTRL DDR Controller From L2 Cache Controller 32 bit 16 bit 4 x 8 bit 2 x 8 bit 2 x 16 bit 1 x 16 bit 1x 32bit NA 2 Dedicated to Programmable Logic Legend Arrow direction shows control, Data flows both directions AXI3 64 bit / APB 32 bit Page 7

8 Comprehensive set of Built-in Peripherals Enabling a wide set of IO functions Two USB 2.0 OTG/Device/Host Two Tri- Mode GigE (10/100/1000) Two SD/SDIO interfaces Two CAN 2.0B, SPI, I2C, UART Four GPIO 32bit Blocks Multiplexed Input/Output (MIO) Multiplexed output of peripheral and static memories Two I/O Banks: each selectable - 1.8V, 2.5V or 3.3V Configured using new feature in XPS Extended MIO Enables use of Select IO with PS peripherals 54 I/O MUX 2x SPI 2x I2C 2x CAN 2x UART GPIO 2x SD/SDIO with DMA 2x USB with DMA 2x GigE with DMA Static Memory Controllers Extended MIO Page 8

9 Peripherals Programmable Logic to Memory Primary System Interconnects Maximizing Data Transfers Programmable Logic to Memory 2 Ports to DDR Controller 1 Port to OCM SRAM Central Interconnect Crossbar switches for high bandwidth communications Processing System Master Ports 2x 32b AXI Ports from Processing System to Programmable Logic Connects CPU Block to Common Peripherals, through the Central Interconnect Processing System Slave Ports 2x 32b AXI Ports from Programmable Logic to Processing System ACP (Accelerator Coherence Port) Low-latency cache-coherent port for programmable logic Enables application-specific customizations with a standard programming model Page 9 NAND, NOR/SRAM, QSPI Controllers... Legend Configurable AXI3 32 bit/64 bit AXI3 64 bit / AXI3 32 bit / AHB 32 bit / APB 32 bit DMA L2 Cache APU OCM Central Interconnect DDR Controller OCM Master/Slave AXI Interfaces to Programmable Logic ACP Arrow direction shows control, Data flows both directions

10 Tightly Integrated Programmable Logic Built with State-of-the-art 7 Series Programmable Logic Artix-7 & Kintex-7 FPGA Fabric 28K-350K logic cells 430K-5.2M equivalent ASIC gates Over 3000 Internal Interconnects Up to ~100Gb of BW Memory-mapped interfaces Note: ASIC equivalent gates based on analysis over broad range of designs Integrated Analog Capability Dual multi channel 12-bit A/D converter Up to 1Msps Enables Massive Parallel Processing Up to 900 DSP blocks delivering over 1334 GMACs Scalable Density and Performance Page 10

11 Flexible External I/O 54 Dedicated Peripheral I/Os Supports integrated peripherals Static memory (NAND, NOR, QSPI) More I/Os available though the Programmable Logic 73 Dedicated Memory I/Os DDR3 / DDR2 / LPDDR2 Memory Interfaces Configurable as 16bit or 32bit Over 350 Multi-Standard and High Performance I/O Up to V capable multi-standard I/O Up to 150 high performance I/O Up to differential 17 ADC inputs High Performance Integrated Serial Tranceivers (Two largest devices only) Up to 16 transceivers Operates up to 12.5Gbs Supports popular protocols Integrated PCIe Gen2 block Flexibility Beyond Any Standard Processing Offering Page 11

12 I/O Programmable Logic Processing System Zynq-7000 Device Portfolio Summary Scalable platform offers easy migration between devices Zynq-7000 AP SoC Devices Z-7010 Z-7020 Z-7030 Z-7045 Processor Core Dual ARM Cortex -A9 MPCore Processor Extensions NEON & Single / Double Precision Floating Point Max Frequency 800 MHz 1 GHz Memory External Memory Support Peripherals L1 Cache 32KB I / D, L2 Cache 512KB, on-chip Memory 256KB DDR3, DDR2, LPDDR2, 2x QSPI, NAND, NOR 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO Approximate ASIC Gates ~430K (30k LC) ~1.3M (85k LC) ~1.9M (125k LC) ~5.2M (350k LC) Block RAM 240KB 560KB 1,060KB 2,180KB Peak DSP Performance (Symmetric FIR) 100 GMACS 276 GMACS 593 GMACS 1334 GMACS PCI Express (Root Complex or Endpoint) - Gen2 x4 Gen2 x8 Agile Mixed Signal (XADC) 2x 12bit 1Msps A/D Converter Processor System IO 130 Multi Standards 3.3V IO Multi Standards High Performance 1.8V IO Multi Gigabit Transceivers Page 12

13 BOM Cost BOM Cost Reduction Reduced Devices per Board Processors, PLDs, DSPs A/D converters Power supplies, fans, etc Reduced PCB Complexity Fewer traces/interconnect/layers Fewer power supplies Smaller overall PCB In-System Reconfiguration Combines Multiple Device Functions Reconfigureable programmable logic to provide specific functionality at a given time PS Aggregates Numerous IP Royalties for Net Cost Benefit FPGA PCB / Other Components ASIC or full FPGA solutions would require purchase of these IPs from 3 rd parties. DSP Processor Multi-chip Up to 40% BOM Cost Reduction vs. Multi- Chip Solutions AP SoC Zynq-7000 Platform approach enables higher volumes and lower prices

14 Total Power Reduction Flexible/Tunable Power Envelope Adjustable processor speed Adjustable ARM AMBA - AXI & memory speeds ARM low power states Programmable logic can be turned off Programmable logic clock gating Partial reconfiguration to reduce Programmable logic requirement Integration Power Reduction Reduced interconnections between devices Fewer system devices Lower programmable logic power (28nm HPL process) FPGA DSP Processor Multi-chip Up to 50% Lower Power Vs. Multi-Chip Solutions AP SoC Zynq-7000 Significant Power Reduction at the System Level

15 Accelerated Design Productivity Reduced Time To Market Fixed processor system with large set of built in peripherals Xilinx standardizing on AMBA-4 AXI enhances portability of IPs Scalable optimized architecture for IP re-use; AXI interfaces for plug & play IP Accelerate development with targeted design platforms Increased Time In Market ASIC / ASSP / 2 Chip Dev. Design #1 Dev. Design #2 Software and hardware re-programmability Dev. Design #3 Field upgradable Address Processor/ASSPs short shelf life AP SoC Dev. Platform #1 Dev. Dev. Extended Product life Platform Approach Enables Horizontal and Vertical Scalability

16 Zynq-7000 AP SoC Applications Mapping Page 16

17 Device Table Copyright Xilinx

18 Zynq-7000 Device Table Processing System Processing System Part Number Processor Core Processor Extensions Maximum Frequency L1 Cache L2 Cache On-Chip Memory External Memory Support (5) External Static Memory Support (5) DMA Channels Peripherals Peripherals w / built-in DMA (5) Security (1) Processing System to Programmable Logic Interface Ports (Primary Interfaces & Interrupts Only) Zynq All Programmable SoC Device Name Z-7010 Z-7020 Z-7030 Z-7045 XC7Z010 XC7Z020 XC7Z030 XC7Z045 Dual ARM Cortex -A9 MPCore w ith CoreSight NEON & Single / Double Precision Floating Point for each processor 800 MHz 1 GHz 32 KB Instruction, 32 KB Data per processor 512 KB 256 KB DDR3, DDR2, LPDDR2 2x Quad-SPI, NAND, NOR 8 (4 dedicated to Programmable Logic) 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO AES and SHA 256b Decryption and Authentication for Secure Boot 2x AXI 32b Master, 2x AXI 32b Slave, 4x AXI 64b/32b Memory See next slide for Programmable Logic and package details Page 18

19 Zynq-7000 Device Table Programmable Logic and Packages Programmable Logic Speed Grades Device Name Part Number Xilinx 7 Series Programmable Logic Equivalent Programmable Logic Cells (Approximate ASIC Gates (3) ) Look-Up Tables (LUTs) Flip-Flops Extensible Block RAM (# 36 Kb Blocks) Programmable DSP Slices (18x25 MACCs) Peak DSP Performance (Symmetric FIR) PCI Express (Root Complex or Endpoint) Agile Mixed Signal (AMS) / XADC (5) Security (1) Commercial (0C to 85C) Extended (0C to 100C) Industrial (-40C to 100C) Zynq All Programmable SoC Z-7010 Z-7020 Z-7030 Z-7045 XC7Z010 XC7Z020 XC7Z030 XC7Z045 Artix -7 FPGA Artix -7 FPGA Kintex -7 FPGA Kintex -7 FPGA 28K Logic Cells (~430K) 85K Logic Cells (~1.3M) 125K Logic Cells (~1.9M) 350K Logic Cells (~5.2M) 17,600 53,200 78, GMACS 276 GMACS 593 GMACS 1334 GMACS Gen2 x4 Gen2 x8 2x 12 bit, MSPS ADCs w ith up to 17 Differential Inputs AES and SHA 256b Decryption and Authentication for Secure Programmable Logic Configuration Package Type (4) CLG225 (5) CLG400 CLG400 CLG484 FBG484 FBG676 FFG676 FBG676 FFG676 FFG900 Size (mm) 13x13 17x17 17x17 19x19 23x23 27x27 27x27 27x27 27x27 31x31 Pitch (mm) Processing System User I/Os (Excludes DDR dedicated I/Os) (2) Packages Multi-Standards and Multi-Voltage SelectIO TM Interfaces (1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V) Multi-Standards and Multi-Voltage High Performance SelectIO Interfaces (1.2V, 1.35V, 1.5V, 1.8V) Serial Transceivers Maximum Transceiver Speed (Speedgrade Dependant) N/A N/A N/A N/A 6.6 Gb/s 6.6 Gb/s 12.5 Gb/s 6.6 Gb/s 12.5 Gb/s 12.5 Gb/s -1-2, -3-1, ,600 35, , , , KB (60) 560 KB (140) 1,060 KB (265) 2,180 KB (545) Notes: 1. Security block is shared by the Processing System and the Programmable Logic. 2. Static memory interface combined w ith the usage of many peripherals could require more than 54 I/Os. In that case the designer can use the Programmable Logic SelectIO interface. 3. Eqivalent ASIC gate count is dependent of the function implemented. The assumption is 1 Logic Cell = ~15 ASIC Gates. 4. Devices in the same package are pin to pin compatible, FBG676 and FFG676 are also pin to pin compatible 5. Z-7010 in CLG225 has restrictions on PS peripherals, Memory interfaces and I/Os. Please refer to the datasheet for more details 6. Preliminary product information. Subject to change. Please contact your Xilinx representative for the latest information Page 19

A Generation Ahead Designing Advanced Embedded Systems with Xilinx Zynq All Programmable SoCs

A Generation Ahead Designing Advanced Embedded Systems with Xilinx Zynq All Programmable SoCs A Generation Ahead Designing Advanced Embedded Systems with Xilinx Zynq All Programmable SoCs 김혁 Embedded Processor Specialist, Xilinx 1 st - Oct, 2013 Market Challenges for Embedded Solutions Integrating

More information

Zynq Architecture, PS (ARM) and PL

Zynq Architecture, PS (ARM) and PL , PS (ARM) and PL Joint ICTP-IAEA School on Hybrid Reconfigurable Devices for Scientific Instrumentation Trieste, 1-5 June 2015 Fernando Rincón Fernando.rincon@uclm.es 1 Contents Zynq All Programmable

More information

Copyright 2016 Xilinx

Copyright 2016 Xilinx Zynq Architecture Zynq Vivado 2015.4 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Identify the basic building

More information

Zynq AP SoC Family

Zynq AP SoC Family Programmable Logic (PL) Processing System (PS) Zynq -7000 AP SoC Family Cost-Optimized Devices Mid-Range Devices Device Name Z-7007S Z-7012S Z-7014S Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100 Part

More information

Copyright 2017 Xilinx.

Copyright 2017 Xilinx. All Programmable Automotive SoC Comparison XA Zynq UltraScale+ MPSoC ZU2/3EG, ZU4/5EV Devices XA Zynq -7000 SoC Z-7010/7020/7030 Devices Application Processor Real-Time Processor Quad-core ARM Cortex -A53

More information

MYC-C7Z010/20 CPU Module

MYC-C7Z010/20 CPU Module MYC-C7Z010/20 CPU Module - 667MHz Xilinx XC7Z010/20 Dual-core ARM Cortex-A9 Processor with Xilinx 7-series FPGA logic - 1GB DDR3 SDRAM (2 x 512MB, 32-bit), 4GB emmc, 32MB QSPI Flash - On-board Gigabit

More information

THE FIRST GENERATION OF EXTENSIBLE PROCESSING PLATFORMS: A NEW LEVEL OF PERFORMANCE, FLEXIBILITY AND SCALABILITY

THE FIRST GENERATION OF EXTENSIBLE PROCESSING PLATFORMS: A NEW LEVEL OF PERFORMANCE, FLEXIBILITY AND SCALABILITY PROCESSOR-CENTRIC EXTENSIBLE PLATFORMS FOR POWERFUL, SCALABLE, COST-EFFICIENT EMBEDDED DESIGNS THE FIRST GENERATION OF S: A NEW LEVEL OF PERFORMANCE, FLEXIBILITY AND SCALABILITY Embedded Systems Challenges

More information

SoC Platforms and CPU Cores

SoC Platforms and CPU Cores SoC Platforms and CPU Cores COE838: Systems on Chip Design http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University

More information

MYD-C7Z010/20 Development Board

MYD-C7Z010/20 Development Board MYD-C7Z010/20 Development Board MYC-C7Z010/20 CPU Module as Controller Board Two 0.8mm pitch 140-pin Connectors for Board-to-Board Connections 667MHz Xilinx XC7Z010/20 Dual-core ARM Cortex-A9 Processor

More information

Design Choices for FPGA-based SoCs When Adding a SATA Storage }

Design Choices for FPGA-based SoCs When Adding a SATA Storage } U4 U7 U7 Q D U5 Q D Design Choices for FPGA-based SoCs When Adding a SATA Storage } Lorenz Kolb & Endric Schubert, Missing Link Electronics Rudolf Usselmann, ASICS World Services Motivation for SATA Storage

More information

SoC FPGAs. Your User-Customizable System on Chip Altera Corporation Public

SoC FPGAs. Your User-Customizable System on Chip Altera Corporation Public SoC FPGAs Your User-Customizable System on Chip Embedded Developers Needs Low High Increase system performance Reduce system power Reduce board size Reduce system cost 2 Providing the Best of Both Worlds

More information

Zynq-7000 All Programmable SoC Data Sheet: Overview

Zynq-7000 All Programmable SoC Data Sheet: Overview Zynq-7000 All Programmable SoC Data Sheet: Overview Product Specification Zynq-7000 All Programmable SoC First Generation Architecture The Zynq -7000 family is based on the Xilinx All Programmable SoC

More information

Zynq-7000 Extensible Processing Platform Overview

Zynq-7000 Extensible Processing Platform Overview Advance Product Specification Zynq-7000 Extensible Processing Platform (EPP) First Generation Architecture The Zynq -7000 family is based on the Xilinx Extensible Processing Platform (EPP) architecture.

More information

Defense-grade Zynq-7000Q SoC Data Sheet: Overview

Defense-grade Zynq-7000Q SoC Data Sheet: Overview Defense-grade Zynq-7000Q SoC Data Sheet: Overview Product Specification Defense-grade Zynq-7000Q SoC First Generation Architecture The Defense-grade Zynq -7000Q family is based on the Xilinx SoC architecture.

More information

Introduction to Embedded System Design using Zynq

Introduction to Embedded System Design using Zynq Introduction to Embedded System Design using Zynq Zynq Vivado 2015.2 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able

More information

S2C K7 Prodigy Logic Module Series

S2C K7 Prodigy Logic Module Series S2C K7 Prodigy Logic Module Series Low-Cost Fifth Generation Rapid FPGA-based Prototyping Hardware The S2C K7 Prodigy Logic Module is equipped with one Xilinx Kintex-7 XC7K410T or XC7K325T FPGA device

More information

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part1

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part1 ARM Cortex-A9 ARM v7-a A programmer s perspective Part1 ARM: Advanced RISC Machine First appeared in 1985 as Acorn RISC Machine from Acorn Computers in Manchester England Limited success outcompeted by

More information

XMC-ZU1. XMC Module Xilinx Zynq UltraScale+ MPSoC. Overview. Key Features. Typical Applications

XMC-ZU1. XMC Module Xilinx Zynq UltraScale+ MPSoC. Overview. Key Features. Typical Applications XMC-ZU1 XMC Module Xilinx Zynq UltraScale+ MPSoC Overview PanaTeQ s XMC-ZU1 is a XMC module based on the Zynq UltraScale+ MultiProcessor SoC device from Xilinx. The Zynq UltraScale+ integrates a Quad-core

More information

XMC-RFSOC-A. XMC Module Xilinx Zynq UltraScale+ RFSOC. Overview. Key Features. Typical Applications. Advanced Information Subject To Change

XMC-RFSOC-A. XMC Module Xilinx Zynq UltraScale+ RFSOC. Overview. Key Features. Typical Applications. Advanced Information Subject To Change Advanced Information Subject To Change XMC-RFSOC-A XMC Module Xilinx Zynq UltraScale+ RFSOC Overview PanaTeQ s XMC-RFSOC-A is a XMC module based on the Zynq UltraScale+ RFSoC device from Xilinx. The Zynq

More information

Designing a Multi-Processor based system with FPGAs

Designing a Multi-Processor based system with FPGAs Designing a Multi-Processor based system with FPGAs BRINGING BRINGING YOU YOU THE THE NEXT NEXT LEVEL LEVEL IN IN EMBEDDED EMBEDDED DEVELOPMENT DEVELOPMENT Frank de Bont Trainer / Consultant Cereslaan

More information

Introduction to Sitara AM437x Processors

Introduction to Sitara AM437x Processors Introduction to Sitara AM437x Processors AM437x: Highly integrated, scalable platform with enhanced industrial communications and security AM4376 AM4378 Software Key Features AM4372 AM4377 High-performance

More information

XMC-SDR-A. XMC Zynq MPSoC + Dual ADRV9009 module. Preliminary Information Subject To Change. Overview. Key Features. Typical Applications

XMC-SDR-A. XMC Zynq MPSoC + Dual ADRV9009 module. Preliminary Information Subject To Change. Overview. Key Features. Typical Applications Preliminary Information Subject To Change XMC-SDR-A XMC Zynq MPSoC + Dual ADRV9009 module Overview PanaTeQ s XMC-SDR-A is a XMC module based on the Zynq UltraScale+ MultiProcessor SoC device from Xilinx

More information

Copyright 2014 Xilinx

Copyright 2014 Xilinx IP Integrator and Embedded System Design Flow Zynq Vivado 2014.2 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able

More information

Offloading Collective Operations to Programmable Logic

Offloading Collective Operations to Programmable Logic Offloading Collective Operations to Programmable Logic Martin Swany (With thanks to Omer Arap) Center for Research in Extreme Scale Computing (CREST) Department of Intelligent Systems Engineering Indiana

More information

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx High Capacity and High Performance 20nm FPGAs Steve Young, Dinesh Gaitonde August 2014 Not a Complete Product Overview Page 2 Outline Page 3 Petabytes per month Increasing Bandwidth Global IP Traffic Growth

More information

Beyond Moore. Beyond Programmable Logic.

Beyond Moore. Beyond Programmable Logic. Beyond Moore Beyond Programmable Logic Steve Trimberger Xilinx Research FPL 30 August 2012 Beyond Moore Beyond Programmable Logic Agenda What is happening in semiconductor technology? Moore s Law More

More information

Ettus Research Update

Ettus Research Update Ettus Research Update Matt Ettus Ettus Research GRCon13 Outline 1 Introduction 2 Recent New Products 3 Third Generation Introduction Who am I? Core GNU Radio contributor since 2001 Designed

More information

Hardware Specification. Figure 1-2 ZYNQ-7000 Device Family 2 / 9

Hardware Specification. Figure 1-2 ZYNQ-7000 Device Family 2 / 9 Z-turn Board 667MHz Xilinx XC7Z010/20 Dual-core ARM Cortex-A9 Processor with Xilinx 7-series FPGA logic 1GB DDR3 SDRAM (2 x 512MB, 32-bit), 16MB SPI Flash USB_UART, USB2.0 OTG, 1 x 10/100/1000Mbps Ethernet,

More information

Product Series SoC Solutions Product Series 2016

Product Series SoC Solutions Product Series 2016 Product Series Why SPI? or We will discuss why Serial Flash chips are used in many products. What are the advantages and some of the disadvantages. We will explore how SoC Solutions SPI and QSPI IP Cores

More information

Simplify System Complexity

Simplify System Complexity Simplify System Complexity With the new high-performance CompactRIO controller Fanie Coetzer Field Sales Engineer Northern South Africa 2 3 New control system CompactPCI MMI/Sequencing/Logging FieldPoint

More information

STM32F7 series ARM Cortex -M7 powered Releasing your creativity

STM32F7 series ARM Cortex -M7 powered Releasing your creativity STM32F7 series ARM Cortex -M7 powered Releasing your creativity STM32 high performance Very high performance 32-bit MCU with DSP and FPU The STM32F7 with its ARM Cortex -M7 core is the smartest MCU and

More information

Cost-Optimized Backgrounder

Cost-Optimized Backgrounder Cost-Optimized Backgrounder A Cost-Optimized FPGA & SoC Portfolio for Part or All of Your System Optimizing a system for cost requires analysis of every silicon device on the board, particularly the high

More information

Simplify System Complexity

Simplify System Complexity 1 2 Simplify System Complexity With the new high-performance CompactRIO controller Arun Veeramani Senior Program Manager National Instruments NI CompactRIO The Worlds Only Software Designed Controller

More information

UltraScale Architecture and Product Overview

UltraScale Architecture and Product Overview General Description Xilinx UltraScale architecture comprises high-performance FPGA and MPSoC families that address a vast spectrum of system requirements with a focus on lowering total power consumption

More information

CoreTile Express for Cortex-A5

CoreTile Express for Cortex-A5 CoreTile Express for Cortex-A5 For the Versatile Express Family The Versatile Express family development boards provide an excellent environment for prototyping the next generation of system-on-chip designs.

More information

Military Grade SmartFusion Customizable System-on-Chip (csoc)

Military Grade SmartFusion Customizable System-on-Chip (csoc) Military Grade SmartFusion Customizable System-on-Chip (csoc) Product Benefits 100% Military Temperature Tested and Qualified from 55 C to 125 C Not Susceptible to Neutron-Induced Configuration Loss Microcontroller

More information

«Real Time Embedded systems» Cyclone V SOC - FPGA

«Real Time Embedded systems» Cyclone V SOC - FPGA «Real Time Embedded systems» Cyclone V SOC - FPGA Ref: http://www.altera.com rene.beuchat@epfl.ch LAP/ISIM/IC/EPFL Chargé de cours rene.beuchat@hesge.ch LSN/hepia Prof. HES 1 SOC + FPGA (ex. Cyclone V,

More information

1. Overview for the Arria V Device Family

1. Overview for the Arria V Device Family 1. Overview for the Arria V Device Family December 2011 AV51001-1.2 AV51001-1.2 Built on the 28-nm low-power process technology, Arria V devices offer the lowest power and lowest system cost for mainstream

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

How to Efficiently Implement Flexible and Full-Featured Digital Radio Solutions Using All Programmable SoCs

How to Efficiently Implement Flexible and Full-Featured Digital Radio Solutions Using All Programmable SoCs Delivering a Generation Ahead How to Efficiently Implement Flexible and Full-Featured Digital Radio Solutions Using All Programmable SoCs Agenda Introduction to Mobile Network Introduction to Xilinx Solution

More information

Vivado Design Suite User Guide: Embedded Processor Hardware Design

Vivado Design Suite User Guide: Embedded Processor Hardware Design Vivado Design Suite User Guide: Embedded Processor Hardware Design Notice of Disclaimer The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx

More information

Midterm Exam. Solutions

Midterm Exam. Solutions Midterm Exam Solutions Problem 1 List at least 3 advantages of implementing selected portions of a complex design in software Software vs. Hardware Trade-offs Improve Performance Improve Energy Efficiency

More information

MYC-C7Z010/20 CPU Module

MYC-C7Z010/20 CPU Module MYC-C7Z010/20 CPU Module - 667MHz Xilinx XC7Z010/20 Dual-core ARM Cortex-A9 Processor with Xilinx 7-series FPGA logic - 1GB DDR3 SDRAM (2 x 512MB, 32-bit), 4GB emmc, 32MB QSPI Flash - On-board Gigabit

More information

Bringing the benefits of Cortex-M processors to FPGA

Bringing the benefits of Cortex-M processors to FPGA Bringing the benefits of Cortex-M processors to FPGA Presented By Phillip Burr Senior Product Marketing Manager Simon George Director, Product & Technical Marketing System Software and SoC Solutions Agenda

More information

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013 A Closer Look at the Epiphany IV 28nm 64 core Coprocessor Andreas Olofsson PEGPUM 2013 1 Adapteva Achieves 3 World Firsts 1. First processor company to reach 50 GFLOPS/W 3. First semiconductor company

More information

VPX3-ZU1. 3U OpenVPX Module Xilinx Zynq UltraScale+ MPSoC with FMC HPC Site. Overview. Key Features. Typical Applications

VPX3-ZU1. 3U OpenVPX Module Xilinx Zynq UltraScale+ MPSoC with FMC HPC Site. Overview. Key Features. Typical Applications VPX3-ZU1 3U OpenVPX Module Xilinx Zynq UltraScale+ MPSoC with FMC HPC Site Overview PanaTeQ s VPX3-ZU1 is a 3U OpenVPX module based on the Zynq UltraScale+ MultiProcessor SoC device from Xilinx. The Zynq

More information

Xynergy It really makes the difference!

Xynergy It really makes the difference! Xynergy It really makes the difference! STM32F217 meets XILINX Spartan-6 Why Xynergy? Very easy: There is a clear Synergy achieved by combining the last generation of the most popular ARM Cortex-M3 implementation

More information

Product Technical Brief S3C2416 May 2008

Product Technical Brief S3C2416 May 2008 Product Technical Brief S3C2416 May 2008 Overview SAMSUNG's S3C2416 is a 32/16-bit RISC cost-effective, low power, high performance micro-processor solution for general applications including the GPS Navigation

More information

VPX3-ZU1. 3U OpenVPX Module Xilinx Zynq UltraScale+ MPSoC with FMC HPC Site. Overview. Key Features. Typical Applications

VPX3-ZU1. 3U OpenVPX Module Xilinx Zynq UltraScale+ MPSoC with FMC HPC Site. Overview. Key Features. Typical Applications VPX3-ZU1 3U OpenVPX Module Xilinx Zynq UltraScale+ MPSoC with FMC HPC Site Overview PanaTeQ s VPX3-ZU1 is a 3U OpenVPX module based on the Zynq UltraScale+ MultiProcessor SoC device from Xilinx. The Zynq

More information

The S6000 Family of Processors

The S6000 Family of Processors The S6000 Family of Processors Today s Design Challenges The advent of software configurable processors In recent years, the widespread adoption of digital technologies has revolutionized the way in which

More information

Designing with ALTERA SoC Hardware

Designing with ALTERA SoC Hardware Designing with ALTERA SoC Hardware Course Description This course provides all theoretical and practical know-how to design ALTERA SoC devices under Quartus II software. The course combines 60% theory

More information

UltraScale Architecture and Product Data Sheet: Overview

UltraScale Architecture and Product Data Sheet: Overview General Description Xilinx UltraScale architecture comprises high-performance FPGA, MPSoC, and RFSoC families that address a vast spectrum of system requirements with a focus on lowering total power consumption

More information

Mike Mitchell DSP Specialist, Austin, TX

Mike Mitchell DSP Specialist, Austin, TX Zynq for Video Applications Mike Mitchell DSP Specialist, Austin, TX Serial vs. Parallel DSP Processing Standard DSP Processor ALU Sequential (Generic DSP) Data In Data In FPGA - Fully Parallel Implementation

More information

All Programmable: from Silicon to System

All Programmable: from Silicon to System All Programmable: from Silicon to System Ivo Bolsens, Senior Vice President & CTO Page 1 Moore s Law: The Technology Pipeline Page 2 Industry Debates Variability Page 3 Industry Debates on Cost Page 4

More information

The ARM Cortex-A9 Processors

The ARM Cortex-A9 Processors The ARM Cortex-A9 Processors This whitepaper describes the details of the latest high performance processor design within the common ARM Cortex applications profile ARM Cortex-A9 MPCore processor: A multicore

More information

FPGA memory performance

FPGA memory performance FPGA memory performance Sensor to Image GmbH Lechtorstrasse 20 D 86956 Schongau Website: www.sensor-to-image.de Email: email@sensor-to-image.de Sensor to Image GmbH Company Founded 1989 and privately owned

More information

Introduction to ASIC Design

Introduction to ASIC Design Introduction to ASIC Design Victor P. Nelson ELEC 5250/6250 CAD of Digital ICs Design & implementation of ASICs Oops Not these! Application-Specific Integrated Circuit (ASIC) Developed for a specific application

More information

Effective System Design with ARM System IP

Effective System Design with ARM System IP Effective System Design with ARM System IP Mentor Technical Forum 2009 Serge Poublan Product Marketing Manager ARM 1 Higher level of integration WiFi Platform OS Graphic 13 days standby Bluetooth MP3 Camera

More information

Building blocks for 64-bit Systems Development of System IP in ARM

Building blocks for 64-bit Systems Development of System IP in ARM Building blocks for 64-bit Systems Development of System IP in ARM Research seminar @ University of York January 2015 Stuart Kenny stuart.kenny@arm.com 1 2 64-bit Mobile Devices The Mobile Consumer Expects

More information

Does FPGA-based prototyping really have to be this difficult?

Does FPGA-based prototyping really have to be this difficult? Does FPGA-based prototyping really have to be this difficult? Embedded Conference Finland Andrew Marshall May 2017 What is FPGA-Based Prototyping? Primary platform for pre-silicon software development

More information

FPGA Entering the Era of the All Programmable SoC

FPGA Entering the Era of the All Programmable SoC FPGA Entering the Era of the All Programmable SoC Ivo Bolsens, Senior Vice President & CTO Page 1 Moore s Law: The Technology Pipeline Page 2 Industry Debates on Cost Page 3 Design Cost Estimated Chip

More information

Field Programmable Gate Array (FPGA) Devices

Field Programmable Gate Array (FPGA) Devices Field Programmable Gate Array (FPGA) Devices 1 Contents Altera FPGAs and CPLDs CPLDs FPGAs with embedded processors ACEX FPGAs Cyclone I,II FPGAs APEX FPGAs Stratix FPGAs Stratix II,III FPGAs Xilinx FPGAs

More information

SYSTEMS ON CHIP (SOC) FOR EMBEDDED APPLICATIONS

SYSTEMS ON CHIP (SOC) FOR EMBEDDED APPLICATIONS SYSTEMS ON CHIP (SOC) FOR EMBEDDED APPLICATIONS Embedded System System Set of components needed to perform a function Hardware + software +. Embedded Main function not computing Usually not autonomous

More information

Versal Architecture and Product Data Sheet: Overview

Versal Architecture and Product Data Sheet: Overview Versal Architecture and Product Data Sheet: Overview Advance Product Specification General Description Versal devices are the industry's first adaptive compute acceleration platforms (ACAP), combining

More information

LEON4: Fourth Generation of the LEON Processor

LEON4: Fourth Generation of the LEON Processor LEON4: Fourth Generation of the LEON Processor Magnus Själander, Sandi Habinc, and Jiri Gaisler Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden Tel +46 31 775 8650, Email: {magnus, sandi, jiri}@gaisler.com

More information

Cyclone V Device Overview

Cyclone V Device Overview Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents... 3 Key Advantages of Cyclone V Devices... 3 Summary of Cyclone V Features...4 Cyclone V Device Variants and Packages...

More information

Zynq Ultrascale+ Architecture

Zynq Ultrascale+ Architecture Zynq Ultrascale+ Architecture Stephanie Soldavini and Andrew Ramsey CMPE-550 Dec 2017 Soldavini, Ramsey (CMPE-550) Zynq Ultrascale+ Architecture Dec 2017 1 / 17 Agenda Heterogeneous Computing Zynq Ultrascale+

More information

Growth outside Cell Phone Applications

Growth outside Cell Phone Applications ARM Introduction Growth outside Cell Phone Applications ~1B units shipped into non-mobile applications Embedded segment now accounts for 13% of ARM shipments Automotive, microcontroller and smartcards

More information

Maximizing heterogeneous system performance with ARM interconnect and CCIX

Maximizing heterogeneous system performance with ARM interconnect and CCIX Maximizing heterogeneous system performance with ARM interconnect and CCIX Neil Parris, Director of product marketing Systems and software group, ARM Teratec June 2017 Intelligent flexible cloud to enable

More information

STM32F7 series ARM Cortex -M7 powered Releasing your creativity

STM32F7 series ARM Cortex -M7 powered Releasing your creativity STM32F7 series ARM Cortex -M7 powered Releasing your creativity STM32 high performance Very high performance 32-bit MCU with DSP and FPU The STM32F7 with its ARM Cortex -M7 core is the smartest MCU and

More information

DevKit7000 Evaluation Kit

DevKit7000 Evaluation Kit DevKit7000 Evaluation Kit Samsung S5PV210 Processor based on 1GHz ARM Cortex-A8 core Onboard 512MByte DDR2 and 512MByte NAND Flash 4 UART, 4 USB Host, USB Device, Ethernet, Audio, TF, RTC,... Supports

More information

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006 Product Technical Brief Rev 2.2, Apr. 2006 Overview SAMSUNG's is a Derivative product of S3C2410A. is designed to provide hand-held devices and general applications with cost-effective, low-power, and

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Introduction to FPGA design Rakesh Gangarajaiah Rakesh.gangarajaiah@eit.lth.se Slides from Chenxin Zhang and Steffan Malkowsky WWW.FPGA What is FPGA? Field

More information

Interconnects, Memory, GPIO

Interconnects, Memory, GPIO Interconnects, Memory, GPIO Dr. Francesco Conti f.conti@unibo.it Slide contributions adapted from STMicroelectronics and from Dr. Michele Magno, others Processor vs. MCU Pipeline Harvard architecture Separate

More information

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 S3C2440X is a derivative product of Samsung s S3C24XXX family of microprocessors for mobile communication market. The S3C2440X s main enhancement

More information

Midterm Exam. Solutions

Midterm Exam. Solutions Midterm Exam Solutions Problem 1 List at least 3 advantages of implementing selected portions of a design in hardware, and at least 3 advantages of implementing the remaining portions of the design in

More information

Hi3536 H.265 Decoder Processor. Brief Data Sheet. Issue 03. Date

Hi3536 H.265 Decoder Processor. Brief Data Sheet. Issue 03. Date Hi3536 H.265 Decoder Processor Brief Data Sheet Issue 03 Date 2015-04-19 . 2014. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior

More information

Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications

Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications Presentation at ADCSS 2010 MESA November 4 th, 2010 www.aeroflex.com/gaisler Presentation outline Microcontroller requirements

More information

Freescale i.mx6 Architecture

Freescale i.mx6 Architecture Freescale i.mx6 Architecture Course Description Freescale i.mx6 architecture is a 3 days Freescale official course. The course goes into great depth and provides all necessary know-how to develop software

More information

7-Series Architecture Overview

7-Series Architecture Overview 7-Series Architecture Overview Zynq Vivado 2013.2 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Describe the

More information

Chapter 5. Introduction ARM Cortex series

Chapter 5. Introduction ARM Cortex series Chapter 5 Introduction ARM Cortex series 5.1 ARM Cortex series variants 5.2 ARM Cortex A series 5.3 ARM Cortex R series 5.4 ARM Cortex M series 5.5 Comparison of Cortex M series with 8/16 bit MCUs 51 5.1

More information

Building High Performance, Power Efficient Cortex and Mali systems with ARM CoreLink. Robert Kaye

Building High Performance, Power Efficient Cortex and Mali systems with ARM CoreLink. Robert Kaye Building High Performance, Power Efficient Cortex and Mali systems with ARM CoreLink Robert Kaye 1 Agenda Once upon a time ARM designed systems Compute trends Bringing it all together with CoreLink 400

More information

MPGD dedicated HV system. MLAB ICTP Miramare (TS) MPGD-dedicated HV system TASK 6. These slides and its contents are for INTERNAL use only

MPGD dedicated HV system. MLAB ICTP Miramare (TS) MPGD-dedicated HV system TASK 6. These slides and its contents are for INTERNAL use only MPGD-dedicated HV system TASK 6 MPGD dedicated HV system TASK COORDINATOR: PARTICIPANTS: S. Levorato INFN Trieste MLAB ICTP Miramare (TS) These slides and its contents are for INTERNAL use only July 2018

More information

Cyclone V Device Overview

Cyclone V Device Overview 2014.10.06 CV-51001 Subscribe The Cyclone V devices are designed to simultaneously accommodate the shrinking power consumption, cost, and time-to-market requirements; and the increasing bandwidth requirements

More information

Each Milliwatt Matters

Each Milliwatt Matters Each Milliwatt Matters Ultra High Efficiency Application Processors Govind Wathan Product Manager, CPG ARM Tech Symposia China 2015 November 2015 Ultra High Efficiency Processors Used in Diverse Markets

More information

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA 18-545: FALL 2014 2 Admin stuff Project Proposals happen on Monday Be prepared to give an in-class presentation Lab 1 is

More information

STM32 Cortex-M3 STM32F STM32L STM32W

STM32 Cortex-M3 STM32F STM32L STM32W STM32 Cortex-M3 STM32F STM32L STM32W 01 01 STM32 Cortex-M3 introduction to family 1/2 STM32F combine high performance with first-class peripherals and lowpower, low-voltage operation. They offer the maximum

More information

New STM32WB Series MCU with Built-in BLE 5 and IEEE

New STM32WB Series MCU with Built-in BLE 5 and IEEE New STM32WB Series MCU with Built-in BLE 5 and IEEE 802.15.4 Make the Choice of STM32WB Series The 7 keys points to make the difference 2 Open 2.4 GHz radio Multi-protocol Dual-core / Full control Ultra-low-power

More information

IGLOO2 Evaluation Kit Webinar

IGLOO2 Evaluation Kit Webinar Power Matters. IGLOO2 Evaluation Kit Webinar Jamie Freed jamie.freed@microsemi.com August 29, 2013 Overview M2GL010T- FG484 $99* LPDDR 10/100/1G Ethernet SERDES SMAs USB UART Available Demos Small Form

More information

CMP Conference 20 th January Director of Business Development EMEA

CMP Conference 20 th January Director of Business Development EMEA CMP Conference 20 th January 2011 eric.lalardie@arm.com Director of Business Development EMEA +33 6 07 83 09 60 1 1 Unparalleled Applicability ARM Cortex Advanced Processors Architectural innovation, compatibility

More information

Designing with NXP i.mx8m SoC

Designing with NXP i.mx8m SoC Designing with NXP i.mx8m SoC Course Description Designing with NXP i.mx8m SoC is a 3 days deep dive training to the latest NXP application processor family. The first part of the course starts by overviewing

More information

MYC-C437X CPU Module

MYC-C437X CPU Module MYC-C437X CPU Module - Up to 1GHz TI AM437x Series ARM Cortex-A9 Processors - 512MB DDR3 SDRAM, 4GB emmc Flash, 32KB EEPROM - Gigabit Ethernet PHY - Power Management IC - Two 0.8mm pitch 100-pin Board-to-Board

More information

AT-501 Cortex-A5 System On Module Product Brief

AT-501 Cortex-A5 System On Module Product Brief AT-501 Cortex-A5 System On Module Product Brief 1. Scope The following document provides a brief description of the AT-501 System on Module (SOM) its features and ordering options. For more details please

More information

Embedded Systems: Architecture

Embedded Systems: Architecture Embedded Systems: Architecture Jinkyu Jeong (Jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ICE3028: Embedded Systems Design, Fall 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) EECE-474 Advanced VHDL and FPGA Design Lecture Field Programmable Gate Arrays (FPGAs) Cristinel Ababei Dept. of Electrical and Computer Engr. Marquette University Overview FPGA Devices ASIC vs. FPGA FPGA

More information

Avnet Zynq Mini Module Plus Embedded Design

Avnet Zynq Mini Module Plus Embedded Design Avnet Zynq Mini Module Plus Embedded Design Version 1.0 May 2014 1 Introduction This document describes a Zynq standalone OS embedded design implemented and tested on the Avnet Zynq Mini Module Plus. 2

More information

Protecting Embedded Systems from Zero-Day Attacks

Protecting Embedded Systems from Zero-Day Attacks Protecting Embedded Systems from Zero-Day Attacks Professor Stephen Taylor Thayer School of Engineering at Dartmouth stnh.email@icloud.com (603) 727-8945 MicroArx.com Apiotics.com 1 Research Support Current

More information

1. Overview for Cyclone V Device Family

1. Overview for Cyclone V Device Family 1. Overview for Cyclone V Device Family November 2011 CV-51001-1.1 CV-51001-1.1 Cyclone V devices are designed to simultaneously accommodate the shrinking power consumption, cost, and time-to-market requirements;

More information

Qsys and IP Core Integration

Qsys and IP Core Integration Qsys and IP Core Integration Stephen A. Edwards (after David Lariviere) Columbia University Spring 2016 IP Cores Altera s IP Core Integration Tools Connecting IP Cores IP Cores Cyclone V SoC: A Mix of

More information

STM32 F0 Value Line. Entry-level MCUs

STM32 F0 Value Line. Entry-level MCUs STM32 F0 Value Line Entry-level MCUs Key Messages 2 STM32 F0: Is the Cortex -M0 core generated with ST s STM32 DNA, for cost sensitive designs. The STM32 F0 is benefiting of STM32 DNA, providing the essential

More information