Introduction of Oakforest-PACS

Size: px
Start display at page:

Download "Introduction of Oakforest-PACS"

Transcription

1 Introduction of Oakforest-PACS Hiroshi Nakamura Director of Information Technology Center The Univ. of Tokyo (Director of JCAHPC)

2 Outline Supercomputer deployment plan in Japan What is JCAHPC? Oakforest-PACS system Application Summary Impacts of extreme scale computing (2017/11/2) 2

3 Computational Resource Providers of HPCI Tier1: K Computer at RIKEN Tier2: Supercomputers of 9 universities and 2 research institutes : Oakforest-PACS Oakforest-PACS Impacts of extreme scale computing (2017/11/2) 3

4 Deployment plan of Tier-2 Supercomputers (as of May. 2017) available at HPCI Consortium ( Power consumption indicates maximum of power supply (includes cooling facility) Impacts of extreme scale computing (2017/11/2) 4

5 PF Towards Exascale Computing Tier-1 and Tier-2 supercomputers move forward to Exascale computing like two wheels Future Exascale Post K Computer RIKEN AICS 10 Oakforest-PACS JCAHPC (The Univ. of Tokyo and Univ. of Tsukuba) 1 Tokyo Tech. TSUBAME2.0 T2K U. of Tsukuba U. of Tokyo Kyoto U Impacts of extreme scale computing (2017/11/2) 5

6 JCAHPC Joint Center for Advanced High Performance Computing ( director: Hiroshi ITC, U-Tokyo established in 2013 under agreement between Information Technology Center (ITC) at The University of Tokyo Center for Computational Sciences (CCS) at University of Tsukuba Design, operate and manage next-generation supercomputer system for researchers Community of advanced HPC research Impacts of extreme scale computing (2017/11/2) 6

7 Procurement Policy of JCAHPC joint procurement by two universities uniform specification, single shared system Each university is financially responsible to introduce the machine and its operation first attempt in Japan the largest class of budget as national universities supercomputer in Japan Oakforest-PACS : largest scale in Japan investment ratio: U. Tokyo : U. Tsukuba = 2:1 Impacts of extreme scale computing (2017/11/2) 7

8 Oakforest-PACS Impacts of extreme scale computing (2017/11/2) 8 Full operation started Dec Official Program started on April PFLOPS peak 8208 KNL CPUs Fat-Tree (full bisection BW) by OmniPath HPL PFLOPS: #1 in Japan (2017/6) WW #6(2016/11) #7(2017/6) HPCG WW #3(2016/11) #5(2017/6)

9 HPCG on Nov Impacts of extreme scale computing (2017/11/2) 9

10 Location of Oakforest-PACS : Kashiwa Campus of U. Tokyo Univ. of Tsukuba Kashiwa Campus Univ. of Tokyo Hongo Campus of U. Tokyo Impacts of extreme scale computing (2017/11/2) 10

11 Oakforest-PACS in the Room 2 nd floor of Kashiwa Research Complex Impacts of extreme scale computing (2017/11/2) 11

12 Specification of Oakforest-PACS Total peak performance Total number of compute nodes Compute node Interconnect Product 25 PFLOPS 8,208 Fujitsu PRIMERGY CX600 M1 (2U) + CX1640 M1 x 8node Processor Intel Xeon Phi 7250 (Code name: Knights Landing), 68 cores, 1.4 GHz Memory High BW 16 GB, 490 GB/sec (MCDRAM, effective rate) Product Link speed Topology Low BW 96 GB, GB/sec (peak rate) Intel Omni-Path Architecture 100 Gbps Fat-tree with (completely) full-bisection bandwidth Impacts of extreme scale computing (2017/11/2) 12

13 Computation node & chassis Water cooling wheel & pipe Chassis with 8 nodes, 2U size Computation node (Fujitsu next generation PRIMERGY) with single chip Intel Xeon Phi (Knights Landing, 3+TFLOPS) and Intel Omni-Path Architecture card (100Gbps) Impacts of extreme scale computing (2017/11/2) 13

14 Rack 15 Chassis with 120 nodes per Rack rear panel radiator Impacts of extreme scale computing (2017/11/2) 14 water cooling pipe

15 Full bisection bandwidth Fat-tree by Intel Omni-Path Architecture 12 of 768 port Director Switch (Source by Intel) Uplink: 24 Downlink: All the nodes are connected with FBB Fat-tree globally full bisection bandwidth is preferable for flexible job management. 2/3 of system : University of Tokyo 1/3 of system : University of Tsukuba but job assignment is flexible (no boudary) 362 of 48 port Edge Switch Impacts of extreme scale computing (2017/11/2) 15 2 Compute Nodes 8208 Login Nodes 20 Parallel FS 64 IME 300 Mgmt, etc. 8 Total 8600

16 Specification of Oakforest-PACS (I/O) Parallel File System File Cache System Type Total Capacity Product Aggregate BW Type Total capacity Product Aggregate BW Power consumption Lustre File System 26.2 PB # of racks 102 DataDirect Networks SFA14KE 500 GB/sec Burst Buffer, Infinite Memory Engine (by DDN) 940 TB (NVMe SSD, including parity data by erasure coding) DataDirect Networks IME14K 1,560 GB/sec 4.2 MW (including cooling) actually ~3.0MW Impacts of extreme scale computing (2017/11/2) 16

17 Software of Oakforest-PACS Compute node Login node OS CentOS 7, McKernel Red Hat Enterprise Linux 7 Compiler gcc, Intel compiler (C, C++, Fortran), XcalbleMP MPI Intel MPI, MVAPICH2 Library Intel MKL Application Distributed FS Job Scheduler Debugger Profiler LAPACK, FFTW, SuperLU, PETSc, METIS, Scotch, ScaLAPACK, GNU Scientific Library, NetCDF, Parallel netcdf, Xabclib, ppopen-hpc, ppopen-at, MassiveThreads mpijava, XcalableMP, OpenFOAM, ABINIT-MP, PHASE system, FrontFlow/blue, FrontISTR, REVOCAP, OpenMX, xtapp, AkaiKKR, MODYLAS, ALPS, feram, GROMACS, BLAST, R packages, Bioconductor, BioPerl, BioRuby Globus Toolkit, Gfarm Fujitsu Technical Computing Suite Allinea DDT Intel VTune Amplifier, Trace Analyzer & Collector Impacts of extreme scale computing (2017/11/2) 17

18 Post-K Computer and Oakforest-PACS as the two wheels of HPCI in Japan Oakforest-PACS fills blank period between K Computer and Post-K Computer Installation of Post-K Computer is planned in Shutdown of K Computer is planned in ?? System software in Oakforest-PACS developed for Post-K McKernel OS for Many-core era, for a number of thin-cores without OS jitter and core binding Primary OS (based on Linux) on Post-K, and application development goes ahead XcalableMP (XMP) Parallel programming language for directive-base easy coding on distributed memory system Not like explicit message passing with MPI Impacts of extreme scale computing (2017/11/2) 18

19 Oakforest-PACS resource sharing program (nation-wide) As JCAHPC (20%) HPCI HPC Infrastructure program in Japan to share all supercomputers (free!) Big challenge special use (full system size) As U. Tokyo (56.7%) Interdisciplinary Joint Research Program General use Industrial trial use Educational use Young & Female special use As U. Tsukuba (23.3%) Interdisciplinary Academic Program Large scale general use Impacts of extreme scale computing (2017/11/2) 19

20 Applications on Oakforest-PACS 20 ARTED (SALMON) Electron Dynamics Lattice QCD Quantum Chrono Dynamics NICAM & COCO Atmosphere & Ocean Coupling GHYDRA Earthquake Simulations Seism3D Seismic Wave Propagation Impacts of extreme scale computing (2017/11/2)

21 Summary JCAHPC : joint resource center for advanced HPC by Univ. of Tokyo and Univ. of Tsukuba for community for advanced HPC research Oakforest-PACS is currently #1 supercomputer in Japan and available for nation-wide resource sharing programs Oakforest-PACS and Post-K : two wheels of HPCI Oakforest-PACS is also a testbed for McKernel and XcalableMP system software to support Post-K development Full system scale applications are under development with extreme scale and getting new results fundamental physics, global science, disaster simulation, material science, etc. Impacts of extreme scale computing (2017/11/2) 21

Basic Specification of Oakforest-PACS

Basic Specification of Oakforest-PACS Basic Specification of Oakforest-PACS Joint Center for Advanced HPC (JCAHPC) by Information Technology Center, the University of Tokyo and Center for Computational Sciences, University of Tsukuba Oakforest-PACS

More information

Oakforest-PACS (OFP) Taisuke Boku

Oakforest-PACS (OFP) Taisuke Boku Oakforest-PACS (OFP) Taisuke Boku Deputy Director, Ceter for Computatioal Scieces Uiversity of Tsukuba (with courtesy of JCAHPC members) 1 Japa-Korea HPC Witer School 2018 Ceter for Computatioal Scieces,

More information

Towards Efficient Communication and I/O on Oakforest-PACS: Large-scale KNL+OPA Cluster

Towards Efficient Communication and I/O on Oakforest-PACS: Large-scale KNL+OPA Cluster Towards Efficient Communication and I/O on Oakforest-PACS: Large-scale KNL+OPA Cluster Toshihiro Hanawa Joint Center for Advanced HPC (JCAHPC) Information Technology Center, the University of Tokyo 201/0/0

More information

Oakforest-PACS and PACS-X: Present and Future of CCS Supercomputers

Oakforest-PACS and PACS-X: Present and Future of CCS Supercomputers Oakforest-PACS and PACS-X: Present and Future of CCS Supercomputers Taisuke Boku Deputy Director, Center for Computational Sciences University of Tsukuba 1 Oakforest-PACS 2 JCAHPC Joint Center for Advanced

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Overview of Reedbush-U How to Login

Overview of Reedbush-U How to Login Overview of Reedbush-U How to Login Information Technology Center The University of Tokyo http://www.cc.u-tokyo.ac.jp/ Supercomputers in ITC/U.Tokyo 2 big systems, 6 yr. cycle FY 08 09 10 11 12 13 14 15

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Supercomputers in ITC/U.Tokyo 2 big systems, 6 yr. cycle

Supercomputers in ITC/U.Tokyo 2 big systems, 6 yr. cycle Supercomputers in ITC/U.Tokyo 2 big systems, 6 yr. cycle FY 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 Hitachi SR11K/J2 IBM Power 5+ 18.8TFLOPS, 16.4TB Hitachi HA8000 (T2K) AMD Opteron 140TFLOPS, 31.3TB

More information

IHK/McKernel: A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing

IHK/McKernel: A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing : A Lightweight Multi-kernel Operating System for Extreme-Scale Supercomputing Balazs Gerofi Exascale System Software Team, RIKEN Center for Computational Science 218/Nov/15 SC 18 Intel Extreme Computing

More information

Update of Post-K Development Yutaka Ishikawa RIKEN AICS

Update of Post-K Development Yutaka Ishikawa RIKEN AICS Update of Post-K Development Yutaka Ishikawa RIKEN AICS 11:20AM 11:40AM, 2 nd of November, 2017 FLAGSHIP2020 Project Missions Building the Japanese national flagship supercomputer, post K, and Developing

More information

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS HPC User Forum, 7 th September, 2016 Outline of Talk Introduction of FLAGSHIP2020 project An Overview of post K system Concluding Remarks

More information

Results from TSUBAME3.0 A 47 AI- PFLOPS System for HPC & AI Convergence

Results from TSUBAME3.0 A 47 AI- PFLOPS System for HPC & AI Convergence Results from TSUBAME3.0 A 47 AI- PFLOPS System for HPC & AI Convergence Jens Domke Research Staff at MATSUOKA Laboratory GSIC, Tokyo Institute of Technology, Japan Omni-Path User Group 2017/11/14 Denver,

More information

User Training Cray XC40 IITM, Pune

User Training Cray XC40 IITM, Pune User Training Cray XC40 IITM, Pune Sudhakar Yerneni, Raviteja K, Nachiket Manapragada, etc. 1 Cray XC40 Architecture & Packaging 3 Cray XC Series Building Blocks XC40 System Compute Blade 4 Compute Nodes

More information

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited Fujitsu HPC Roadmap Beyond Petascale Computing Toshiyuki Shimizu Fujitsu Limited Outline Mission and HPC product portfolio K computer*, Fujitsu PRIMEHPC, and the future K computer and PRIMEHPC FX10 Post-FX10,

More information

Fujitsu s Technologies to the K Computer

Fujitsu s Technologies to the K Computer Fujitsu s Technologies to the K Computer - a journey to practical Petascale computing platform - June 21 nd, 2011 Motoi Okuda FUJITSU Ltd. Agenda The Next generation supercomputer project of Japan The

More information

The Architecture and the Application Performance of the Earth Simulator

The Architecture and the Application Performance of the Earth Simulator The Architecture and the Application Performance of the Earth Simulator Ken ichi Itakura (JAMSTEC) http://www.jamstec.go.jp 15 Dec., 2011 ICTS-TIFR Discussion Meeting-2011 1 Location of Earth Simulator

More information

2018/9/25 (1), (I) 1 (1), (I)

2018/9/25 (1), (I) 1 (1), (I) 2018/9/25 (1), (I) 1 (1), (I) 2018/9/25 (1), (I) 2 1. 2. 3. 4. 5. 2018/9/25 (1), (I) 3 1. 2. MPI 3. D) http://www.compsci-alliance.jp http://www.compsci-alliance.jp// 2018/9/25 (1), (I) 4 2018/9/25 (1),

More information

HOKUSAI System. Figure 0-1 System diagram

HOKUSAI System. Figure 0-1 System diagram HOKUSAI System October 11, 2017 Information Systems Division, RIKEN 1.1 System Overview The HOKUSAI system consists of the following key components: - Massively Parallel Computer(GWMPC,BWMPC) - Application

More information

Accelerated Computing Activities at ITC/University of Tokyo

Accelerated Computing Activities at ITC/University of Tokyo Accelerated Computing Activities at ITC/University of Tokyo Kengo Nakajima Information Technology Center (ITC) The University of Tokyo ADAC-3 Workshop January 25-27 2017, Kashiwa, Japan Three Major Campuses

More information

T2K & HA-PACS Projects Supercomputers at CCS

T2K & HA-PACS Projects Supercomputers at CCS T2K & HA-PACS Projects Supercomputers at CCS Taisuke Boku Deputy Director, HPC Division Center for Computational Sciences University of Tsukuba Two Streams of Supercomputers at CCS Service oriented general

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Brand-New Vector Supercomputer

Brand-New Vector Supercomputer Brand-New Vector Supercomputer NEC Corporation IT Platform Division Shintaro MOMOSE SC13 1 New Product NEC Released A Brand-New Vector Supercomputer, SX-ACE Just Now. Vector Supercomputer for Memory Bandwidth

More information

Site Update for Oakforest-PACS at JCAHPC

Site Update for Oakforest-PACS at JCAHPC Site Update for Oakforest-PACS at JCAHPC Taisuke Boku Vice Director, JCAHPC Uiversity of Tsukuba 1 Ceter for Computatioal Scieces, Uiv. of Tsukuba Towards Exascale Computig PF 1000 100 Tier-1 ad tier-2

More information

HPC Storage Use Cases & Future Trends

HPC Storage Use Cases & Future Trends Oct, 2014 HPC Storage Use Cases & Future Trends Massively-Scalable Platforms and Solutions Engineered for the Big Data and Cloud Era Atul Vidwansa Email: atul@ DDN About Us DDN is a Leader in Massively

More information

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN Current Status of the Next- Generation Supercomputer in Japan YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN International Workshop on Peta-Scale Computing Programming Environment, Languages

More information

Oakforest-PACS (OFP) : Japan s Fastest Supercomputer

Oakforest-PACS (OFP) : Japan s Fastest Supercomputer Oakforest-PACS (OFP) : Japa s Fastest Supercomputer Taisuke Boku Deputy Director, Ceter for Computatioal Scieces Uiversity of Tsukuba (with courtesy of JCAHPC members) 1 Ceter for Computatioal Scieces,

More information

Overview of Tianhe-2

Overview of Tianhe-2 Overview of Tianhe-2 (MilkyWay-2) Supercomputer Yutong Lu School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

More information

Introduction of Fujitsu s next-generation supercomputer

Introduction of Fujitsu s next-generation supercomputer Introduction of Fujitsu s next-generation supercomputer MATSUMOTO Takayuki July 16, 2014 HPC Platform Solutions Fujitsu has a long history of supercomputing over 30 years Technologies and experience of

More information

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber NERSC Site Update National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Richard Gerber NERSC Senior Science Advisor High Performance Computing Department Head Cori

More information

Kengo Nakajima Information Technology Center, The University of Tokyo. SC15, November 16-20, 2015 Austin, Texas, USA

Kengo Nakajima Information Technology Center, The University of Tokyo. SC15, November 16-20, 2015 Austin, Texas, USA ppopen-hpc Open Source Infrastructure for Development and Execution of Large-Scale Scientific Applications on Post-Peta Scale Supercomputers with Automatic Tuning (AT) Kengo Nakajima Information Technology

More information

Post-K: Building the Arm HPC Ecosystem

Post-K: Building the Arm HPC Ecosystem Post-K: Building the Arm HPC Ecosystem Toshiyuki Shimizu FUJITSU LIMITED Nov. 14th, 2017 Exhibitor Forum, SC17, Nov. 14, 2017 0 Post-K: Building up Arm HPC Ecosystem Fujitsu s approach for HPC Approach

More information

DDN and Flash GRIDScaler, Flashscale Infinite Memory Engine

DDN and Flash GRIDScaler, Flashscale Infinite Memory Engine 1! DDN and Flash GRIDScaler, Flashscale Infinite Memory Engine T. Cecchi - September 21 st 2016 HPC Advisory Council 2! DDN END-TO-END DATA LIFECYCLE MANAGEMENT BURST & COMPUTE SSD, DISK & FILE SYSTEM

More information

Umeå University

Umeå University HPC2N @ Umeå University Introduction to HPC2N and Kebnekaise Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö Outline Short presentation of HPC2N HPC at a glance. HPC2N Abisko, Kebnekaise HPC Programming

More information

Umeå University

Umeå University HPC2N: Introduction to HPC2N and Kebnekaise, 2017-09-12 HPC2N @ Umeå University Introduction to HPC2N and Kebnekaise Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö Outline Short presentation of HPC2N

More information

High Performance Computing with Fujitsu

High Performance Computing with Fujitsu High Performance Computing with Fujitsu Ivo Doležel 0 2017 FUJITSU FUJITSU Software HPC Cluster Suite A complete HPC software stack solution HPC cluster general characteristics HPC clusters consist primarily

More information

in Action Fujitsu High Performance Computing Ecosystem Human Centric Innovation Innovation Flexibility Simplicity

in Action Fujitsu High Performance Computing Ecosystem Human Centric Innovation Innovation Flexibility Simplicity Fujitsu High Performance Computing Ecosystem Human Centric Innovation in Action Dr. Pierre Lagier Chief Technology Officer Fujitsu Systems Europe Innovation Flexibility Simplicity INTERNAL USE ONLY 0 Copyright

More information

Intel Many Integrated Core (MIC) Architecture

Intel Many Integrated Core (MIC) Architecture Intel Many Integrated Core (MIC) Architecture Karl Solchenbach Director European Exascale Labs BMW2011, November 3, 2011 1 Notice and Disclaimers Notice: This document contains information on products

More information

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014 InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment TOP500 Supercomputers, June 2014 TOP500 Performance Trends 38% CAGR 78% CAGR Explosive high-performance

More information

Introduction to the K computer

Introduction to the K computer Introduction to the K computer Fumiyoshi Shoji Deputy Director Operations and Computer Technologies Div. Advanced Institute for Computational Science RIKEN Outline ü Overview of the K

More information

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University Introduction to High Performance Computing Shaohao Chen Research Computing Services (RCS) Boston University Outline What is HPC? Why computer cluster? Basic structure of a computer cluster Computer performance

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

Fujitsu s new supercomputer, delivering the next step in Exascale capability

Fujitsu s new supercomputer, delivering the next step in Exascale capability Fujitsu s new supercomputer, delivering the next step in Exascale capability Toshiyuki Shimizu November 19th, 2014 0 Past, PRIMEHPC FX100, and roadmap for Exascale 2011 2012 2013 2014 2015 2016 2017 2018

More information

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 2018 Call for Proposal of Joint Research Projects

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 2018 Call for Proposal of Joint Research Projects Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures 2018 Call for Proposal of Joint Research Projects The Joint Usage/Research Center for Interdisciplinary Large-scale

More information

The Arm Technology Ecosystem: Current Products and Future Outlook

The Arm Technology Ecosystem: Current Products and Future Outlook The Arm Technology Ecosystem: Current Products and Future Outlook Dan Ernst, PhD Advanced Technology Cray, Inc. Why is an Ecosystem Important? An Ecosystem is a collection of common material Developed

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

HPC Architectures evolution: the case of Marconi, the new CINECA flagship system. Piero Lanucara

HPC Architectures evolution: the case of Marconi, the new CINECA flagship system. Piero Lanucara HPC Architectures evolution: the case of Marconi, the new CINECA flagship system Piero Lanucara Many advantages as a supercomputing resource: Low energy consumption. Limited floor space requirements Fast

More information

Overview of Reedbush-U How to Login

Overview of Reedbush-U How to Login Overview of Reedbush-U How to Login Information Technology Center The University of Tokyo http://www.cc.u-tokyo.ac.jp/ Supercomputers in ITC/U.Tokyo 2 big systems, 6 yr. cycle FY 11 12 13 14 15 16 17 18

More information

Arm in HPC. Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm Arm Limited

Arm in HPC. Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm Arm Limited Arm in HPC Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm 2019 Arm Limited Arm Technology Connects the World Arm in IOT 21 billion chips in the past year Mobile/Embedded/IoT/ Automotive/GPUs/Servers

More information

Tianhe-2, the world s fastest supercomputer. Shaohua Wu Senior HPC application development engineer

Tianhe-2, the world s fastest supercomputer. Shaohua Wu Senior HPC application development engineer Tianhe-2, the world s fastest supercomputer Shaohua Wu Senior HPC application development engineer Inspur Inspur revenue 5.8 2010-2013 6.4 2011 2012 Unit: billion$ 8.8 2013 21% Staff: 14, 000+ 12% 10%

More information

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions How to run applications on Aziz supercomputer Mohammad Rafi System Administrator Fujitsu Technology Solutions Agenda Overview Compute Nodes Storage Infrastructure Servers Cluster Stack Environment Modules

More information

Fujitsu Petascale Supercomputer PRIMEHPC FX10. 4x2 racks (768 compute nodes) configuration. Copyright 2011 FUJITSU LIMITED

Fujitsu Petascale Supercomputer PRIMEHPC FX10. 4x2 racks (768 compute nodes) configuration. Copyright 2011 FUJITSU LIMITED Fujitsu Petascale Supercomputer PRIMEHPC FX10 4x2 racks (768 compute nodes) configuration PRIMEHPC FX10 Highlights Scales up to 23.2 PFLOPS Improves Fujitsu s supercomputer technology employed in the FX1

More information

GOING ARM A CODE PERSPECTIVE

GOING ARM A CODE PERSPECTIVE GOING ARM A CODE PERSPECTIVE ISC18 Guillaume Colin de Verdière JUNE 2018 GCdV PAGE 1 CEA, DAM, DIF, F-91297 Arpajon, France June 2018 A history of disruptions All dates are installation dates of the machines

More information

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED Post-K Supercomputer Overview 1 Post-K supercomputer overview Developing Post-K as the successor to the K computer with RIKEN Developing HPC-optimized high performance CPU and system software Selected

More information

An Introduction to the Intel Xeon Phi. Si Liu Feb 6, 2015

An Introduction to the Intel Xeon Phi. Si Liu Feb 6, 2015 Training Agenda Session 1: Introduction 8:00 9:45 Session 2: Native: MIC stand-alone 10:00-11:45 Lunch break Session 3: Offload: MIC as coprocessor 1:00 2:45 Session 4: Symmetric: MPI 3:00 4:45 1 Last

More information

Designed for Maximum Accelerator Performance

Designed for Maximum Accelerator Performance Designed for Maximum Accelerator Performance A dense, GPU-accelerated cluster supercomputer that delivers up to 329 double-precision GPU teraflops in one rack. This power- and spaceefficient system can

More information

Design and Evaluation of a 2048 Core Cluster System

Design and Evaluation of a 2048 Core Cluster System Design and Evaluation of a 2048 Core Cluster System, Torsten Höfler, Torsten Mehlan and Wolfgang Rehm Computer Architecture Group Department of Computer Science Chemnitz University of Technology December

More information

ARM High Performance Computing

ARM High Performance Computing ARM High Performance Computing Eric Van Hensbergen Distinguished Engineer, Director HPC Software & Large Scale Systems Research IDC HPC Users Group Meeting Austin, TX September 8, 2016 ARM 2016 An introduction

More information

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning

IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning IME (Infinite Memory Engine) Extreme Application Acceleration & Highly Efficient I/O Provisioning September 22 nd 2015 Tommaso Cecchi 2 What is IME? This breakthrough, software defined storage application

More information

Benchmark results on Knight Landing architecture

Benchmark results on Knight Landing architecture Benchmark results on Knight Landing architecture Domenico Guida, CINECA SCAI (Bologna) Giorgio Amati, CINECA SCAI (Roma) Milano, 21/04/2017 KNL vs BDW A1 BDW A2 KNL cores per node 2 x 18 @2.3 GHz 1 x 68

More information

IBM CORAL HPC System Solution

IBM CORAL HPC System Solution IBM CORAL HPC System Solution HPC and HPDA towards Cognitive, AI and Deep Learning Deep Learning AI / Deep Learning Strategy for Power Power AI Platform High Performance Data Analytics Big Data Strategy

More information

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2017 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Дмитрий Рябцев, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture

More information

IT4Innovations national supercomputing center. Branislav Jansík

IT4Innovations national supercomputing center. Branislav Jansík IT4Innovations national supercomputing center Branislav Jansík branislav.jansik@vsb.cz Anselm Salomon Data center infrastructure Anselm and Salomon Anselm Intel Sandy Bridge E5-2665 2x8 cores 64GB RAM

More information

Lustre2.5 Performance Evaluation: Performance Improvements with Large I/O Patches, Metadata Improvements, and Metadata Scaling with DNE

Lustre2.5 Performance Evaluation: Performance Improvements with Large I/O Patches, Metadata Improvements, and Metadata Scaling with DNE Lustre2.5 Performance Evaluation: Performance Improvements with Large I/O Patches, Metadata Improvements, and Metadata Scaling with DNE Hitoshi Sato *1, Shuichi Ihara *2, Satoshi Matsuoka *1 *1 Tokyo Institute

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

The Earth Simulator Current Status

The Earth Simulator Current Status The Earth Simulator Current Status SC13. 2013 Ken ichi Itakura (Earth Simulator Center, JAMSTEC) http://www.jamstec.go.jp 2013 SC13 NEC BOOTH PRESENTATION 1 JAMSTEC Organization Japan Agency for Marine-Earth

More information

Rechenzentrum HIGH PERFORMANCE SCIENTIFIC COMPUTING

Rechenzentrum HIGH PERFORMANCE SCIENTIFIC COMPUTING Rechenzentrum HIGH PERFORMANCE SCIENTIFIC COMPUTING Contents Scientifi c Supercomputing Center Karlsruhe (SSCK)... 4 Consultation and Support... 5 HP XC 6000 Cluster at the SSC Karlsruhe... 6 Architecture

More information

Technical Computing Suite supporting the hybrid system

Technical Computing Suite supporting the hybrid system Technical Computing Suite supporting the hybrid system Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster Hybrid System Configuration Supercomputer PRIMEHPC FX10 PRIMERGY x86 cluster 6D mesh/torus Interconnect

More information

Innovative Alternate Architecture for Exascale Computing. Surya Hotha Director, Product Marketing

Innovative Alternate Architecture for Exascale Computing. Surya Hotha Director, Product Marketing Innovative Alternate Architecture for Exascale Computing Surya Hotha Director, Product Marketing Cavium Corporate Overview Enterprise Mobile Infrastructure Data Center and Cloud Service Provider Cloud

More information

Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters

Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters Communication-Computation Overlapping with Dynamic Loop Scheduling for Preconditioned Parallel Iterative Solvers on Multicore/Manycore Clusters Kengo Nakajima, Toshihiro Hanawa Information Technology Center,

More information

FUJITSU PHI Turnkey Solution

FUJITSU PHI Turnkey Solution FUJITSU PHI Turnkey Solution Integrated ready to use XEON-PHI based platform Dr. Pierre Lagier ISC2014 - Leipzig PHI Turnkey Solution challenges System performance challenges Parallel IO best architecture

More information

System Software Stack for the Next Generation High-Performance Computers

System Software Stack for the Next Generation High-Performance Computers 1,2 2 Gerofi Balazs 1 3 2 4 4 5 6 7 7 PC CPU PC OS MPI I/O System Software Stack for the Next Generation High-Performance Computers Yutaka Ishikawa 1,2 Atsushi Hori 2 Gerofi Balazs 1 Masamichi Takagi 3

More information

The way toward peta-flops

The way toward peta-flops The way toward peta-flops ISC-2011 Dr. Pierre Lagier Chief Technology Officer Fujitsu Systems Europe Where things started from DESIGN CONCEPTS 2 New challenges and requirements! Optimal sustained flops

More information

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency The next generation supercomputer and NWP system of JMA Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency Contents JMA supercomputer systems Current system (Mar

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson a.jackson@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past,

More information

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory

Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Managing HPC Active Archive Storage with HPSS RAIT at Oak Ridge National Laboratory Quinn Mitchell HPC UNIX/LINUX Storage Systems ORNL is managed by UT-Battelle for the US Department of Energy U.S. Department

More information

Barcelona Supercomputing Center

Barcelona Supercomputing Center www.bsc.es Barcelona Supercomputing Center Centro Nacional de Supercomputación EMIT 2016. Barcelona June 2 nd, 2016 Barcelona Supercomputing Center Centro Nacional de Supercomputación BSC-CNS objectives:

More information

Key Technologies for 100 PFLOPS. Copyright 2014 FUJITSU LIMITED

Key Technologies for 100 PFLOPS. Copyright 2014 FUJITSU LIMITED Key Technologies for 100 PFLOPS How to keep the HPC-tree growing Molecular dynamics Computational materials Drug discovery Life-science Quantum chemistry Eigenvalue problem FFT Subatomic particle phys.

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

DDN About Us Solving Large Enterprise and Web Scale Challenges

DDN About Us Solving Large Enterprise and Web Scale Challenges 1 DDN About Us Solving Large Enterprise and Web Scale Challenges History Founded in 98 World s Largest Private Storage Company Growing, Profitable, Self Funded Headquarters: Santa Clara and Chatsworth,

More information

I/O and Scheduling aspects in DEEP-EST

I/O and Scheduling aspects in DEEP-EST I/O and Scheduling aspects in DEEP-EST Norbert Eicker Jülich Supercomputing Centre & University of Wuppertal The research leading to these results has received funding from the European Community's Seventh

More information

Tightly Coupled Accelerators Architecture

Tightly Coupled Accelerators Architecture Tightly Coupled Accelerators Architecture Yuetsu Kodama Division of High Performance Computing Systems Center for Computational Sciences University of Tsukuba, Japan 1 What is Tightly Coupled Accelerators

More information

Update on LRZ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities. 2 Oct 2018 Prof. Dr. Dieter Kranzlmüller

Update on LRZ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities. 2 Oct 2018 Prof. Dr. Dieter Kranzlmüller Update on LRZ Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities 2 Oct 2018 Prof. Dr. Dieter Kranzlmüller 1 Leibniz Supercomputing Centre Bavarian Academy of Sciences and

More information

Infinite Memory Engine Freedom from Filesystem Foibles

Infinite Memory Engine Freedom from Filesystem Foibles 1 Infinite Memory Engine Freedom from Filesystem Foibles James Coomer 25 th Sept 2017 2 Bad stuff can happen to filesystems Malaligned High Concurrency Random Shared File COMPUTE NODES FILESYSTEM 3 And

More information

FUJITSU HPC and the Development of the Post-K Supercomputer

FUJITSU HPC and the Development of the Post-K Supercomputer FUJITSU HPC and the Development of the Post-K Supercomputer Toshiyuki Shimizu Vice President, System Development Division, Next Generation Technical Computing Unit 0 November 16 th, 2016 Post-K is currently

More information

Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy

Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy Short Talk: System abstractions to facilitate data movement in supercomputers with deep memory and interconnect hierarchy François Tessier, Venkatram Vishwanath Argonne National Laboratory, USA July 19,

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System x idataplex CINECA, Italy Lenovo System

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

Oak Ridge National Laboratory Computing and Computational Sciences

Oak Ridge National Laboratory Computing and Computational Sciences Oak Ridge National Laboratory Computing and Computational Sciences OFA Update by ORNL Presented by: Pavel Shamis (Pasha) OFA Workshop Mar 17, 2015 Acknowledgments Bernholdt David E. Hill Jason J. Leverman

More information

Cheyenne NCAR s Next-Generation Data-Centric Supercomputing Environment

Cheyenne NCAR s Next-Generation Data-Centric Supercomputing Environment Cheyenne NCAR s Next-Generation Data-Centric Supercomputing Environment David Hart, NCAR/CISL User Services Manager June 23, 2016 1 History of computing at NCAR 2 2 Cheyenne Planned production, January

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

Japan HPC Programs - The Japanese national project of the K computer -

Japan HPC Programs - The Japanese national project of the K computer - TERATEC 2011 Forum Japan HPC Programs - The Japanese national project of the K computer - June 28,2011 Tadashi WATANABE Next-Generation Supercomputer R&D Center RIKEN 0 Contents Outline of the Project

More information

Intel Xeon Phi Coprocessor

Intel Xeon Phi Coprocessor Intel Xeon Phi Coprocessor http://tinyurl.com/inteljames twitter @jamesreinders James Reinders it s all about parallel programming Source Multicore CPU Compilers Libraries, Parallel Models Multicore CPU

More information

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2016 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture How Programming

More information

Fujitsu and the HPC Pyramid

Fujitsu and the HPC Pyramid Fujitsu and the HPC Pyramid Wolfgang Gentzsch Executive HPC Strategist (external) Fujitsu Global HPC Competence Center June 20 th, 2012 1 Copyright 2012 FUJITSU "Fujitsu's objective is to contribute to

More information

HIGH PERFORMANCE COMPUTING FROM SUN

HIGH PERFORMANCE COMPUTING FROM SUN HIGH PERFORMANCE COMPUTING FROM SUN Update for IDC HPC User Forum, Norfolk, VA April 2008 Bjorn Andersson Director, HPC and Integrated Systems Sun Microsystems Sun Constellation System Integrating the

More information

White paper Advanced Technologies of the Supercomputer PRIMEHPC FX10

White paper Advanced Technologies of the Supercomputer PRIMEHPC FX10 White paper Advanced Technologies of the Supercomputer PRIMEHPC FX10 Next Generation Technical Computing Unit Fujitsu Limited Contents Overview of the PRIMEHPC FX10 Supercomputer 2 SPARC64 TM IXfx: Fujitsu-Developed

More information

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Office of Science Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Buddy Bland Project Director Oak Ridge Leadership Computing Facility November 13, 2012 ORNL s Titan Hybrid

More information

LBRN - HPC systems : CCT, LSU

LBRN - HPC systems : CCT, LSU LBRN - HPC systems : CCT, LSU HPC systems @ CCT & LSU LSU HPC Philip SuperMike-II SuperMIC LONI HPC Eric Qeenbee2 CCT HPC Delta LSU HPC Philip 3 Compute 32 Compute Two 2.93 GHz Quad Core Nehalem Xeon 64-bit

More information