LINUX. Benchmark problems have been calculated with dierent cluster con- gurations. The results obtained from these experiments are compared to those

Size: px
Start display at page:

Download "LINUX. Benchmark problems have been calculated with dierent cluster con- gurations. The results obtained from these experiments are compared to those"

Transcription

1 Parallel Computing on PC Clusters - An Alternative to Supercomputers for Industrial Applications Michael Eberl 1, Wolfgang Karl 1, Carsten Trinitis 1 and Andreas Blaszczyk 2 1 Technische Universitat Munchen (TUM), Institut fur Informatik Lehrstuhl fur Rechnertechnik und Rechnerorganisation (LRR) Arcisstr. 21, D Munchen fmichael.eberl Wolfgang.Karl Carsten.Trinitisg@in.tum.de, WWW home page: 2 Asea Brown Boveri Corporate Research Center, Speyerer Str. 4, D Heidelberg, Germany ab@decrc.abb.de, WWW home page: Abstract. This paper summarizes the results that were obtained using the parallel 3D electric eld simulation program POLOPT on a cluster of PCs connected via Fast Ethernet. With the high performance of the CPUs and interconnection technology, the results can be compared to those obtained on multiprocessor machines. Several practical high voltage engineering problems have been calculated. An outlook regarding further speedup due to the improvement of the interconnection technology is given. 1 Introduction One of the most important stages in the development process of high voltage apparatus is the simulation of the eld strength distribution in order to detect critical areas that need to be changed. Roughly speaking, the simulation process consists of the input of geometric data (usually with a CAD modeling program), the creation of an accompanying mesh, the generation of the coecient matrix and the solution of the linear system, and post-processing tasks like potential and eld calculation in points of interest. Typical sizes for the equation systems are in the orders of magnitude of 10 3 to 10 4 with fully populated coecient matrices. In 1994 ABB Corporate Research started a project aimed at the parallelization of the eld calculation program POLOPT [1] based on the boundary element method [2], [4], [3]. The parallelization of the code was based on PVM [5]. The results obtained so far show that high eciency can be achieved using typical industrial hardware equipment like workstation clusters or even multiprocessor supercomputers like IBM SP2 or SGI PowerChallenge. This paper shows an alternative approach in parallel computation of such CPU-intensive problems: The code has been ported to a PC cluster running

2 LINUX. Benchmark problems have been calculated with dierent cluster con- gurations. The results obtained from these experiments are compared to those presented in [3]. We demonstrate that this environment is a suitable alternative to expensive multiprocessor computers when dealing with numerical industrial applications. 2 Parallelization Concept This section briey summarizes the basic idea (see Fig. 1) behind the parallelization concept. It has been presented in detail in [4] and [3]. As mentioned in Fig. 1. Parallelization concept: Each node generates its own part of the coecient matrix and stores it locally. The size of this part corresponds to the node's speed. the introduction, the eld simulation process consists of modeling the geometric data, generating an accompanying mesh, computing the (fully populated) coef- cient matrix, solving the resulting equation system and calculating eld and potential in the points of interest. The part that can be parallelized is the actual numerical calculation, i.e. the latter three steps. Each matrix row can be generated independently from the other rows if the input data has been replicated on each node. The generated parts of the matrix are distributed over the nodes.

3 The parallelization is based on a master-slave approach. The workload is distributed by the master following a Mandelbrot algorithm which takes into account each node's speed and current load. The solver being used is the iterative GMRES method [8]. This solver can be parallelized in a straightforward manner as the operation that is performed during each iteration is basically a matrixvector multiplication. Since the basic parallelization concept is rather algebraic than topological (no domain decomposition) the parallel eciency depends only on the problem size. 3 The PC cluster environment Traditionally, numerical computations like the POLOPT program run either on massively parallel processor systems (MPP), like the IBM SP2, multiprocessors like the SGI PowerChallenge, or networks of workstations (NOW). However, the permanently increasing performance of modern CPUs for PCs led to a low-cost yet powerful alternative platform for compute-intensive applications. The Lehrstuhl fur Rechnertechnik und Rechnerorganisation (LRR) investigates high-performance PC-based cluster computing. The ABB POLOPT code as a typical industrial application is used as a test case for LRR's PC cluster computing approach [6]. The PC cluster consists of ve dual Pentium-II Xeons running at 450 MHz which are interconnected via switched Fast Ethernet. Each PC is equipped with 256 MB of ECC SDRAM, connected to the 100 MHz system bus, 4 GB Ultra Wide SCSI hard disks. The PCs are running Linux (kernel version 2.2.6) and for POLOPT's parallel communication, PVM was used. 4 Results 4.1 Overview Two benchmark problems of typical sizes (3500 unknowns and 7000 unknowns) have been tested on our PC cluster described in the previous section. These benchmarks are the same as the ones used in [4] and [3]. The computation times have been measured on 1, 2, 4, 8 and 10 CPUs. The parallel eciency resulting from these computations has been compared to the one obtained in [3] on the IBM SP2 and on the SGI PowerChallenge. Fig. 2 shows the computation times for the medium size problem (3500 unknowns) on the PC cluster compared to those obtained from the IBM SP2 and SGI PowerChallenge machines. Not surprisingly, the more modern processors of our PC cluster were able to outperform the older parallel machines. However, the suitability of PC clusters for running large industrial applications can also be demonstrated by comparing the parallel eciency for the benchmark problems on each parallel system, respectively. Fig. 3 compares the parallel eciency for the medium-sized problem (matrix size 3500). Fig. 4 shows the comparison for the large problem (matrix size 7000).

4 Fig. 2. Computation times for a medium size problem (3500 unknowns) compared to those obtained on multiprocessor machines as used in [3] 4.2 A Closer Look In general, the parallel eciency always decreases with an increasing number of processors and an increasing demand for communication. In contrast to the PC cluster used for our measurements in this work, specialized parallel computers, such as the IBM SP2 or the SGI PowerChallenge referenced in our comparisons, are using a specially designed and highly ecient internal network to connect their compute nodes. Those networks typically provide the parallel machines with a much lower message latency and a higher bandwidth than the (switched) Ethernet interface used for a PC cluster. The PC cluster with up to 10 processors yields a reasonably high parallel eciency (83% for the large, and 87% for the medium problem). However, for congurations with more than 4 processors it is signicantly lower and drops faster than for dedicated parallel computers. Although we have been using a switched network, the parallel processes only communicate with the master process, so that the network interface at the masters node becomes the communication bottleneck, thus impeding the advantages of a switched network. In order to increase the parallel eciency for this type of

5 Fig. 3. Parallel eciency for a medium size problem (3500 unknowns) compared to those obtained on multiprocessor machines as used in [3] applications it is not enough to increase the gross network capacity, but instead the performance (latency and bandwidth) at every node has to be improved. 5 Conclusion and Outlook We conclude that the network interface is the Achilles' Heel of larger PC clusters. Primarily, Ethernet has not been designed as an interconnection network for parallel systems. It incurs a lot of overhead in message transfers, including drivers in kernel mode and a complex low-level protocol (TCP/IP). A technical solution to alleviate this problem is provided by the SCI interconnection technology (IEEE std , [7]). SCI provides high bandwidth and due to its hardware based distributed shared memory facility also low message latency. With modern communication architectures on top of SCI, the time consuming system calls and buering can be avoided. Consequently, the next step on our roadmap will be the adaptation of POLOPT for the SCI technology, yielding a much more ecient implementation.

6 Fig. 4. Parallel eciency for a large problem (7000 unknowns) compared to the IBM SP2 as used in [3] References 1. Z. Andjelic. POLOPT 4.5 User's Guide. Asea Brown Boveri Corporate Research, Heidelberg, R. Bausinger and G. Kuhn. Die Boundary-Element Methode. Expert Verlag, Ehingen, A. Blaszczyk and C. Trinitis. Experience with PVM in an Industrial Environment. Lecture notes in Computer Science 1156, EuroPVM'96, Springer Verlag, pp , A. Blaszczyk et al. Parallel Computation of Electric Field in a Heterogeneous Workstation Cluster. Lecture Notes in Computer Science 919, HPCN Europe, Springer Verlag, pp , A. Geist et al. PVM 3 User's Guide and Reference Manual. Oak Ridge National Laboratory, Tennessee, May Hermann Hellwagner, Wolfgang Karl, and Markus Leberecht. Enabling a PC Cluster for High-Performance Computing. SPEEDUP Journal, 11(1), June IEEE Standard for the Scalable Coherent Interface (SCI). IEEE Std , IEEE 345 East 47th Street, New York, NY , USA. 8. Y. Saad and M.H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J.Sci. Stat. Comput., pp , 1989.

Boosting the Performance of Electromagnetic Simulations on a PC-Cluster

Boosting the Performance of Electromagnetic Simulations on a PC-Cluster Boosting the Performance of Electromagnetic Simulations on a PC-Cluster Carsten Trinitis, Martin Schulz, and Wolfgang Karl Technische Universität München (TUM), Institut für Informatik Lehrstuhl für Rechnertechnik

More information

Thread and Data parallelism in CPUs - will GPUs become obsolete?

Thread and Data parallelism in CPUs - will GPUs become obsolete? Thread and Data parallelism in CPUs - will GPUs become obsolete? USP, Sao Paulo 25/03/11 Carsten Trinitis Carsten.Trinitis@tum.de Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR) Institut für

More information

Technische Universitat Munchen. Institut fur Informatik. D Munchen.

Technische Universitat Munchen. Institut fur Informatik. D Munchen. Developing Applications for Multicomputer Systems on Workstation Clusters Georg Stellner, Arndt Bode, Stefan Lamberts and Thomas Ludwig? Technische Universitat Munchen Institut fur Informatik Lehrstuhl

More information

Sparse Matrix Operations on Multi-core Architectures

Sparse Matrix Operations on Multi-core Architectures Sparse Matrix Operations on Multi-core Architectures Carsten Trinitis 1, Tilman Küstner 1, Josef Weidendorfer 1, and Jasmin Smajic 2 1 Lehrstuhl für Rechnertechnik und Rechnerorganisation Institut für

More information

Performance of DB2 Enterprise-Extended Edition on NT with Virtual Interface Architecture

Performance of DB2 Enterprise-Extended Edition on NT with Virtual Interface Architecture Performance of DB2 Enterprise-Extended Edition on NT with Virtual Interface Architecture Sivakumar Harinath 1, Robert L. Grossman 1, K. Bernhard Schiefer 2, Xun Xue 2, and Sadique Syed 2 1 Laboratory of

More information

Two main topics: `A posteriori (error) control of FEM/FV discretizations with adaptive meshing strategies' `(Iterative) Solution strategies for huge s

Two main topics: `A posteriori (error) control of FEM/FV discretizations with adaptive meshing strategies' `(Iterative) Solution strategies for huge s . Trends in processor technology and their impact on Numerics for PDE's S. Turek Institut fur Angewandte Mathematik, Universitat Heidelberg Im Neuenheimer Feld 294, 69120 Heidelberg, Germany http://gaia.iwr.uni-heidelberg.de/~ture

More information

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters 1 On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters N. P. Karunadasa & D. N. Ranasinghe University of Colombo School of Computing, Sri Lanka nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

More information

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press,  ISSN Balanced workload distribution on a multi-processor cluster J.L. Bosque*, B. Moreno*", L. Pastor*" *Depatamento de Automdtica, Escuela Universitaria Politecnica de la Universidad de Alcald, Alcald de Henares,

More information

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman)

CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC. Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) CMSC 714 Lecture 6 MPI vs. OpenMP and OpenACC Guest Lecturer: Sukhyun Song (original slides by Alan Sussman) Parallel Programming with Message Passing and Directives 2 MPI + OpenMP Some applications can

More information

System Architecture PARALLEL FILE SYSTEMS

System Architecture PARALLEL FILE SYSTEMS Software and the Performance Effects of Parallel Architectures Keith F. Olsen,, Poughkeepsie, NY James T. West,, Austin, TX ABSTRACT There are a number of different parallel architectures: parallel hardware

More information

6.1 Multiprocessor Computing Environment

6.1 Multiprocessor Computing Environment 6 Parallel Computing 6.1 Multiprocessor Computing Environment The high-performance computing environment used in this book for optimization of very large building structures is the Origin 2000 multiprocessor,

More information

Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs

Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs Image-Space-Parallel Direct Volume Rendering on a Cluster of PCs B. Barla Cambazoglu and Cevdet Aykanat Bilkent University, Department of Computer Engineering, 06800, Ankara, Turkey {berkant,aykanat}@cs.bilkent.edu.tr

More information

The Optimal CPU and Interconnect for an HPC Cluster

The Optimal CPU and Interconnect for an HPC Cluster 5. LS-DYNA Anwenderforum, Ulm 2006 Cluster / High Performance Computing I The Optimal CPU and Interconnect for an HPC Cluster Andreas Koch Transtec AG, Tübingen, Deutschland F - I - 15 Cluster / High Performance

More information

Evaluation of Parallel Application s Performance Dependency on RAM using Parallel Virtual Machine

Evaluation of Parallel Application s Performance Dependency on RAM using Parallel Virtual Machine Evaluation of Parallel Application s Performance Dependency on RAM using Parallel Virtual Machine Sampath S 1, Nanjesh B R 1 1 Department of Information Science and Engineering Adichunchanagiri Institute

More information

Parallel Pipeline STAP System

Parallel Pipeline STAP System I/O Implementation and Evaluation of Parallel Pipelined STAP on High Performance Computers Wei-keng Liao, Alok Choudhary, Donald Weiner, and Pramod Varshney EECS Department, Syracuse University, Syracuse,

More information

Performance of Multicore LUP Decomposition

Performance of Multicore LUP Decomposition Performance of Multicore LUP Decomposition Nathan Beckmann Silas Boyd-Wickizer May 3, 00 ABSTRACT This paper evaluates the performance of four parallel LUP decomposition implementations. The implementations

More information

A PARALLEL ALGORITHM FOR THE DEFORMATION AND INTERACTION OF STRUCTURES MODELED WITH LAGRANGE MESHES IN AUTODYN-3D

A PARALLEL ALGORITHM FOR THE DEFORMATION AND INTERACTION OF STRUCTURES MODELED WITH LAGRANGE MESHES IN AUTODYN-3D 3 rd International Symposium on Impact Engineering 98, 7-9 December 1998, Singapore A PARALLEL ALGORITHM FOR THE DEFORMATION AND INTERACTION OF STRUCTURES MODELED WITH LAGRANGE MESHES IN AUTODYN-3D M.

More information

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems Reference Papers on SMP/NUMA Systems: EE 657, Lecture 5 September 14, 2007 SMP and ccnuma Multiprocessor Systems Professor Kai Hwang USC Internet and Grid Computing Laboratory Email: kaihwang@usc.edu [1]

More information

Parallelizing a seismic inversion code using PVM: a poor. June 27, Abstract

Parallelizing a seismic inversion code using PVM: a poor. June 27, Abstract Parallelizing a seismic inversion code using PVM: a poor man's supercomputer June 27, 1994 Abstract This paper presents experience with parallelization using PVM of DSO, a seismic inversion code developed

More information

Technical Brief: Specifying a PC for Mascot

Technical Brief: Specifying a PC for Mascot Technical Brief: Specifying a PC for Mascot Matrix Science 8 Wyndham Place London W1H 1PP United Kingdom Tel: +44 (0)20 7723 2142 Fax: +44 (0)20 7725 9360 info@matrixscience.com http://www.matrixscience.com

More information

Accelerated Earthquake Simulations

Accelerated Earthquake Simulations Accelerated Earthquake Simulations Alex Breuer Technische Universität München Germany 1 Acknowledgements Volkswagen Stiftung Project ASCETE: Advanced Simulation of Coupled Earthquake-Tsunami Events Bavarian

More information

1e+07 10^5 Node Mesh Step Number

1e+07 10^5 Node Mesh Step Number Implicit Finite Element Applications: A Case for Matching the Number of Processors to the Dynamics of the Program Execution Meenakshi A.Kandaswamy y Valerie E. Taylor z Rudolf Eigenmann x Jose' A. B. Fortes

More information

ANALYSIS OF CLUSTER INTERCONNECTION NETWORK TOPOLOGIES

ANALYSIS OF CLUSTER INTERCONNECTION NETWORK TOPOLOGIES ANALYSIS OF CLUSTER INTERCONNECTION NETWORK TOPOLOGIES Sergio N. Zapata, David H. Williams and Patricia A. Nava Department of Electrical and Computer Engineering The University of Texas at El Paso El Paso,

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 7 Parallel Processing 1 Parallelism Instruction-level parallelism (Ch.6) pipeline superscalar latency issues hazards Processor-level parallelism (Ch.7) array/vector of processors

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

Data mining with sparse grids

Data mining with sparse grids Data mining with sparse grids Jochen Garcke and Michael Griebel Institut für Angewandte Mathematik Universität Bonn Data mining with sparse grids p.1/40 Overview What is Data mining? Regularization networks

More information

Maple on the Intel Paragon. Laurent Bernardin. Institut fur Wissenschaftliches Rechnen. ETH Zurich, Switzerland.

Maple on the Intel Paragon. Laurent Bernardin. Institut fur Wissenschaftliches Rechnen. ETH Zurich, Switzerland. Maple on the Intel Paragon Laurent Bernardin Institut fur Wissenschaftliches Rechnen ETH Zurich, Switzerland bernardin@inf.ethz.ch October 15, 1996 Abstract We ported the computer algebra system Maple

More information

Guided Prefetching Based on Runtime Access Patterns

Guided Prefetching Based on Runtime Access Patterns Guided Prefetching Based on Runtime Access Patterns Jie Tao 1, Georges Kneip 2, and Wolfgang Karl 2 1 Steinbuch Center for Computing Forschungszentrum Karlsruhe Karlsruhe Institute of Technology, Germany

More information

Database Architectures

Database Architectures B0B36DBS, BD6B36DBS: Database Systems h p://www.ksi.m.cuni.cz/~svoboda/courses/172-b0b36dbs/ Lecture 11 Database Architectures Authors: Tomáš Skopal, Irena Holubová Lecturer: Mar n Svoboda, mar n.svoboda@fel.cvut.cz

More information

CHAPTER 4 AN INTEGRATED APPROACH OF PERFORMANCE PREDICTION ON NETWORKS OF WORKSTATIONS. Xiaodong Zhang and Yongsheng Song

CHAPTER 4 AN INTEGRATED APPROACH OF PERFORMANCE PREDICTION ON NETWORKS OF WORKSTATIONS. Xiaodong Zhang and Yongsheng Song CHAPTER 4 AN INTEGRATED APPROACH OF PERFORMANCE PREDICTION ON NETWORKS OF WORKSTATIONS Xiaodong Zhang and Yongsheng Song 1. INTRODUCTION Networks of Workstations (NOW) have become important distributed

More information

Parallel solution for finite element linear systems of. equations on workstation cluster *

Parallel solution for finite element linear systems of. equations on workstation cluster * Aug. 2009, Volume 6, No.8 (Serial No.57) Journal of Communication and Computer, ISSN 1548-7709, USA Parallel solution for finite element linear systems of equations on workstation cluster * FU Chao-jiang

More information

execution host commd

execution host commd Batch Queuing and Resource Management for Applications in a Network of Workstations Ursula Maier, Georg Stellner, Ivan Zoraja Lehrstuhl fur Rechnertechnik und Rechnerorganisation (LRR-TUM) Institut fur

More information

Monte Carlo Method on Parallel Computing. Jongsoon Kim

Monte Carlo Method on Parallel Computing. Jongsoon Kim Monte Carlo Method on Parallel Computing Jongsoon Kim Introduction Monte Carlo methods Utilize random numbers to perform a statistical simulation of a physical problem Extremely time-consuming Inherently

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Spring 2010 Flynn s Taxonomy SISD:

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

A Scalable Multiprocessor for Real-time Signal Processing

A Scalable Multiprocessor for Real-time Signal Processing A Scalable Multiprocessor for Real-time Signal Processing Daniel Scherrer, Hans Eberle Institute for Computer Systems, Swiss Federal Institute of Technology CH-8092 Zurich, Switzerland {scherrer, eberle}@inf.ethz.ch

More information

100 Mbps DEC FDDI Gigaswitch

100 Mbps DEC FDDI Gigaswitch PVM Communication Performance in a Switched FDDI Heterogeneous Distributed Computing Environment Michael J. Lewis Raymond E. Cline, Jr. Distributed Computing Department Distributed Computing Department

More information

Solving Traveling Salesman Problem on High Performance Computing using Message Passing Interface

Solving Traveling Salesman Problem on High Performance Computing using Message Passing Interface Solving Traveling Salesman Problem on High Performance Computing using Message Passing Interface IZZATDIN A. AZIZ, NAZLEENI HARON, MAZLINA MEHAT, LOW TAN JUNG, AISYAH NABILAH Computer and Information Sciences

More information

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism

Motivation for Parallelism. Motivation for Parallelism. ILP Example: Loop Unrolling. Types of Parallelism Motivation for Parallelism Motivation for Parallelism The speed of an application is determined by more than just processor speed. speed Disk speed Network speed... Multiprocessors typically improve the

More information

Transactions on Information and Communications Technologies vol 9, 1995 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 9, 1995 WIT Press,  ISSN Finite difference and finite element analyses using a cluster of workstations K.P. Wang, J.C. Bruch, Jr. Department of Mechanical and Environmental Engineering, q/ca/z/brm'a, 5Wa jbw6wa CW 937% Abstract

More information

TK2123: COMPUTER ORGANISATION & ARCHITECTURE. CPU and Memory (2)

TK2123: COMPUTER ORGANISATION & ARCHITECTURE. CPU and Memory (2) TK2123: COMPUTER ORGANISATION & ARCHITECTURE CPU and Memory (2) 1 Contents This lecture will discuss: Cache. Error Correcting Codes. 2 The Memory Hierarchy Trade-off: cost, capacity and access time. Faster

More information

Implementation and Evaluation of Prefetching in the Intel Paragon Parallel File System

Implementation and Evaluation of Prefetching in the Intel Paragon Parallel File System Implementation and Evaluation of Prefetching in the Intel Paragon Parallel File System Meenakshi Arunachalam Alok Choudhary Brad Rullman y ECE and CIS Link Hall Syracuse University Syracuse, NY 344 E-mail:

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Background Information Recent trends in the marketplace of high performance computing Strohmaier, Dongarra, Meuer, Simon Parallel Computing 2005 Short history

More information

SMD149 - Operating Systems - Multiprocessing

SMD149 - Operating Systems - Multiprocessing SMD149 - Operating Systems - Multiprocessing Roland Parviainen December 1, 2005 1 / 55 Overview Introduction Multiprocessor systems Multiprocessor, operating system and memory organizations 2 / 55 Introduction

More information

Accelerating Implicit LS-DYNA with GPU

Accelerating Implicit LS-DYNA with GPU Accelerating Implicit LS-DYNA with GPU Yih-Yih Lin Hewlett-Packard Company Abstract A major hindrance to the widespread use of Implicit LS-DYNA is its high compute cost. This paper will show modern GPU,

More information

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy

Overview. SMD149 - Operating Systems - Multiprocessing. Multiprocessing architecture. Introduction SISD. Flynn s taxonomy Overview SMD149 - Operating Systems - Multiprocessing Roland Parviainen Multiprocessor systems Multiprocessor, operating system and memory organizations December 1, 2005 1/55 2/55 Multiprocessor system

More information

What are Clusters? Why Clusters? - a Short History

What are Clusters? Why Clusters? - a Short History What are Clusters? Our definition : A parallel machine built of commodity components and running commodity software Cluster consists of nodes with one or more processors (CPUs), memory that is shared by

More information

COSC 6374 Parallel Computation. Parallel Computer Architectures

COSC 6374 Parallel Computation. Parallel Computer Architectures OS 6374 Parallel omputation Parallel omputer Architectures Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart Edgar Gabriel Fall 2015 Flynn s Taxonomy

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

NSR A Tool for Load Measurement in Heterogeneous Environments

NSR A Tool for Load Measurement in Heterogeneous Environments NSR A Tool for Load Measurement in Heterogeneous Environments Christian Röder, Thomas Ludwig, Arndt Bode LRR-TUM Lehrstuhl für Rechnertechnik und Rechnerorganisation Technische Universität München, Institut

More information

TFLOP Performance for ANSYS Mechanical

TFLOP Performance for ANSYS Mechanical TFLOP Performance for ANSYS Mechanical Dr. Herbert Güttler Engineering GmbH Holunderweg 8 89182 Bernstadt www.microconsult-engineering.de Engineering H. Güttler 19.06.2013 Seite 1 May 2009, Ansys12, 512

More information

Improving Geographical Locality of Data for Shared Memory Implementations of PDE Solvers

Improving Geographical Locality of Data for Shared Memory Implementations of PDE Solvers Improving Geographical Locality of Data for Shared Memory Implementations of PDE Solvers Henrik Löf, Markus Nordén, and Sverker Holmgren Uppsala University, Department of Information Technology P.O. Box

More information

Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP

Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP Processor Architectures At A Glance: M.I.T. Raw vs. UC Davis AsAP Presenter: Course: EEC 289Q: Reconfigurable Computing Course Instructor: Professor Soheil Ghiasi Outline Overview of M.I.T. Raw processor

More information

D036 Accelerating Reservoir Simulation with GPUs

D036 Accelerating Reservoir Simulation with GPUs D036 Accelerating Reservoir Simulation with GPUs K.P. Esler* (Stone Ridge Technology), S. Atan (Marathon Oil Corp.), B. Ramirez (Marathon Oil Corp.) & V. Natoli (Stone Ridge Technology) SUMMARY Over the

More information

Performance Comparisons of Dell PowerEdge Servers with SQL Server 2000 Service Pack 4 Enterprise Product Group (EPG)

Performance Comparisons of Dell PowerEdge Servers with SQL Server 2000 Service Pack 4 Enterprise Product Group (EPG) Performance Comparisons of Dell PowerEdge Servers with SQL Server 2000 Service Pack 4 Enterprise Product Group (EPG) Dell White Paper By Neelima Chinthamani (Enterprise OS Releases) Ravikanth Chaganti

More information

Parallel Algorithms on Clusters of Multicores: Comparing Message Passing vs Hybrid Programming

Parallel Algorithms on Clusters of Multicores: Comparing Message Passing vs Hybrid Programming Parallel Algorithms on Clusters of Multicores: Comparing Message Passing vs Hybrid Programming Fabiana Leibovich, Laura De Giusti, and Marcelo Naiouf Instituto de Investigación en Informática LIDI (III-LIDI),

More information

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1

Introduction to parallel computers and parallel programming. Introduction to parallel computersand parallel programming p. 1 Introduction to parallel computers and parallel programming Introduction to parallel computersand parallel programming p. 1 Content A quick overview of morden parallel hardware Parallelism within a chip

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

clients (compute nodes) servers (I/O nodes)

clients (compute nodes) servers (I/O nodes) Parallel I/O on Networks of Workstations: Performance Improvement by Careful Placement of I/O Servers Yong Cho 1, Marianne Winslett 1, Szu-wen Kuo 1, Ying Chen, Jonghyun Lee 1, Krishna Motukuri 1 1 Department

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Storage Hierarchy Management for Scientific Computing

Storage Hierarchy Management for Scientific Computing Storage Hierarchy Management for Scientific Computing by Ethan Leo Miller Sc. B. (Brown University) 1987 M.S. (University of California at Berkeley) 1990 A dissertation submitted in partial satisfaction

More information

Big Orange Bramble. August 09, 2016

Big Orange Bramble. August 09, 2016 Big Orange Bramble August 09, 2016 Overview HPL SPH PiBrot Numeric Integration Parallel Pi Monte Carlo FDS DANNA HPL High Performance Linpack is a benchmark for clusters Created here at the University

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Architecture, Programming and Performance of MIC Phi Coprocessor

Architecture, Programming and Performance of MIC Phi Coprocessor Architecture, Programming and Performance of MIC Phi Coprocessor JanuszKowalik, Piotr Arłukowicz Professor (ret), The Boeing Company, Washington, USA Assistant professor, Faculty of Mathematics, Physics

More information

Efficiently building on-line tools for distributed heterogeneous environments

Efficiently building on-line tools for distributed heterogeneous environments Scientific Programming 10 (2002) 67 74 67 IOS Press Efficiently building on-line tools for distributed heterogeneous environments Günther Rackl, Thomas Ludwig, Markus Lindermeier and Alexandros Stamatakis

More information

Experiences with the Parallel Virtual File System (PVFS) in Linux Clusters

Experiences with the Parallel Virtual File System (PVFS) in Linux Clusters Experiences with the Parallel Virtual File System (PVFS) in Linux Clusters Kent Milfeld, Avijit Purkayastha, Chona Guiang Texas Advanced Computing Center The University of Texas Austin, Texas USA Abstract

More information

A Database Redo Log System Based on Virtual Memory Disk*

A Database Redo Log System Based on Virtual Memory Disk* A Database Redo Log System Based on Virtual Memory Disk* Haiping Wu, Hongliang Yu, Bigang Li, Xue Wei, and Weimin Zheng Department of Computer Science and Technology, Tsinghua University, 100084, Beijing,

More information

CSC501 Operating Systems Principles. OS Structure

CSC501 Operating Systems Principles. OS Structure CSC501 Operating Systems Principles OS Structure 1 Announcements q TA s office hour has changed Q Thursday 1:30pm 3:00pm, MRC-409C Q Or email: awang@ncsu.edu q From department: No audit allowed 2 Last

More information

Parallelization of a Electromagnetic Analysis Tool

Parallelization of a Electromagnetic Analysis Tool Parallelization of a Electromagnetic Analysis Tool Milissa Benincasa Black River Systems Co. 162 Genesee Street Utica, NY 13502 (315) 732-7385 phone (315) 732-5837 fax benincas@brsc.com United States Chris

More information

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures Procedia Computer Science Volume 51, 2015, Pages 2774 2778 ICCS 2015 International Conference On Computational Science Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid

More information

CS550. TA: TBA Office: xxx Office hours: TBA. Blackboard:

CS550. TA: TBA   Office: xxx Office hours: TBA. Blackboard: CS550 Advanced Operating Systems (Distributed Operating Systems) Instructor: Xian-He Sun Email: sun@iit.edu, Phone: (312) 567-5260 Office hours: 1:30pm-2:30pm Tuesday, Thursday at SB229C, or by appointment

More information

Patagonia Cluster Project Research Cluster

Patagonia Cluster Project Research Cluster Patagonia Cluster Project Research Cluster Clusters of PCs Multi-Boot and Multi-Purpose? Christian Kurmann, Felix Rauch, Michela Taufer, Prof. Thomas M. Stricker Laboratory for Computer Systems ETHZ -

More information

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Computer Architecture Is the attributes of a [computing] system as seen by the programmer, i.e.,

More information

Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang

Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang Challenges of Scaling Algebraic Multigrid Across Modern Multicore Architectures. Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike Meier Yang Multigrid Solvers Method of solving linear equation

More information

Benchmarking CPU Performance. Benchmarking CPU Performance

Benchmarking CPU Performance. Benchmarking CPU Performance Cluster Computing Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance,

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

Parallel Crew Scheduling in PAROS*

Parallel Crew Scheduling in PAROS* Parallel Crew Scheduling in PAROS* Panayiotis Alefragis 1, Christos Goumopoulos 1, Efthymios Housos 1, Peter Sanders 2, Tuomo Takkula 3, Dag Wedelin 3 1 University of Patras, Patras, Greece Max-Planck-Institut

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

Accelerating a Simulation of Type I X ray Bursts from Accreting Neutron Stars Mark Mackey Professor Alexander Heger

Accelerating a Simulation of Type I X ray Bursts from Accreting Neutron Stars Mark Mackey Professor Alexander Heger Accelerating a Simulation of Type I X ray Bursts from Accreting Neutron Stars Mark Mackey Professor Alexander Heger The goal of my project was to develop an optimized linear system solver to shorten the

More information

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Performance COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals What is Performance? How do we measure the performance of

More information

Parallel Programming. Michael Gerndt Technische Universität München

Parallel Programming. Michael Gerndt Technische Universität München Parallel Programming Michael Gerndt Technische Universität München gerndt@in.tum.de Contents 1. Introduction 2. Parallel architectures 3. Parallel applications 4. Parallelization approach 5. OpenMP 6.

More information

Intel Enterprise Processors Technology

Intel Enterprise Processors Technology Enterprise Processors Technology Kosuke Hirano Enterprise Platforms Group March 20, 2002 1 Agenda Architecture in Enterprise Xeon Processor MP Next Generation Itanium Processor Interconnect Technology

More information

Geneva 10.0 System Requirements

Geneva 10.0 System Requirements Geneva 10.0 System Requirements General Notes Geneva Modules These requirements apply to Geneva and Geneva add-on modules. If you previously used Advent Partner in conjunction with Geneva, you can now

More information

BlueGene/L. Computer Science, University of Warwick. Source: IBM

BlueGene/L. Computer Science, University of Warwick. Source: IBM BlueGene/L Source: IBM 1 BlueGene/L networking BlueGene system employs various network types. Central is the torus interconnection network: 3D torus with wrap-around. Each node connects to six neighbours

More information

Evaluating Personal High Performance Computing with PVM on Windows and LINUX Environments

Evaluating Personal High Performance Computing with PVM on Windows and LINUX Environments Evaluating Personal High Performance Computing with PVM on Windows and LINUX Environments Paulo S. Souza * Luciano J. Senger ** Marcos J. Santana ** Regina C. Santana ** e-mails: {pssouza, ljsenger, mjs,

More information

Distributed Computing: PVM, MPI, and MOSIX. Multiple Processor Systems. Dr. Shaaban. Judd E.N. Jenne

Distributed Computing: PVM, MPI, and MOSIX. Multiple Processor Systems. Dr. Shaaban. Judd E.N. Jenne Distributed Computing: PVM, MPI, and MOSIX Multiple Processor Systems Dr. Shaaban Judd E.N. Jenne May 21, 1999 Abstract: Distributed computing is emerging as the preferred means of supporting parallel

More information

Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer

Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer Performance Characteristics of a Cost-Effective Medium-Sized Beowulf Cluster Supercomputer Andre L.C. Barczak 1, Chris H. Messom 1, and Martin J. Johnson 1 Massey University, Institute of Information and

More information

Exploiting On-Chip Data Transfers for Improving Performance of Chip-Scale Multiprocessors

Exploiting On-Chip Data Transfers for Improving Performance of Chip-Scale Multiprocessors Exploiting On-Chip Data Transfers for Improving Performance of Chip-Scale Multiprocessors G. Chen 1, M. Kandemir 1, I. Kolcu 2, and A. Choudhary 3 1 Pennsylvania State University, PA 16802, USA 2 UMIST,

More information

File Server Comparison: Executive Summary. Microsoft Windows NT Server 4.0 and Novell NetWare 5. Contents

File Server Comparison: Executive Summary. Microsoft Windows NT Server 4.0 and Novell NetWare 5. Contents File Server Comparison: Microsoft Windows NT Server 4.0 and Novell NetWare 5 Contents Executive Summary Updated: October 7, 1998 (PDF version 240 KB) Executive Summary Performance Analysis Price/Performance

More information

A Parallel Implementation of A Fast Multipole Based 3-D Capacitance Extraction Program on Distributed Memory Multicomputers

A Parallel Implementation of A Fast Multipole Based 3-D Capacitance Extraction Program on Distributed Memory Multicomputers A Parallel Implementation of A Fast Multipole Based 3-D Capacitance Extraction Program on Distributed Memory Multicomputers Yanhong Yuan and Prithviraj Banerjee Department of Electrical and Computer Engineering

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

NUMA replicated pagecache for Linux

NUMA replicated pagecache for Linux NUMA replicated pagecache for Linux Nick Piggin SuSE Labs January 27, 2008 0-0 Talk outline I will cover the following areas: Give some NUMA background information Introduce some of Linux s NUMA optimisations

More information

PARALLELIZATION OF POTENTIAL FLOW SOLVER USING PC CLUSTERS

PARALLELIZATION OF POTENTIAL FLOW SOLVER USING PC CLUSTERS Proceedings of FEDSM 2000: ASME Fluids Engineering Division Summer Meeting June 11-15,2000, Boston, MA FEDSM2000-11223 PARALLELIZATION OF POTENTIAL FLOW SOLVER USING PC CLUSTERS Prof. Blair.J.Perot Manjunatha.N.

More information

Dynamic Balancing Complex Workload in Workstation Networks - Challenge, Concepts and Experience

Dynamic Balancing Complex Workload in Workstation Networks - Challenge, Concepts and Experience Dynamic Balancing Complex Workload in Workstation Networks - Challenge, Concepts and Experience Abstract Wolfgang Becker Institute of Parallel and Distributed High-Performance Systems (IPVR) University

More information

Overview. Processor organizations Types of parallel machines. Real machines

Overview. Processor organizations Types of parallel machines. Real machines Course Outline Introduction in algorithms and applications Parallel machines and architectures Overview of parallel machines, trends in top-500, clusters, DAS Programming methods, languages, and environments

More information

Parallel Algorithm Design. CS595, Fall 2010

Parallel Algorithm Design. CS595, Fall 2010 Parallel Algorithm Design CS595, Fall 2010 1 Programming Models The programming model o determines the basic concepts of the parallel implementation and o abstracts from the hardware as well as from the

More information

Process 0 Process 1 MPI_Barrier MPI_Isend. MPI_Barrier. MPI_Recv. MPI_Wait. MPI_Isend message. header. MPI_Recv. buffer. message.

Process 0 Process 1 MPI_Barrier MPI_Isend. MPI_Barrier. MPI_Recv. MPI_Wait. MPI_Isend message. header. MPI_Recv. buffer. message. Where's the Overlap? An Analysis of Popular MPI Implementations J.B. White III and S.W. Bova Abstract The MPI 1:1 denition includes routines for nonblocking point-to-point communication that are intended

More information

A Comprehensive Study on the Performance of Implicit LS-DYNA

A Comprehensive Study on the Performance of Implicit LS-DYNA 12 th International LS-DYNA Users Conference Computing Technologies(4) A Comprehensive Study on the Performance of Implicit LS-DYNA Yih-Yih Lin Hewlett-Packard Company Abstract This work addresses four

More information

Switch. Switch. PU: Pentium Pro 200MHz Memory: 128MB Myricom Myrinet 100Base-T Ethernet

Switch. Switch. PU: Pentium Pro 200MHz Memory: 128MB Myricom Myrinet 100Base-T Ethernet COMPaS: A Pentium Pro PC-based SMP Cluster and its Experience Yoshio Tanaka 1, Motohiko Matsuda 1, Makoto Ando 1, Kazuto Kubota and Mitsuhisa Sato 1 Real World Computing Partnership fyoshio,matu,ando,kazuto,msatog@trc.rwcp.or.jp

More information