II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Microprocessors and Microcontrollers. Answer ONE question from each unit.

Size: px
Start display at page:

Download "II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Microprocessors and Microcontrollers. Answer ONE question from each unit."

Transcription

1 Hall Ticket Number: 14 CS/IT 503 November, 2017 Fifth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Information Technology Microprocessors and Microcontrollers Maximum : 60 Marks (1X12 = 12 Marks) (4X12=48 Marks) 1. Answer all questions (1X12=12 Marks) a) What is the function of the accumulator? b) Why are the program counter and the stack pointer 16-bit registers? c) What is MACRO? d) What is an interrupt? e) What is BHE? f) What is the maximum memory size that can be addressed by 8086? g) Give the additional features of 8259A controller? h) Write about CALL statement in 8051? i) Write a program to perform multiplication of 2 no s using 8051? j) List the addressing modes of 8051? k) What is the difference between the Microprocessors and Microcontrollers? l) List at least 2 features of 8051 microcontroller. UNIT I 2. a) Write an ALP in 8086 to find a maximum number in the array of 10 numbers b) Explain the different string Manipulation instructions of 8086 microprocessor (OR) 3. a) Differentiate between procedures and macros with examples b) Develop a program to arrange ten bytes of data in descending order UNIT II 4. a) Describe the functions of the following pins of 8086 i). NMI ii). CLK iii). BHE/S7 b) With a neat timing diagram explain how a I/O READ operation is performed by 8086 (OR) 5. a) Explain the maximum mode operation of 8086 b) Explain Micro Computer system architecture with a neat diagram. UNIT III 6. a) Explain the internal architecture of M b) Discuss the procedure for processing of interrupts by M (OR) 7. a) Explain LOOP, JUMP instructions in 8051 b) With a neat block diagram explain the working of 8237 DMA controller. UNIT IV 8. a) Explain the addressing modes of 8051 with suitable examples b) Write about programmable Timers in the MCU s (OR) 9. a) Describe the interrupt structure of the 8051 microcontroller b) Draw the architectural diagram of 8051 microcontroller and explain in detail about each block

2 14 CS/IT 503 II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION November, 2017 Fifth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. Answer Question No.1 compulsorily. Scheme Information Technology Microprocessors and Microcontrollers Maximum : 60 Marks (1X12 = 12 Marks) (4X12=48 Marks) (1X12 = 12 Marks) a) What is the function of the accumulator? Functionality of Accumulator 1M An accumulator is a register for short-term, intermediate storage of arithmetic and logic data in a computer's CPU (central processing unit).... In a modern computers, any register can function as an accumulator. The most elementary use for an accumulator is adding a sequence of numbers. b) Why are the program counter and the stack pointer 16-bit registers? Explanation 1M Program Counter (PC) and Stack Pointer (SP) are basically used to hold 16-bit memory addresses.pc stores the 16-bit memory address of the next instruction to be fetched.sp can be used to temporarily store the 16-bit memory address as well as data.so PC & SP are 16-bit registers. 8 bit address can only locate/address 256 memory locations. 16 bit address can locate up to 64kb. Even if 8 bit system can have more than 256 bytes of Ram/Rom/Flash (say whatever). And hence the need of 16 bit PC & SP instead of 8 bits. Data registers or data bus could be just 8 bits still. c) What is MACRO? Definition 1M When the repeated group of instruction is too short or not suitable to be implemented as a procedure,we use a MACRO. A macro is a group of instructions to which a name is given. Each time a macro is called in a program, the assembler will replace the macro name with the group of instructions. d) What is an interrupt? Definition 1M Interrupt is a signal send by an external device to the processor, to the processor to perform a particular task or work. Mainly in the microprocessor based system the interrupts are used for data transfer between the peripheral and the microprocessor. e) What is BHE? Definition 1M BUS HIGH ENABLE : During T1 the bus high enable signal (BHE) should be used to enable data onto the most significant half of the data bus, pins D15±D8. Eight-bit oriented devices tied to the upper half of the bus would normally use BHE to condition chip select functions. BHE is LOW during T1 for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. The S7 status information is available during T2, T3, and T4. The signal is active LOW, and floats to 3-state OFF in `hold''. It is LOW during T1 for the first interrupt acknowledge cycle. f) What is the maximum memory size that can be addressed by 8086? Max memory size 1M All internal registers, as well as internal and external data buses, are 16 bits wide, which firmly established the "16-bit microprocessor" identity of the A 20-bit external address bus provides a 1 MB physical address space (2 20 = 1,048,576) g) Give the additional features of 8259A controller? At least 2 features 1M The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a single a5v supply. Circuitry is static, requiring no clock input.

3 h) Write about CALL statement in 8051? CALL statement 1M Another control transfer instruction is the CALL instruction, which is used to call a subroutine. Subroutines are often used to perform tasks that need to be performed frequently. This makes a program more structured in addition to saving memory space. In the 8051 there are two instructions for call: LCALL (long call) and ACALL (absolute call). Deciding which one to use depends on the target address. i) Write a program to perform multiplication of 2 no s using 8051? Program 1M org 00h mov r1,#3h mov r2,#2h mov a,r1 mov b,r2 mul ab end j) List the addressing modes of 8051? List of addressing modes 1M The CPU can access data in various ways, which are called addressing modes 1) Immediate 2) Register 3) Direct 4) Register indirect 5) Indexed k) What is the difference between the Microprocessors and Microcontrollers? At least 2 differences 1M Microprocessor Micro Controller Microprocessor is heart of Computer system. It is just a processor. Memory and I/O components have to be connected externally Micro Controller is a heart of embedded system. Micro controller has external processor along with internal memory and i/o components l) List at least 2 features of 8051 microcontroller. At least 2 features 1M 64KB Program Memory address space 64KB Data Memory address space 4K bytes of on-chip Program Memory 128 bytes of on-chip Data RAM 32 bidirectional and individually addressable I/0 lines Two 16-bit timer/counters

4 Answer ONE question from each unit. UNIT I (4X12=48 Marks) 2 a) Write an ALP in 8086 to find a maximum number in the array of 10 numbers data segment arr db 5h,4h,3h,2h,1h,Ah,8h,7h,9h,6h max db 1 dup(0) data ends code segment assume cs:code,ds:data start: mov ax,data mov ds,ax xor ax,ax lea si,arr mov cl,09h mov al,[si] mov max,al label1: inc si mov al,[si] cmp max,al jl swap dec cx jne label1 jmp label2 swap: xchg max,al dec cx jne label1 label2: mov ax,4c00h int 21h code ends end start Program b) Explain the different string Manipulation instructions of 8086 microprocessor List of string Manipulation instructions 2M

5 Explanation 4M (OR) 3 a) Differentiate between procedures and macros with examples At least 6 differences Defining procedures: Assembler provides PROC and ENDP directives in order to define procedures. The directive PROC indicates beginning of a procedure. Its general form is: Procedure_name PROC [NEAR FAR] NEAR FAR is optional and gives the types of procedure. If not used, assembler assumes the proce dure as near procedure. All procedures are defined in code segment. The directive ENDPindicates end of a procedure. Its general form is: Procedure_name ENDP For example, Factorial PROC NEAR Factorial ENDP

6 Defining macros: Before using macros, we have to define them. Macros are defined before the definition of segments.assembler provides two directives for defining a macro: MACRO and ENDM.MACRO directive informs the assembler the beginning of a macro. The general form is: Macro_name MACRO argument1, argument2, Arguments are optional. ENDM informs the assembler the end of the macro. Its general form is : ENDM b) Develop a program to arrange ten bytes of data in descending order Program DATA SEGMENT LIST DB 98H,52H,68H,32H,72H DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX XOR AX,AX MOV SI,OFFSET LIST MOV CL,04H L1: MOV DL,CL MOV SI,OFFSET LIST L2: MOV AL,[SI] CMP AL,[SI+1] JA L3 XCHG AL,[SI+1] XCHG AL,[SI] L3: INC SI DEC DL JNZ L2 DEC CL JNZ L1 INT 21H CODE ENDS END START Unit II 4 a) Describe the functions of the following pins of 8086 i). NMI ii). CLK iii). BHE/S7 i). NMI It stands for non-maskable interrupt and is available at pin 17. It is an edge triggered input, which causes an interrupt request to the microprocessor. This signal is like wait state and is available at pin 23. When this signal is high, then the processor has to wait for IDLE state, else the execution continues. ii). CLK Clock signal Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz. iii). BHE/S7 BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of data using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is active. 2M 2M 2M

7 b) With a neat timing diagram explain how a I/O READ operation is performed by 8086 Explanation of I/O READ operation 3M Asserts M/IO for reading from Memory or Port. Asserts ALE High to enable Address Latches. Sends desired address on A0-A19 pins. Asserts ALE Low to latch address on external latches. Removes the address from A0-A19 Asserts RD Low to output data into data bus. Assets READY Low to send 8086 into wait state. In Wait State, 8086 will wait for addressed memory or port to output data. Asserts Ready High to specify that addressed memory or port has placed data on data bus. DT/R is Low to specify that 8086 is receiving the data. DEN is Low to enable data buffers for transfer data from addressed memory or port to Timing diagram 3M (OR) 5 a) Explain the maximum mode operation of 8086 The following pin function descriptions are for the microprocessor 8086 in either minimum or maximum mode. AD0 - AD15 (I/O): Address Data Bus:These lines constitute the time multiplexed memory/io address during the first clock cycle (T1) and data during T2, T3 and T4 clock cycles. A0 is analogous to BHE for the lower byte of the data bus, pins D0-D7. A0 bit is Low during T1 state when a byte is

8 to be transferred on the lower portion of the bus in memory or I/O operations. 8-bit oriented devices tied to the lower half would normally use A0 to condition chip select functions. These lines are active high and float to tri-state during interrupt acknowledge and local bus "Hold acknowledge". A19/S6, A18/S5, A17/S4, A16/S3 (0): Address/Status :During T1 state these lines are the four most significant address lines for memory operations. During I/O operations these lines are low. During memory and I/O operations, status information is available on these lines during T2, T3, and T4 states.s5: The status of the interrupt enable flag bit is updated at the beginning of each cycle. The status of the flag is indicated through this bus. S6: When Low, it indicates that 8086 is in control of the bus. During a "Hold acknowledge" clock period, the 8086 tri-states the S6 pin and thus allows another bus master to take control of the status bus. S3 & S4: Lines are decoded as follows: A17/S4 A16/S3 Function 0 0 Extra segment access 0 1 Stack segment access 1 0 Code segment access 1 1 Data segment access BHE /S7 (O): Bus High Enable/Status: During T1 state the BHE should be used to enable data onto the most significant half of the data bus, pins D15 - D8. Eight-bit oriented devices tied to the upper half of the bus would normally use BHE to control chip select functions. BHE is Low during T1 state of read, write and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. RD (O): READ: The Read strobe indicates that the processor is performing a memory or I/O read cycle. This signal is active low during T2 and T3 states and the Tw states of any read cycle. This signal floats to tri-state in "hold acknowledge cycle". TEST (I): TEST pin is examined by the "WAIT" instruction. If the TEST pin is Low, execution continues. Otherwise the processor waits in an "idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK. INTR (I): Interrupt Request:It is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. NMI (I): Non-Maskable Interrupt: An edge triggered input, causes a type-2 interrupt. A subroutine is vectored to via the interrupt vector look up table located in system memory. NMI is not maskable internally by software. Reset (I): Reset causes the processor to immediately terminate its present activity. Ready (I):Ready is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The READY signal from memory or I/O is synchronized by the 8284 clock generator to form READY. This signal is active HIGH. The 8086 READY input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not met. CLK (I): Clock: Clock provides the basic timing for the processor and bus controller. It is asymmetric with 33% duty cycle to provide optimized internal timing. Minimum frequency of 2 MHz is required, since the design of 8086 processors incorporates dynamic cells. MN/MX (I): Maximum / Minimum: This pin indicates what mode the processor is to operate in. In minimum mode, the 8086 itself generates all bus control signals. In maximum mode the three status signals are to be decoded to generate all the bus control signals. Minimum Mode Pins The following 8 pins function descriptions are for the 8086 in minimum mode;

9 MN/ MX = 1. The corresponding 8 pins function descriptions for maximum mode is explained later. S2, S1, S0 (O): Status Pins: These pins are active during T4, T1 and T2 states and is returned to passive state (1,1,1 during T3 or Tw (when ready is inactive). These are used by the 8288 bus controller to generate all memory and I/O operation) access control signals. Any change by S2, S1, S0 during T4 is used to indicate the beginning of a bus cycle. These status lines are encoded as shown in table 3. S0, QS1 (O): Queue Status: Queue Status is valid during the clock cycle after which the queue operation is performed. QS0, QS1 provide status to allow external tracking of the internal 8086 instruction queue. LOCK :It indicates to another system bus master, not to gain control of the system bus while LOCK is active Low. The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the instruction. This signal is active Low and floats to tri-state OFF during 'hold acknowledge'. RQ/GT0 and RQ/GT1 (I/O): Request/Grant These pins are used by other processors in a multi-processor organization. Local bus masters of other processors force the processor to release the local bus at the end of the processors current bus cycle. Each pin is bi-directional and has an internal pull up resistors. Hence they may be left unconnected. b) Explain Micro Computer system architecture with a neat diagram. A Microcomputer Fetches, Decodes, and Executes an instruction. Fetch Operation: The CPU sends address of required instruction to Memory (port) through address bus. Then Memory (Port) sends the instruction through data bus to the CPU. Decode: The CPU then decodes the instruction fetched from memory. Determines the set of actions. Selects the sequence of microinstructions to be carried out etc. Execute: Finally CPU performs the operation according to the instruction. Memory Read Memory to CPU. Memory Write CPU to Memory. Port Read I/O Port to CPU Port Write CPU to I/O Port

10 Unit III 6 a) Explain the internal architecture of 8259 Architectural Diagram of M 8M Explanation 4M 1) When 2 interrupts come at a time to 8259 Interrupt inputs (IR0-IR7), the Highest priority will be for IR0 and Lowest priority will be for IR7. 2) Priority of Interrupts is based on the 4 blocks in They are 3) Interrupt Request Register (IRR): Keeps track of which interrupts are asking for service. 4) Interrupt Mask Register (IMR): Disable or enable individual interrupt inputs. 5) In-Service Register (ISR): Keeps track of which interrupts are being serviced. 6) Priority Resolver: Determines when an interrupt request on one of the IR input gets serviced Functional Description 7) CS for enabling the device. 8) IR0-IR7 are Interrupt input pins. 9) WR for accepting command words from ) RD for releasing status onto the data bus. 11) Cas2-cas0 are used to connect multiple 8259 devices. 12) INT is used to interrupt 8086 when an interrupt is generated in ) INTA is used to enable the interrupt pointer onto the data bus. 14) A0 is connected to 8086 Address line A1. 15) SP /EN is used for Master Slave or Buffer Enable. b) Discuss the procedure for processing of interrupts by 8259 Procedure 4M 4M

11 (OR) 7 a) Explain LOOP, JUMP instructions in 8051 LOOP instructions 3M Repeating a sequence of instructions a certain number of times is called a loop Loop action is performed by DJNZ reg, Label The register is decremented If it is not zero, it jumps to the target address referred to by the label Prior to the start of loop the register is loaded with the counter for the number of repetitions Counter can be R0 R7 or RAM location. If we want to repeat an action more times than 256, we use a loop inside a loop, which is called nested loop We use multiple registers to hold the count Write a program to (a) load the accumulator with the value 55H, and (b) complement the ACC 700 times MOV A,#55H ;A=55H MOV R3,#10 ;R3=10, outer loop count NEXT: MOV R2,#70 ;R2=70, inner loop count AGAIN: CPL A ; complement A register DJNZ R2,AGAIN ; repeat it 70 times DJNZ R3,NEXT JUMP instructions 3M The unconditional jump is a jump in which control is transferred unconditionally to the target location LJMP (long jump) 3-byte instruction First byte is the opcode Second and third bytes represent the 16-bit target address Any memory location from 0000 to FFFFH SJMP (short jump) 2-byte instruction First byte is the opcode Second byte is the relative target address 00 to FFH (forward +127 and backward -128 bytes from the current PC) Department of Computer Science and Information Engineering National Cheng Kung University, TA

12 IWAN 8 HANEL b) With a neat block diagram explain the working of 8237 DMA controller. Block diagram of M working of 8237 DMA controller 3M When DMA module needs buses it sends HOLD signal to processor CPU responds by HLDA (hold acknowledge) Then DMA module can use buses Steps for transfer data from Memory to I/O Device: 1. Device requests service of DMA by pulling DREQ (DMA request) high 2. DMA puts high on HRQ (hold request), 3. CPU finishes present bus cycle (not necessarily present instruction) and puts high on HDLA (hold acknowledge). HOLD remains active for duration of DMA 4. DMA activates DACK (DMA acknowledge), telling device to start transfer 5. DMA starts transfer by putting address of first byte on address bus and activating MEMR; 6. It then activates IOW to write to peripheral. DMA decrements counter and increments address pointer. Repeat until count reaches zero 7. DMA deactivates HRQ, giving bus back to CPU 8. DMA uses MEMW and IOR for I/O device read. Unit IV 8 a) Explain the addressing modes of 8051 with suitable examples List of addressing modes 2M 1. Immediate Addressing 2. Direct Addressing 3. Register Addressing 4. Register Indirect Addressing 5. Implied Addressing. Explanation 4M 1. IMMEDIATE ADDRESSING : In immediate addressing mode, an 8/16 bit immediate data / constant is specified in the instruction itself. MOV A, #6CH :- Move the immediate data 6CH given in the instruction to A-register. MOV DPTR, #0100H :- Load the immediate 16-bit constant given in the instruction in DPTR (Data pointer). This constant will be an address of data memory location. 2. DIRECT ADDRESSING : In direct addressing mode, the address of the data is directly specified in the instruction. The direct address can be the address of an internal data RAM location (00H to 7FH) or address of special function register (80H to FFH). MOV A, 07 H :- The address of R7 register of bank-0 is 07. This instruction will move the content of R7 register to A-register (Accumulator). 3.REGISTER ADDRESSING : In register addressing mode, the instruction will specify the name of register in which data available. MOV R2,A :- The content of A-register (accumulator) is moved to register R2. 4. REGISTER INDIRECT ADDRESSING : In this mode, the instruction specifies the name of the register in which the address of the data is available. The internal data RAM locations (00H to 7FH) can be addressed indirectly through registers R1 and R0. The external RAM can be addressed indirectly through DPTR. MOV :- The internal RAM Location R0 holds the address of data. The content of RAM location addressed by R0 is moved to A-register (Accumulator).

13 5. IMPLIED ADDRESSING : In implied addressing mode, the instruction itself specifies the data to be operated by the instruction. CPL C :- Complement carry flag. b) Write about programmable Timers in the MCU s The 8051 has two timers: timer0 and timer1. They can be used either as timers or as counters. Both timers are 16 bits wide. Since the 8051 has an 8-bit architecture, each 16-bit is accessed as two separate registers of low byte and high byte. First we shall discuss about Timer0 registers. Timer0 registers is a 16 bits register and accessed as low byte and high byte. The low byte is referred as a TL0 and the high byte is referred as TH0. These registers can be accessed like any other registers. Timer1 registers is also a 16 bits register and is split into two bytes, referred to as TL1 and TH1. TMOD (timer mode) Register: This is an 8-bit register which is used by both timers 0 and 1 to set the various timer modes. In this TMOD register, lower 4 bits are set aside for timer0 and the upper 4 bits are set aside for timer1. In each case, the lower 2 bits are used to set the timer mode and upper 2 bits to specify the operation. TMOD In upper or lower 4 bits, first bit is a GATE bit. Every timer has a means of starting and stopping. Some timers do this by software, some by hardware, and some have both software and hardware controls. The hardware way of starting and stopping the timer by an external source is achieved by making GATE=1 in the TMOD register. And if we change to GATE=0 then we do no need external hardware to start and stop the timers. The second bit is C/T bit and is used to decide whether a timer is used as a time delay generator or an event counter. If this bit is 0 then it is used as a timer and if it is 1 then it is used as a counter. In upper or lower 4 bits, the last bits third and fourth are known as M1 and M0 respectively. These are used to select the timer mode. Mode 1- It is a 16-bit timer; therefore it allows values from 0000 to FFFFH to be loaded into the timer s registers TL and TH. After TH and TL are loaded with a 16-bit initial value, the timer must be

14 started. We can do it by SETB TR0 for timer 0 and SETB TR1 for timer 1. Mode0- Mode 0 is exactly same like mode 1 except that it is a 13-bit timer instead of 16-bit. The 13-bit counter can hold values between 0000 to 1FFFH in TH-TL. Therefore, when the timer reaches its maximum of 1FFH, it rolls over to 0000, and TF is raised. Mode 2- It is an 8 bit timer that allows only values of 00 to FFH to be loaded into the timer s register TH. After TH is loaded with 8 bit value, the 8051 gives a copy of it to TL. Then the timer must be started. Mode3- Mode 3 is also known as a split timer mode. Timer 0 and 1 may be programmed to be in mode 0, 1 and 2 independently of similar mode for other timer. This is not true for mode 3; timers do not operate independently if mode 3 is chosen for timer 0. Placing timer 1 in mode 3 causes it to stop counting; the control bit TR1 and the timer 1 flag TF1 are then used by timer0. TCON register- Bits and symbol and functions of every bits of TCON are as follows: (OR) 9 a) Describe the interrupt structure of the 8051 microcontroller Interrupt definition 1M An interrupt is an external or internal event that interrupts the microcontroller to inform it that a device needs its service. interrupt Types 2M Six interrupts are allocated as follows Reset power-up reset Two interrupts are set aside for the timers: one for timer 0 and one for timer 1 Two interrupts are set aside for hardware external interrupts P3.2 and P3.3 are for the external Hardware interrupts INT0 (or EX1), and INT1 (or EX2) Serial communication has a single interrupt that belongs to both receive and transfer Interrupt service routine 3M For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler When an interrupt is invoked, the microcontroller runs the interrupt service routine For every interrupt, there is a fixed location in memory that holds the address of its ISR The group of memory locations set aside to hold the addresses of ISRs is called interrupt vector table

15 b) Draw the architectural diagram of 8051 microcontroller and explain in detail about each block Architectural diagram of M Following is the block diagram of Microcontroller Let us have a look at each part or block of this Architecture: Microcontroller Block Diagram Explanation: 3M Central Processor Unit(CPU): As you may know that CPU is the brain of any processing device. It monitors and controls all operations that are performed in the Microcontroller. User have no control over the work of CPU. It reads program written in ROM memory and executes them and do the expected task. Interrupts: As its name suggests, Interrupt is a subroutine call that interrupts Microcontroller's main operation or work and causes it to execute some another program which is more important at that time. Memory: Microcontroller requires a program which is a collection of instructions. This program tells Microcontroller to do specific tasks. These programs requires a memory on which these can be saved and read by Microcontroller to perform specific operation. The memory which is used to store the program of Microcontroller, is known as code memory or Program memory. It is known as 'ROM'(Read Only Memory). Bus: Basically Bus is a collection of wires which work as a communication channel or medium for transfer of Data. These buses consists of 8, 16 or more wires. Thus these can carry 8 bits, 16 bits simultaneously. Buses are of two types: Address Bus: Microcontroller 8051 has a 16 bit address bus. It used to address memory locations. It is used to transfer the address from CPU to Memory. Data Bus: Microcontroller 8051 has 8 bits data bus. It is used to carry data. Oscillator: As we know Microcontroller is a digital circuit device, therefore it requires clock for its operation. For this purpose, Microcontroller 8051 has an on-chip oscillator which works as a clock source for Central Processing Unit. As the output pulses of oscillator are stable therefore it enables synchronized work of all parts of 8051 Microcontroller. Input/Output Port: As we know that Microcontroller is used in Embedded systems to control the operation of machines. Therefore to connect it to other machines, devices or peripherals we requires I/O interfacing ports in Microcontroller. Timers/Counters: Microcontroller 8051 has 2 16 bit timers and counters. The counters are divided into 8 bit registers. The timers are used for measurement of intervals, to determine pulse width etc.

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

EC 6504 Microprocessor and Microcontroller. Unit II System Bus Structure

EC 6504 Microprocessor and Microcontroller. Unit II System Bus Structure EC 6504 Microprocessor and Microcontroller Unit II 8086 System Bus Structure Syllabus: 8086 Signals Basic Configurations System bus timing System Design using 8086 IO Programming Introduction to multiprogramming

More information

8086 Interrupts and Interrupt Responses:

8086 Interrupts and Interrupt Responses: UNIT-III PART -A INTERRUPTS AND PROGRAMMABLE INTERRUPT CONTROLLERS Contents at a glance: 8086 Interrupts and Interrupt Responses Introduction to DOS and BIOS interrupts 8259A Priority Interrupt Controller

More information

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE 1 CHAPTER 6 HARDWARE ARCHITECTURE OF 8086 8086 Architecture: 6.1 8086 Pin diagram 8086 is a 40 pin DIP using CHMOS technology. It has 2 GND s as circuit complexity demands a large amount of current flowing

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors OVERVIEW UNIT II Introduction to 8086 microprocessors Architecture of 8086 processors Register Organization of 8086 Memory Segmentation of 8086 Pin Diagram of 8086 Timing Diagrams for 8086 Interrupts of

More information

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK Subject Code : EC307 Subject Name : Microprocessor and Interfacing Year & Sem : III Year, V Sem

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

Lecture Note On Microprocessor and Microcontroller Theory and Applications

Lecture Note On Microprocessor and Microcontroller Theory and Applications Lecture Note On Microprocessor and Microcontroller Theory and Applications MODULE: 1 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip

More information

UNIT-IV. The semiconductor memories are organized as two-dimensional arrays of memory locations.

UNIT-IV. The semiconductor memories are organized as two-dimensional arrays of memory locations. UNIT-IV MEMORY INTERFACING WITH 8086: The semi conductor memories are of two types: Static RAM Dynamic RAM The semiconductor memories are organized as two-dimensional arrays of memory locations. For Ex:

More information

8086 Hardware Specification

8086 Hardware Specification Content: Segment 5 8086 Hardware Specification 8086 Modes of operation. Pin diagram and pin function of 8086. 8284A Clock generator operation and pin functions. Prepared By: Mohammed Abdul Kader Lecturer,

More information

PIN DIAGRAM. Richa Upadhyay Prabhu. NMIMS s MPSTME January 19, 2016

PIN DIAGRAM. Richa Upadhyay Prabhu. NMIMS s MPSTME January 19, 2016 PIN DIAGRAM Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 19, 2016 Richa Upadhyay Prabhu (MPSTME) 8080 Microprocessor January 19, 2016 1 / 51 Pin Diagram of 8086 Richa Upadhyay

More information

Overview of Intel 80x86 µp

Overview of Intel 80x86 µp CE444 ١ ٢ 8088/808 µp and Supporting Chips Overview of Intel 80x8 µp ٢ ١ 8088/808 µp ٣ Both are mostly the same with small differences. Both are of bit internal Data bus Both have 0 bit address bus Capable

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Department of Computer Science and Engineering QUESTION BANK Subcode/Subject : CS1304 Microprocessor & Microcontroller Year/Sem: III / V UNIT I THE 8085 MICROPROCESSOR PART A ( 2Marks) 1. How AD0-AD7 are

More information

FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER CS 305: Microprocessor and Microcontrollers PART A

FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER CS 305: Microprocessor and Microcontrollers PART A Reg No Name FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER 2017 CS 305: Microprocessor and Microcontrollers Max. Marks: 100 Duration: 3 Hours PART A Answer all questions.

More information

Northern India Engineering College, Delhi (GGSIP University) PAPER I

Northern India Engineering College, Delhi (GGSIP University) PAPER I PAPER I Q1.Explain IVT? ANS. interrupt vector table is a memory space for storing starting addresses of all the interrupt service routine. It stores CS:IP PAIR corresponding to each ISR. An interrupt vector

More information

UNIT 1. Introduction to microprocessor. Block diagram of simple computer or microcomputer.

UNIT 1. Introduction to microprocessor. Block diagram of simple computer or microcomputer. UNIT 1 Unit 1 contents at a glance: 1. Architecture of 8086 microprocessor, 2. Register organization, 3. 8086 flag register and its functions, 4. addressing modes of 8086, 5. Pin diagram of 8086, 6. Minimum

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

UNIT-1. It is a 16-bit Microprocessor (μp).it s ALU, internal registers works with 16bit binary word.

UNIT-1. It is a 16-bit Microprocessor (μp).it s ALU, internal registers works with 16bit binary word. UNIT-1 Introduction to 8086: 8086 Microprocessor is an enhanced version of 8085Microprocessor that was designed by Intel in 1976. It is a 16-bit Microprocessor having 20 address lines and16 data lines

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY,VIRUDHUNAGAR

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY,VIRUDHUNAGAR Year/sem: 02/04 Academic Year: 2014-2015 (even) UNIT II THE 8086 SYSTEM BUS STRUCTURE PART A 1. What are the three groups of signals in 8086? The 8086 signals are categorized in three groups. They are:

More information

4. (a) With a neat sketch explain 8237 DMA controller and its operation? (b) With the help of basic cell explain SRAM and DRAM?

4. (a) With a neat sketch explain 8237 DMA controller and its operation? (b) With the help of basic cell explain SRAM and DRAM? Code No: R05220504 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2008 MICROPROCESSORS AND INTERFACING ( Common to Computer Science & Engineering, Information Technology and Computer Science

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Science 1-st Semester Lecture 11: I/O transfer with x86 I/O Transfer I/O Instructions We discussed IN, OUT, INS and OUTS as instructions for the transfer of

More information

EASWARI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND COMMUNICATION QUESTION BANK - V SEMESTER ECE EC2304 MICROPROCESSORS AND MICROCONTROLLERS UNIT I 1. When the 8086 processor is in minimum mode and

More information

History and Basic Processor Architecture

History and Basic Processor Architecture History and Basic Processor Architecture History of Computers Module 1 Section 1 What Is a Computer? An electronic machine, operating under the control of instructions stored in its own memory, that can

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks)

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks) QUESTION BANK EE 6502 / Microprocessor and Microcontroller Unit I- 8085 Processor PART-A (2-Marks) YEAR/SEM : III/V 1. What is meant by Level triggered interrupt? Which are the interrupts in 8085 level

More information

CHAPTER 3 JUMP, LOOP, AND CALL INSTRUCTIONS

CHAPTER 3 JUMP, LOOP, AND CALL INSTRUCTIONS CHAPTER 3 JUMP, LOOP, AND CALL INSTRUCTIONS Looping Repeating a sequence of instructions a certain number of times is called a loop Loop action is performed by DJNZ reg, Label The register is decremented

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller of 8085 microprocessor 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration 8-bit

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

Chapter 13 Direct Memory Access and DMA-Controlled I/O

Chapter 13 Direct Memory Access and DMA-Controlled I/O Chapter 13 Direct Memory Access and DMA-Controlled I/O The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled This allows data to be transferred between

More information

PART - B (Answer all five units, 5 X 10 = 50 Marks)

PART - B (Answer all five units, 5 X 10 = 50 Marks) Code: 13A04507 R13 B.Tech III Year I Semester (R13) Supplementary Examinations June 2017 MICROPROCESSS & INTERFACING (Common to CSE & IT) PART - A (a) Mention the function of the instruction ADD M of 8085

More information

Pin Description, Status & Control Signals of 8085 Microprocessor

Pin Description, Status & Control Signals of 8085 Microprocessor Pin Description, Status & Control Signals of 8085 Microprocessor 1 Intel 8085 CPU Block Diagram 2 The 8085 Block Diagram Registers hold temporary data. Instruction register (IR) holds the currently executing

More information

Microprocessor Architecture

Microprocessor Architecture Microprocessor - 8085 Architecture 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration

More information

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 4 The 8051 Architecture Department of Electrical Engineering Lecture 4 The 8051 Architecture 1 In this Lecture Overview General physical & operational features Block diagram Pin assignments Logic symbol Hardware description Pin

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

AE66/AC66/AT66/ AE108/AC108/AT108 MICROPROCESSORS & MICROCONTROLLERS

AE66/AC66/AT66/ AE108/AC108/AT108 MICROPROCESSORS & MICROCONTROLLERS Q.2 a. Draw pin diagram and signal group diagram of 8085 microprocessor. (8) b. List out the various categories of the 8085 instructions. Give examples of the instructions for each group. (8) Data transfer

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

Week 11 Programmable Interrupt Controller

Week 11 Programmable Interrupt Controller Week 11 Programmable Interrupt Controller 8259 Programmable Interrupt Controller The 8259 programmable interrupt controller (PIC) adds eight vectored priority encoded interrupts to the microprocessor.

More information

UNIT - II PERIPHERAL INTERFACING WITH 8085

UNIT - II PERIPHERAL INTERFACING WITH 8085 UNIT - II PERIPHERAL INTERFACING WITH 8085 Peripheral Interfacing is considered to be a main part of Microprocessor, as it is the only way to interact with the external world. The interfacing happens with

More information

WINTER 12 EXAMINATION Subject Code : Model Answer Page No : / N. a) Describe the function of SID and SOD pins of 8085 microprocessor

WINTER 12 EXAMINATION Subject Code : Model Answer Page No : / N. a) Describe the function of SID and SOD pins of 8085 microprocessor Subject Code : Model Answer Page No : / N Q.1) SOLVE ANY FIVE : (20 MARKS) a) Describe the function of SID and SOD pins of 8085 microprocessor Ans: - SID: - (2 Mark) Serial Input Data SID pin is used to

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

Instructions Involve a Segment Register (SR-field)

Instructions Involve a Segment Register (SR-field) BYTE 1 = 11000111 2 = C7 16 BYTE 2 = (MOD)000(R/M) = 100000112 = 83 16 BYTE 3 = 34 16 and BYTE 4 = 12 16 BYTE 5 = CD 16 and BYTE 6 = AB 16 The machine code for the instruction is: MOV [BP+DI+1234H], 0ABCDH

More information

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS UNIT 1 - THE 8085 AND 8086

More information

MICROPROCESSORS & MICRO CONTROLLER COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK

MICROPROCESSORS & MICRO CONTROLLER COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUBJECT CODE: EC1257 SUBJECT NAME: MICROPROCESSOR AND MICROCONTROLLER YEAR : II IT SEM : IV UNIT I THE 8085 MICROPROCESSOR

More information

Topics. Interfacing chips

Topics. Interfacing chips 8086 Interfacing ICs 2 Topics Interfacing chips Programmable Communication Interface PCI (8251) Programmable Interval Timer (8253) Programmable Peripheral Interfacing - PPI (8255) Programmable DMA controller

More information

b. List different system buses of 8085 microprocessor and give function of each bus. (8) Answer:

b. List different system buses of 8085 microprocessor and give function of each bus. (8) Answer: Q.2 a. Discuss and differentiate between a Microprocessor and a Microcontroller. Microprocessor is an IC which has only the CPU inside them i.e. only the processing powers such as Intel s Pentium 1,2,3,4,

More information

Basics of Microprocessor

Basics of Microprocessor Unit 1 Basics of Microprocessor 1. Microprocessor Microprocessor is a multipurpose programmable integrated device that has computing and decision making capability. This semiconductor IC is manufactured

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC.

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC. MICROCONTROLLERS AND APPLICATIONS 1 Module 1 Module I Introduction to Microcontrollers: Comparison with Microprocessors Harvard and Von Neumann Architectures - 80C51 microcontroller features - internal

More information

ET2640 Microprocessors

ET2640 Microprocessors ET2640 Microprocessors Unit -2 Processor Programming Concepts Basic Control Instructor : Stan Kong Email : skong@itt-tech.edu Figure 2 4 Bits of the PSW Register 8051 REGISTER BANKS AND STACK 80 BYTES

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 28/03/2016 Max Marks: 50 Subject & Code : Microprocessor (10CS45) Section: IV A and B Name of faculty: Deepti.C Time: 8:30-10:00 am Note: Answer any complete five questions

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Contents 8051 Instruction Set BY D. BALAKRISHNA, Research Assistant, IIIT-H Chapter I : Control Transfer Instructions Lesson (a): Loop Lesson (b): Jump (i) Conditional Lesson (c): Lesson (d): Lesson (e):

More information

MP Assignment III. 1. An 8255A installed in a system has system base address E0D0H.

MP Assignment III. 1. An 8255A installed in a system has system base address E0D0H. MP Assignment III 1. An 8255A installed in a system has system base address E0D0H. i) Calculate the system addresses for the three ports and control register for this 8255A. System base address = E0D0H

More information

MODEL ANSWER SUBJECT- MICROCONTROLLER(12187) CLASS-EJ5E CLASS TEST-02 Q1.)Attempt any THREE of the following.

MODEL ANSWER SUBJECT- MICROCONTROLLER(12187) CLASS-EJ5E CLASS TEST-02 Q1.)Attempt any THREE of the following. MODEL ANSWER SUBJECT- MICROCONTROLLER(12187) CLASS-EJ5E CLASS TEST-02 Q1.)Attempt any THREE of the following. (9M) 1) Describe the instructions SWAP A and MOVX@DPTR,A with one example. (3Marks) SWAP A

More information

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051:

MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Features of 8051: DEPARTMENT OF ECE MICROPROCESSORS AND MICROCONTROLLERS MATERIAL UNIT V 8051 MICROCONTROLLERS To make a complete microcomputer system, only microprocessor is not sufficient. It is necessary to add other

More information

EC6504 MICROPROCESSOR AND MICROCONTROLLER

EC6504 MICROPROCESSOR AND MICROCONTROLLER UNIT I THE 8086 MICROPROCESSOR 1. What do you mean by Addressing modes? (May/June 2014) The different ways that a microprocessor can access data are referred to as addressing modes. 2. What is meant by

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

KINGS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Microprocessors and Microcontrollers UNIT-I 8085 MICROPROCESSOR

KINGS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Microprocessors and Microcontrollers UNIT-I 8085 MICROPROCESSOR KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Name: Microprocessors and Microcontrollers Year/Sem: II/IV UNIT-I 8085 MICROPROCESSOR PART-A (2 MARKS) 1. Name the

More information

UMBC. 80C86/80C88: CMOS version draws 10mA with temp spec -40 to 225degF. 450mV while input max can be no higher than 800mV). 0 0.

UMBC. 80C86/80C88: CMOS version draws 10mA with temp spec -40 to 225degF. 450mV while input max can be no higher than 800mV). 0 0. 8086/88 Device Specifications Both are packaged in DIP (Dual In-Line Packages). 8086: 16-bit microprocessor with a 16-bit data bus 8088: 16-bit microprocessor with an 8-bit data bus. Both are 5V parts:

More information

1. What is Microprocessor? Give the power supply & clock frequency of 8085?

1. What is Microprocessor? Give the power supply & clock frequency of 8085? 1. What is Microprocessor? Give the power supply & clock frequency of 8085? A microprocessor is a multipurpose, programmable logic device that reads binary instructions from a storage device called memory

More information

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor?

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor? UNIT-I INTRODUCTION TO MICROPROCESSOR A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time. (i) The first commercially available microprocessor was

More information

Interrupts. by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar

Interrupts. by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Chapter 12 Interrupts by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Microprocessor & Interfacing (140701) Rahul Patel 1 Points to be Discussed 8085 Interrupts

More information

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India.

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India. Unit I Introduction Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad 501218, India. Pre-requisites Digital Logic Design (A1404) Computer Architecture

More information

Introduction To MCS-51

Introduction To MCS-51 Introduction To MCS-51 By Charoen Vongchumyen Department of Computer Engineering Faculty of Engineering KMITLadkrabang 8051 Hardware Basic Content Overview Architechture Memory map Register Interrupt Timer/Counter

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

Assembly Language programming (3)

Assembly Language programming (3) EEE3410 Microcontroller Applications LABORATORY Experiment 3 Assembly Language programming (3) Name Class Date Class No. Marks Conditional Program Branching and Subroutine Call in 8051 Objectives To learn

More information

It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions.

It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions. 1.What is Microprocessor? It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions. 2. What are the basic units of a microprocessor? The basic units or blocks

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

INSTITUTE OF ENGINEERING AND MANAGEMENT, KOLKATA Microprocessor

INSTITUTE OF ENGINEERING AND MANAGEMENT, KOLKATA Microprocessor INSTITUTE OF ENGINEERING AND MANAGEMENT, KOLKATA Microprocessor Subject Name: Microprocessor and Microcontroller Year: 3 rd Year Subject Code: CS502 Semester: 5 th Module Day Assignment 1 Microprocessor

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK : Microprocessors and Microcontrollers :

More information

Lecture-51 INTEL 8259A Programmable Interrupt Controller

Lecture-51 INTEL 8259A Programmable Interrupt Controller Lecture-51 INTEL 8259A Programmable Interrupt Controller The 8259A is a programmable interrupt controller designed to work with Intel microprocessor 8080 A, 8085, 8086, 8088. The 8259 A interrupt controller

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013)

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) BHARATHIDASAN ENGINEERING COLLEGE III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) FREQUENTLY ASKED QUESTIONS IN UNIVERSITY EXAMINATION PART A UNIT 1-8085 PROCESSOR 1. Draw the

More information

8051 Overview and Instruction Set

8051 Overview and Instruction Set 8051 Overview and Instruction Set Curtis A. Nelson Engr 355 1 Microprocessors vs. Microcontrollers Microprocessors are single-chip CPUs used in microcomputers Microcontrollers and microprocessors are different

More information

EE6502- MICROPROCESSOR AND MICROCONTROLLER

EE6502- MICROPROCESSOR AND MICROCONTROLLER . EE6502- MICROPROCESSOR AND MICROCONTROLLER UNIT III - 8051 MICROCONTROLLER PART - A 1. What is Microcontroller? A device which contains the microprocessor with integrated peripherals like memory, serial

More information

The Purpose of Interrupt

The Purpose of Interrupt Interrupts 3 Introduction In this chapter, the coverage of basic I/O and programmable peripheral interfaces is expanded by examining a technique called interrupt-processed I/O. An interrupt is a hardware-initiated

More information

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Figure 1-5 Intel Corporation s 8086 Microprocessor. The 8086, announced in 1978, was the first 16-bit microprocessor

More information

Topic 2 :16 Bit Microprocessor: 8086 (24 Marks)

Topic 2 :16 Bit Microprocessor: 8086 (24 Marks) Topic 2 :16 Bit Microprocessor: 8086 (24 Marks) Features of 8086 8086 is a 16 bit processor. It s ALU, internal registers works with 16bit binary word 8086 has a 16bit data bus. It can read or write data

More information

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers.

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers. Lecture 5: Computer Organization Instruction Execution Computer Organization Addressing Buses Fetch-Execute Cycle Computer Organization CPU Control Unit U Input Output Memory Components Control Unit fetches

More information

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING

UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING UNIT 2 THE 8051 INSTRUCTION SET AND PROGRAMMING Instructions Alphabetical List of Instructions ACALL: Absolute Call ADD, ADDC: Add Accumulator (With Carry) AJMP: Absolute Jump ANL: Bitwise AND CJNE: Compare

More information

DEPARTMENT OF ECE QUESTION BANK SUBJECT: MICROPROCESSOR AND MICROCONTROLLER UNIT-1 PART-A (2 MARKS)

DEPARTMENT OF ECE QUESTION BANK SUBJECT: MICROPROCESSOR AND MICROCONTROLLER UNIT-1 PART-A (2 MARKS) DEPARTMENT OF ECE QUESTION BANK SUBJECT: MICROPROCESSOR AND MICROCONTROLLER CODE: EC6504 UNIT-1 1. How many memory locations are available in 8086 microprocessor? 2. What are the flags available in 8086

More information

The 8237 DMA Controller: -

The 8237 DMA Controller: - The 8237 DMA Controller: - The 8237 is the LSI controller IC that is widely used to implement the direct memory access (DMA) function in 8088 and 8086 based microcomputer systems. It is available in 40-pin

More information

VALLIAMMAI ENGINEERING COLLEGE S.R.M. NAGAR, KATTANKULATHUR-603203. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING VII-EEE EE6502- MICROPROCESSORS AND MICROCONTROLLERS QUESTION BANK UNIT I 1. What

More information

EC 6504 MICROPROCESSOR AND MICROCONTROLLER Electronicsand Communication Engineering Fifth Semester UNIT-1I Part A 1. Definemachinecycle.

EC 6504 MICROPROCESSOR AND MICROCONTROLLER Electronicsand Communication Engineering Fifth Semester UNIT-1I Part A 1. Definemachinecycle. EC 6504 MICROPROCESSOR AND MICROCONTROLLER Electronicsand Communication Engineering Fifth Semester UNIT-1I Part A 1. Definemachinecycle. [N/D 16] Machine cycle is defined as the time required to complete

More information

LECTURE NOTES MICROPROCESSORS AND INTERFACING DEVICES

LECTURE NOTES MICROPROCESSORS AND INTERFACING DEVICES LECTURE NOTES ON MICROPROCESSORS AND INTERFACING DEVICES III B. Tech II semester (JNTUH-R15) Mr.R Mahendhar Reddy, Associate Professor, ECE ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I THE 8085 & 8086 MICROPROCESSORS. PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I THE 8085 & 8086 MICROPROCESSORS. PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT I THE 8085 & 8086 MICROPROCESSORS PART A (2 Marks) 1. Give the significance of SIM and RIM instruction available in 8085. [NOV/DEC 2006] Instruction

More information

CPEG300 Embedded System Design. Lecture 6 Interrupt System

CPEG300 Embedded System Design. Lecture 6 Interrupt System CPEG300 Embedded System Design Lecture 6 Interrupt System Hamad Bin Khalifa University, Spring 2018 Correction Lecture 3, page 18: Only direct addressing mode is allowed for pushing or popping the stack:

More information

Microcontroller Intel [Instruction Set]

Microcontroller Intel [Instruction Set] Microcontroller Intel 8051 [Instruction Set] Structure of Assembly Language [ label: ] mnemonic [operands] [ ;comment ] Example: MOV R1, #25H ; load data 25H into R1 2 8051 Assembly Language Registers

More information

EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR PART A

EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR PART A EC6504 MICROPROCESSOR AND MICROCONTROLLER Question Bank EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR 1. List the addressing modes of 8086?give examples [May

More information

Subject Code: Model Answer Page No: /25

Subject Code: Model Answer Page No: /25 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor Practical 1 Date : AIM : Introduction Of Microprocessor 8085. 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within µp to carry out the instruction, which has been decoded.

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microprocessor Subject Code: 17443 I m p o r t a n t I n s t r u c t i o n s t o e x a m i n e r s : 1) The answers should be examined by key words and

More information