Deutscher Wetterdienst

Size: px
Start display at page:

Download "Deutscher Wetterdienst"

Transcription

1 Accelerating Work at DWD Ulrich Schättler Deutscher Wetterdienst

2 Roadmap Porting operational models: revisited Preparations for enabling practical work at DWD My first steps with the COSMO on a GPU First experiences with COSMO on KNL Implications on further development and maintenance Conclusions Mutli Core 6 Workshop 2

3 Porting Operational Models: Revisited Porting Strategy MeteoSwiss already ported full COSMO-Model to GPUs End of March 2016 they started operational runs with this version (which is based on COSMO-Model 4.19, now we have 5.03 with several significant changes) Process has started to implement GPU changes to the official COSMO-Model version The future of the STELLA re-write is not clear yet Mutli Core 6 Workshop

4 A Significant Change in the COSMO-Model In the last year we synchronized the physical parameterizations between the new global model ICON and the COSMO-Model to use the same source code. Because ICON only uses a one-dimensional vector to store horizontal fields, we had to change the data structure in COSMO for the parameterizations. A "copy-in/copy-out" mechanism has been implemented to transform all necessary fields between the parameterizations and the rest of the model (which still is ijk-structure) (i,j,k) data format (nproma,k) data format Mutli Core 6 Workshop 4

5 COSMO-ICON Physics and GPUs Scheme Blocked Version GPU Microphysics yes no Radiation yes yes Subgrid-scale Orography no no Turbulence yes no Surface Schemes yes no Convection yes only shallow Blue: In COSMO and ICON Black: Only in COSMO Mutli Core 6 Workshop 5

6 Preparations for Practical Work at DWD To support a model running on GPUs you should be able to let the model run on GPUs. But last year there was no possibility to do so at DWD. But I have a GPU in my desktop PC (even from NVIDIA): Device Name: NVS 315 Device Revision Number: 2.1 Global Memory Size: Number of Multiprocessors: 1 Number of Cores: 32 "Flexible and Energy efficient low profile solution with 1024 MB on board memory, providing display connectivity to drive any type of dual-display". CPU: Intel Core i GHz Mutli Core 6 Workshop 6

7 Preparations for Practical Work at DWD (II) Now I only missed a compiler: Cray is not available for desktop PCs, so I tried a PGI test licence: and that worked! Therefore we bought a server licence this year, which is also available for my colleagues. Duration of this process (from first test to installation of official compiler): 8 months Mutli Core 6 Workshop 7

8 Preparations for Practical Work at DWD (III) End of 2015 the current contract with Cray has been extended to end of IvyBridge CPUs are replaced by Broadwell and some additional Broadwells are installed. The Haswell partition remains unchanged. This will give an extension of about 1.6 in the computational power. In addition a development cluster with 12 KNL nodes is delivered (installation and installation of software right now on its way) It will be run in flat mode Mutli Core 6 Workshop 8

9 My First Steps with the COSMO-Model on a GPU Task: Implement the radiation interface between ijk- and blocked data structure and compute necessary input for radiation scheme The routines from the radiation scheme have been ported by Xavier Lapillonne from Switzerland Besides porting the loops (see right), you have to get all correct.!$acc data create!$acc copyin!$acc update device / host!$acc delete And after a few trials and errors: It worked! Temperatures at layer boundaries!$acc parallel!$acc loop gang vector collapse(3) DO k = 2, ke DO jp = 1, nradcoarse DO ip = 1, ipdim! get i/j indices for blocked structure i = mind_ilon_rad(ip,jp,ib) j = mind_jlat_rad(ip,jp,ib) zti(ip,k,jp) = & (t(i,j,k-1,ntl)*zphfo*(zphf - zpnf ) & + t(i,j,k,ntl)*zphf *(zpnf - zphfo))& * (1.0_wp/(zpnf *(zphf - zphfo))) ENDDO ENDDO ENDDO!$acc end parallel Mutli Core 6 Workshop 9

10 What about the Performance? Tested 1 hour of forecast for a very small domain (41x39x40 grid points) on one CPU core and on the GPU (times given in seconds): Conclusion: Try to look for something different to do, which hopefully has nothing to do with computers. Or have some holidays at least. Scheme CPU GPU Total Time Radiation Update Device / Host Mutli Core 6 Workshop 10

11 Restarted Work after my Holidays Had to face some technical problems then: Workstation had to be booted, then the GUI did not work any more: need help from administrator (I have no root access). This is due to some "interface" problems between SUSE Linux distribution and CUDA 7.0 Visual Profiling (nvpp, pgprof) is not working any more. The model crashes with floating point exception in libcuinj64????? Our COSMO Support Team also reported several problems when installing the Swiss COSMO-GPU Version to a laptop. Problem is the connection between the Linux distribution, required CUDA libraries, gcc versions, etc. But compilation and running the model still worked Mutli Core 6 Workshop 11

12 Restarted Work after my Holidays (II) Tried to recall the problems reported by our Swiss colleagues: Allocation of local / automatic arrays on GPUs: This is not performant and should be avoided on GPUs. Therefore we implemented the possibility to use all local arrays as ALLOCATABLE and allocate them at the beginning of the program. This has been done and could not be the performance problem. Side remark: For OpenMP parallelization these variables have to be declared as "threadprivate". But then the Cray compiler refuses to vectorize loops with these variables!? Therefore we leave the possibility to have these as local arrays. (Did not report that to Cray up to now) Mutli Core 6 Workshop 12

13 Restarted Work after my Holidays (III) Tried to recall the problems reported by our Swiss colleagues: Vector length: The GPU needs to have enough work The blocked data structure is not implemented with a fixed vector length but configurable The default value is nproma=16 How do other values influence the performance? Mutli Core 6 Workshop 13

14 A First Success Scheme CPU GPU GPU GPU GPU nproma Total Time Radiation Update Device / Host Tests with a bigger domain showed the same behaviour, but bigger nproma then lead (on my "low profile" GPU) to Out of memory allocating bytes of device memory Failing in Thread:1 total/free CUDA memory: / Mutli Core 6 Workshop 14

15 First Experiences with COSMO on KNLs Our development cluster is only build up right now, therefore we have no own experiences But colleagues from the Meteorological Institute of the Ludwigs-Maximilians- University in Munich could install the COSMO code on a KNL node they have available. The following slide is provided by Leonhard Scheck and Robert Redl from LMU and shows some early work on KNL Mutli Core 6 Workshop 15

16 Benchmark: 3h COSMO run from COSMO RAPS 5.1 (domain size 221 x 219 grid points, 40 levels fits into 16GB MCDRAM) 64-core KNL-node (hybrid MCDRAM mode) vs. 2 x 14 core Xeon Haswell node Advantage of KNL: On-chip MCDRAM with 500GB/sec bandwidth node vector instructions MPI tasks Wall time [sec] KNL AVX KNL AVX KNL AVX KNL AVX KNL AVX KNL AVX KNL AVX KNL AVX Haswell AVX Haswell AVX

17 Implications on Development and Maintenance Necessary code modifications for GPU: include many!$acc directives: but after a while you do not really "see" them any more (appear as comments) memory organization: could activate old Fortran77 memory manager! several ifdefs necessary (for example to exclude debug print outs) try to keep different versions for same code to a minimum (necessary due to performance issues) Code modifications for KNL are most probably also necessary (at least directives perhaps OpenMP parallelization necessary) We still hope to be able to maintain a single source code for all architectures! Really necessary now: An automated test suite to check different builds / configurations on different architectures for correctness: Also this has been developed at MeteoSwiss Mutli Core 6 Workshop 17

18 Conclusions At DWD we now have hardware and software available to test novel architectures. This should accelerate the work to test our models on GPUs and KNLs and to study the different programming models. Forecasts are always difficult, but most probably our next computer at DWD (to be purchased in 2018/19) will not be a pure GPU or a pure KNL machine Mutli Core 6 Workshop 18

19 Thank you very much for your attention

Deutscher Wetterdienst

Deutscher Wetterdienst Porting Operational Models to Multi- and Many-Core Architectures Ulrich Schättler Deutscher Wetterdienst Oliver Fuhrer MeteoSchweiz Xavier Lapillonne MeteoSchweiz Contents Strong Scalability of the Operational

More information

Physical parametrizations and OpenACC directives in COSMO

Physical parametrizations and OpenACC directives in COSMO Physical parametrizations and OpenACC directives in COSMO Xavier Lapillonne Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Name (change on Master slide)

More information

Porting COSMO to Hybrid Architectures

Porting COSMO to Hybrid Architectures Porting COSMO to Hybrid Architectures T. Gysi 1, O. Fuhrer 2, C. Osuna 3, X. Lapillonne 3, T. Diamanti 3, B. Cumming 4, T. Schroeder 5, P. Messmer 5, T. Schulthess 4,6,7 [1] Supercomputing Systems AG,

More information

IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor

IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor IFS RAPS14 benchmark on 2 nd generation Intel Xeon Phi processor D.Sc. Mikko Byckling 17th Workshop on High Performance Computing in Meteorology October 24 th 2016, Reading, UK Legal Disclaimer & Optimization

More information

Adapting Numerical Weather Prediction codes to heterogeneous architectures: porting the COSMO model to GPUs

Adapting Numerical Weather Prediction codes to heterogeneous architectures: porting the COSMO model to GPUs Adapting Numerical Weather Prediction codes to heterogeneous architectures: porting the COSMO model to GPUs O. Fuhrer, T. Gysi, X. Lapillonne, C. Osuna, T. Dimanti, T. Schultess and the HP2C team Eidgenössisches

More information

Using OpenACC in IFS Physics Cloud Scheme (CLOUDSC) Sami Saarinen ECMWF Basic GPU Training Sept 16-17, 2015

Using OpenACC in IFS Physics Cloud Scheme (CLOUDSC) Sami Saarinen ECMWF Basic GPU Training Sept 16-17, 2015 Using OpenACC in IFS Physics Cloud Scheme (CLOUDSC) Sami Saarinen ECMWF Basic GPU Training Sept 16-17, 2015 Slide 1 Background Back in 2014 : Adaptation of IFS physics cloud scheme (CLOUDSC) to new architectures

More information

CLAW FORTRAN Compiler source-to-source translation for performance portability

CLAW FORTRAN Compiler source-to-source translation for performance portability CLAW FORTRAN Compiler source-to-source translation for performance portability XcalableMP Workshop, Akihabara, Tokyo, Japan October 31, 2017 Valentin Clement valentin.clement@env.ethz.ch Image: NASA Summary

More information

Deutscher Wetterdienst. Ulrich Schättler Deutscher Wetterdienst Research and Development

Deutscher Wetterdienst. Ulrich Schättler Deutscher Wetterdienst Research and Development Deutscher Wetterdienst COSMO, ICON and Computers Ulrich Schättler Deutscher Wetterdienst Research and Development Contents Problems of the COSMO-Model on HPC architectures POMPA and The ICON Model Outlook

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Porting the ICON Non-hydrostatic Dynamics and Physics to GPUs

Porting the ICON Non-hydrostatic Dynamics and Physics to GPUs Porting the ICON Non-hydrostatic Dynamics and Physics to GPUs William Sawyer (CSCS/ETH), Christian Conti (ETH), Xavier Lapillonne (C2SM/ETH) Programming weather, climate, and earth-system models on heterogeneous

More information

An update on the COSMO- GPU developments

An update on the COSMO- GPU developments An update on the COSMO- GPU developments COSMO User Workshop 2014 X. Lapillonne, O. Fuhrer, A. Arteaga, S. Rüdisühli, C. Osuna, A. Roches and the COSMO- GPU team Eidgenössisches Departement des Innern

More information

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss. PP POMPA status.

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss. PP POMPA status. Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss PP POMPA status Xavier Lapillonne Performance On Massively Parallel Architectures Last year of the project

More information

PP POMPA (WG6) News and Highlights. Oliver Fuhrer (MeteoSwiss) and the whole POMPA project team. COSMO GM13, Sibiu

PP POMPA (WG6) News and Highlights. Oliver Fuhrer (MeteoSwiss) and the whole POMPA project team. COSMO GM13, Sibiu PP POMPA (WG6) News and Highlights Oliver Fuhrer (MeteoSwiss) and the whole POMPA project team COSMO GM13, Sibiu Task Overview Task 1 Performance analysis and documentation Task 2 Redesign memory layout

More information

NVIDIA Update and Directions on GPU Acceleration for Earth System Models

NVIDIA Update and Directions on GPU Acceleration for Earth System Models NVIDIA Update and Directions on GPU Acceleration for Earth System Models Stan Posey, HPC Program Manager, ESM and CFD, NVIDIA, Santa Clara, CA, USA Carl Ponder, PhD, Applications Software Engineer, NVIDIA,

More information

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C.

The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy.! Thomas C. The challenges of new, efficient computer architectures, and how they can be met with a scalable software development strategy! Thomas C. Schulthess ENES HPC Workshop, Hamburg, March 17, 2014 T. Schulthess!1

More information

OP2 FOR MANY-CORE ARCHITECTURES

OP2 FOR MANY-CORE ARCHITECTURES OP2 FOR MANY-CORE ARCHITECTURES G.R. Mudalige, M.B. Giles, Oxford e-research Centre, University of Oxford gihan.mudalige@oerc.ox.ac.uk 27 th Jan 2012 1 AGENDA OP2 Current Progress Future work for OP2 EPSRC

More information

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers

A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers A PCIe Congestion-Aware Performance Model for Densely Populated Accelerator Servers Maxime Martinasso, Grzegorz Kwasniewski, Sadaf R. Alam, Thomas C. Schulthess, Torsten Hoefler Swiss National Supercomputing

More information

Illinois Proposal Considerations Greg Bauer

Illinois Proposal Considerations Greg Bauer - 2016 Greg Bauer Support model Blue Waters provides traditional Partner Consulting as part of its User Services. Standard service requests for assistance with porting, debugging, allocation issues, and

More information

Bei Wang, Dmitry Prohorov and Carlos Rosales

Bei Wang, Dmitry Prohorov and Carlos Rosales Bei Wang, Dmitry Prohorov and Carlos Rosales Aspects of Application Performance What are the Aspects of Performance Intel Hardware Features Omni-Path Architecture MCDRAM 3D XPoint Many-core Xeon Phi AVX-512

More information

Welcome. Virtual tutorial starts at BST

Welcome. Virtual tutorial starts at BST Welcome Virtual tutorial starts at 15.00 BST Using KNL on ARCHER Adrian Jackson With thanks to: adrianj@epcc.ed.ac.uk @adrianjhpc Harvey Richardson from Cray Slides from Intel Xeon Phi Knights Landing

More information

Directive-based Programming for Highly-scalable Nodes

Directive-based Programming for Highly-scalable Nodes Directive-based Programming for Highly-scalable Nodes Doug Miles Michael Wolfe PGI Compilers & Tools NVIDIA Cray User Group Meeting May 2016 Talk Outline Increasingly Parallel Nodes Exposing Parallelism

More information

Lecture 1: Why Parallelism? Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 1: Why Parallelism? Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 1: Why Parallelism? Parallel Computer Architecture and Programming Hi! Hongyi Alex Kayvon Manish Parag One common definition A parallel computer is a collection of processing elements that cooperate

More information

Improved Event Generation at NLO and NNLO. or Extending MCFM to include NNLO processes

Improved Event Generation at NLO and NNLO. or Extending MCFM to include NNLO processes Improved Event Generation at NLO and NNLO or Extending MCFM to include NNLO processes W. Giele, RadCor 2015 NNLO in MCFM: Jettiness approach: Using already well tested NLO MCFM as the double real and virtual-real

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson adrianj@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past, computers

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Performance of the 3D-Combustion Simulation Code RECOM-AIOLOS on IBM POWER8 Architecture. Alexander Berreth. Markus Bühler, Benedikt Anlauf

Performance of the 3D-Combustion Simulation Code RECOM-AIOLOS on IBM POWER8 Architecture. Alexander Berreth. Markus Bühler, Benedikt Anlauf PADC Anual Workshop 20 Performance of the 3D-Combustion Simulation Code RECOM-AIOLOS on IBM POWER8 Architecture Alexander Berreth RECOM Services GmbH, Stuttgart Markus Bühler, Benedikt Anlauf IBM Deutschland

More information

Portability of OpenMP Offload Directives Jeff Larkin, OpenMP Booth Talk SC17

Portability of OpenMP Offload Directives Jeff Larkin, OpenMP Booth Talk SC17 Portability of OpenMP Offload Directives Jeff Larkin, OpenMP Booth Talk SC17 11/27/2017 Background Many developers choose OpenMP in hopes of having a single source code that runs effectively anywhere (performance

More information

ACCELERATION OF A COMPUTATIONAL FLUID DYNAMICS CODE WITH GPU USING OPENACC

ACCELERATION OF A COMPUTATIONAL FLUID DYNAMICS CODE WITH GPU USING OPENACC Nonlinear Computational Aeroelasticity Lab ACCELERATION OF A COMPUTATIONAL FLUID DYNAMICS CODE WITH GPU USING OPENACC N I C H O L S O N K. KO U K PA I Z A N P H D. C A N D I D AT E GPU Technology Conference

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

Performance and Energy Usage of Workloads on KNL and Haswell Architectures

Performance and Energy Usage of Workloads on KNL and Haswell Architectures Performance and Energy Usage of Workloads on KNL and Haswell Architectures Tyler Allen 1 Christopher Daley 2 Doug Doerfler 2 Brian Austin 2 Nicholas Wright 2 1 Clemson University 2 National Energy Research

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

CLAW FORTRAN Compiler Abstractions for Weather and Climate Models

CLAW FORTRAN Compiler Abstractions for Weather and Climate Models CLAW FORTRAN Compiler Abstractions for Weather and Climate Models Image: NASA PASC 17 June 27, 2017 Valentin Clement, Jon Rood, Sylvaine Ferrachat, Will Sawyer, Oliver Fuhrer, Xavier Lapillonne valentin.clement@env.ethz.ch

More information

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017 INTRODUCTION TO OPENACC Analyzing and Parallelizing with OpenACC, Feb 22, 2017 Objective: Enable you to to accelerate your applications with OpenACC. 2 Today s Objectives Understand what OpenACC is and

More information

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends Collaborators: Richard T. Mills, Argonne National Laboratory Sarat Sreepathi, Oak Ridge National Laboratory Forrest M. Hoffman, Oak Ridge National Laboratory Jitendra Kumar, Oak Ridge National Laboratory

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson a.jackson@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past,

More information

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Windows HPC Server 2008 R2 Windows HPC Server 2008 R2 makes supercomputing

More information

Can Accelerators Really Accelerate Harmonie?

Can Accelerators Really Accelerate Harmonie? Can Accelerators Really Accelerate Harmonie? Enda O Brien, Adam Ralph Irish Centre for High-End Computing Motivation There is constant demand for more performance Conventional compute cores not getting

More information

IFS migrates from IBM to Cray CPU, Comms and I/O

IFS migrates from IBM to Cray CPU, Comms and I/O IFS migrates from IBM to Cray CPU, Comms and I/O Deborah Salmond & Peter Towers Research Department Computing Department Thanks to Sylvie Malardel, Philippe Marguinaud, Alan Geer & John Hague and many

More information

Status of the COSMO GPU version

Status of the COSMO GPU version Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO GPU version Xavier Lapillonne Contributors in 2015 (Thanks!) Alon Shtivelman Andre Walser

More information

Intel Xeon Phi архитектура, модели программирования, оптимизация.

Intel Xeon Phi архитектура, модели программирования, оптимизация. Нижний Новгород, 2017 Intel Xeon Phi архитектура, модели программирования, оптимизация. Дмитрий Прохоров, Дмитрий Рябцев, Intel Agenda What and Why Intel Xeon Phi Top 500 insights, roadmap, architecture

More information

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Office of Science Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Buddy Bland Project Director Oak Ridge Leadership Computing Facility November 13, 2012 ORNL s Titan Hybrid

More information

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package High Performance Machine Learning Workshop Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package Matheus Souza, Lucas Maciel, Pedro Penna, Henrique Freitas 24/09/2018 Agenda Introduction

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

GPU Debugging Made Easy. David Lecomber CTO, Allinea Software

GPU Debugging Made Easy. David Lecomber CTO, Allinea Software GPU Debugging Made Easy David Lecomber CTO, Allinea Software david@allinea.com Allinea Software HPC development tools company Leading in HPC software tools market Wide customer base Blue-chip engineering,

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

Intel Knights Landing Hardware

Intel Knights Landing Hardware Intel Knights Landing Hardware TACC KNL Tutorial IXPUG Annual Meeting 2016 PRESENTED BY: John Cazes Lars Koesterke 1 Intel s Xeon Phi Architecture Leverages x86 architecture Simpler x86 cores, higher compute

More information

Dynamical Core Rewrite

Dynamical Core Rewrite Dynamical Core Rewrite Tobias Gysi Oliver Fuhrer Carlos Osuna COSMO GM13, Sibiu Fundamental question How to write a model code which allows productive development by domain scientists runs efficiently

More information

Lattice Simulations using OpenACC compilers. Pushan Majumdar (Indian Association for the Cultivation of Science, Kolkata)

Lattice Simulations using OpenACC compilers. Pushan Majumdar (Indian Association for the Cultivation of Science, Kolkata) Lattice Simulations using OpenACC compilers Pushan Majumdar (Indian Association for the Cultivation of Science, Kolkata) OpenACC is a programming standard for parallel computing developed by Cray, CAPS,

More information

Accelerator programming with OpenACC

Accelerator programming with OpenACC ..... Accelerator programming with OpenACC Colaboratorio Nacional de Computación Avanzada Jorge Castro jcastro@cenat.ac.cr 2018. Agenda 1 Introduction 2 OpenACC life cycle 3 Hands on session Profiling

More information

Benchmark results on Knight Landing (KNL) architecture

Benchmark results on Knight Landing (KNL) architecture Benchmark results on Knight Landing (KNL) architecture Domenico Guida, CINECA SCAI (Bologna) Giorgio Amati, CINECA SCAI (Roma) Roma 23/10/2017 KNL, BDW, SKL A1 BDW A2 KNL A3 SKL cores per node 2 x 18 @2.3

More information

Using GPUs for ICON: An MPI and OpenACC Implementation

Using GPUs for ICON: An MPI and OpenACC Implementation Using GPUs for ICON: An MPI and OpenACC Implementation William Sawyer, Jeff Poznanovic, Leonidas Linardakis (MPI-M), Christian Conti (ETH), Gilles Fourestey Earth System Models on Heterogeneous Multicore

More information

Experiences with ENZO on the Intel Many Integrated Core Architecture

Experiences with ENZO on the Intel Many Integrated Core Architecture Experiences with ENZO on the Intel Many Integrated Core Architecture Dr. Robert Harkness National Institute for Computational Sciences April 10th, 2012 Overview ENZO applications at petascale ENZO and

More information

John Levesque Nov 16, 2001

John Levesque Nov 16, 2001 1 We see that the GPU is the best device available for us today to be able to get to the performance we want and meet our users requirements for a very high performance node with very high memory bandwidth.

More information

Porting the ICON Non-hydrostatic Dynamics to GPUs

Porting the ICON Non-hydrostatic Dynamics to GPUs Porting the ICON Non-hydrostatic Dynamics to GPUs William Sawyer (CSCS/ETH), Christian Conti (ETH), Gilles Fourestey (CSCS/ETH) IS-ENES Workshop on Dynamical Cores Dec. 14-16, 2011, Carlo V Castle, Lecce,

More information

High Performance Computing with Accelerators

High Performance Computing with Accelerators High Performance Computing with Accelerators Volodymyr Kindratenko Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT) National Center for Supercomputing

More information

The Red Storm System: Architecture, System Update and Performance Analysis

The Red Storm System: Architecture, System Update and Performance Analysis The Red Storm System: Architecture, System Update and Performance Analysis Douglas Doerfler, Jim Tomkins Sandia National Laboratories Center for Computation, Computers, Information and Mathematics LACSI

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

EULAG: high-resolution computational model for research of multi-scale geophysical fluid dynamics

EULAG: high-resolution computational model for research of multi-scale geophysical fluid dynamics Zbigniew P. Piotrowski *,** EULAG: high-resolution computational model for research of multi-scale geophysical fluid dynamics *Geophysical Turbulence Program, National Center for Atmospheric Research,

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

S Comparing OpenACC 2.5 and OpenMP 4.5

S Comparing OpenACC 2.5 and OpenMP 4.5 April 4-7, 2016 Silicon Valley S6410 - Comparing OpenACC 2.5 and OpenMP 4.5 James Beyer, NVIDIA Jeff Larkin, NVIDIA GTC16 April 7, 2016 History of OpenMP & OpenACC AGENDA Philosophical Differences Technical

More information

Software within building physics and ground heat storage. HEAT3 version 7. A PC-program for heat transfer in three dimensions Update manual

Software within building physics and ground heat storage. HEAT3 version 7. A PC-program for heat transfer in three dimensions Update manual Software within building physics and ground heat storage HEAT3 version 7 A PC-program for heat transfer in three dimensions Update manual June 15, 2015 BLOCON www.buildingphysics.com Contents 1. WHAT S

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System x idataplex CINECA, Italy Lenovo System

More information

Cray events. ! Cray User Group (CUG): ! Cray Technical Workshop Europe:

Cray events. ! Cray User Group (CUG): ! Cray Technical Workshop Europe: Cray events! Cray User Group (CUG):! When: May 16-19, 2005! Where: Albuquerque, New Mexico - USA! Registration: reserved to CUG members! Web site: http://www.cug.org! Cray Technical Workshop Europe:! When:

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2015 Our Environment Today Your laptops or workstations: only used for portal access Blue Waters

More information

Accelerating Financial Applications on the GPU

Accelerating Financial Applications on the GPU Accelerating Financial Applications on the GPU Scott Grauer-Gray Robert Searles William Killian John Cavazos Department of Computer and Information Science University of Delaware Sixth Workshop on General

More information

Porting the microphysics model CASIM to GPU and KNL Cray machines

Porting the microphysics model CASIM to GPU and KNL Cray machines Porting the microphysics model CASIM to GPU and KNL Cray machines Nick Brown, Alexandr Nigay, Michele Weiland EPCC, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh

More information

Parallel and Distributed Programming Introduction. Kenjiro Taura

Parallel and Distributed Programming Introduction. Kenjiro Taura Parallel and Distributed Programming Introduction Kenjiro Taura 1 / 21 Contents 1 Why Parallel Programming? 2 What Parallel Machines Look Like, and Where Performance Come From? 3 How to Program Parallel

More information

The CLAW project. Valentin Clément, Xavier Lapillonne. CLAW provides high-level Abstractions for Weather and climate models

The CLAW project. Valentin Clément, Xavier Lapillonne. CLAW provides high-level Abstractions for Weather and climate models Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss The CLAW project CLAW provides high-level Abstractions for Weather and climate models Valentin Clément,

More information

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems Ed Hinkel Senior Sales Engineer Agenda Overview - Rogue Wave & TotalView GPU Debugging with TotalView Nvdia CUDA Intel Phi 2

More information

Visualization of GRIB Files GrADS: Grid Analysis and Display System NCVIEW

Visualization of GRIB Files GrADS: Grid Analysis and Display System NCVIEW Visualization of GRIB Files GrADS: Grid Analysis and Display System NCVIEW Ulrich Schättler, Daniel Rieger, Markus Junk Deutscher Wetterdienst BU Research and Development Department for Numerical Modelling

More information

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace James Southern, Jim Tuccillo SGI 25 October 2016 0 Motivation Trend in HPC continues to be towards more

More information

OpenACC 2.6 Proposed Features

OpenACC 2.6 Proposed Features OpenACC 2.6 Proposed Features OpenACC.org June, 2017 1 Introduction This document summarizes features and changes being proposed for the next version of the OpenACC Application Programming Interface, tentatively

More information

Early Experiences Writing Performance Portable OpenMP 4 Codes

Early Experiences Writing Performance Portable OpenMP 4 Codes Early Experiences Writing Performance Portable OpenMP 4 Codes Verónica G. Vergara Larrea Wayne Joubert M. Graham Lopez Oscar Hernandez Oak Ridge National Laboratory Problem statement APU FPGA neuromorphic

More information

GPU Developments for the NEMO Model. Stan Posey, HPC Program Manager, ESM Domain, NVIDIA (HQ), Santa Clara, CA, USA

GPU Developments for the NEMO Model. Stan Posey, HPC Program Manager, ESM Domain, NVIDIA (HQ), Santa Clara, CA, USA GPU Developments for the NEMO Model Stan Posey, HPC Program Manager, ESM Domain, NVIDIA (HQ), Santa Clara, CA, USA NVIDIA HPC AND ESM UPDATE TOPICS OF DISCUSSION GPU PROGRESS ON NEMO MODEL 2 NVIDIA GPU

More information

PGPROF OpenACC Tutorial

PGPROF OpenACC Tutorial PGPROF OpenACC Tutorial Version 2017 PGI Compilers and Tools TABLE OF CONTENTS Chapter 1. Tutorial Setup...1 Chapter 2. Profiling the application... 2 Chapter 3. Adding OpenACC directives... 4 Chapter

More information

PROFILER OPENACC TUTORIAL. Version 2018

PROFILER OPENACC TUTORIAL. Version 2018 PROFILER OPENACC TUTORIAL Version 2018 TABLE OF CONTENTS Chapter Chapter Chapter Chapter Chapter 1. 2. 3. 4. 5. Tutorial Setup... 1 Profiling the application... 2 Adding OpenACC directives...4 Improving

More information

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016

OpenACC. Part I. Ned Nedialkov. McMaster University Canada. October 2016 OpenACC. Part I Ned Nedialkov McMaster University Canada October 2016 Outline Introduction Execution model Memory model Compiling pgaccelinfo Example Speedups Profiling c 2016 Ned Nedialkov 2/23 Why accelerators

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

OpenStaPLE, an OpenACC Lattice QCD Application

OpenStaPLE, an OpenACC Lattice QCD Application OpenStaPLE, an OpenACC Lattice QCD Application Enrico Calore Postdoctoral Researcher Università degli Studi di Ferrara INFN Ferrara Italy GTC Europe, October 10 th, 2018 E. Calore (Univ. and INFN Ferrara)

More information

GRID Testing and Profiling. November 2017

GRID Testing and Profiling. November 2017 GRID Testing and Profiling November 2017 2 GRID C++ library for Lattice Quantum Chromodynamics (Lattice QCD) calculations Developed by Peter Boyle (U. of Edinburgh) et al. Hybrid MPI+OpenMP plus NUMA aware

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4

OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC Course Class #1 Q&A Contents OpenACC/CUDA/OpenMP... 1 Languages and Libraries... 3 Multi-GPU support... 4 How OpenACC Works... 4 OpenACC/CUDA/OpenMP Q: Is OpenACC an NVIDIA standard or is it accepted

More information

Optimising the Mantevo benchmark suite for multi- and many-core architectures

Optimising the Mantevo benchmark suite for multi- and many-core architectures Optimising the Mantevo benchmark suite for multi- and many-core architectures Simon McIntosh-Smith Department of Computer Science University of Bristol 1 Bristol's rich heritage in HPC The University of

More information

GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran. G. Ruetsch, M. Fatica, E. Phillips, N.

GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran. G. Ruetsch, M. Fatica, E. Phillips, N. GPU Acceleration of the Longwave Rapid Radiative Transfer Model in WRF using CUDA Fortran G. Ruetsch, M. Fatica, E. Phillips, N. Juffa Outline WRF and RRTM Previous Work CUDA Fortran Features RRTM in CUDA

More information

HPC Architectures evolution: the case of Marconi, the new CINECA flagship system. Piero Lanucara

HPC Architectures evolution: the case of Marconi, the new CINECA flagship system. Piero Lanucara HPC Architectures evolution: the case of Marconi, the new CINECA flagship system Piero Lanucara Many advantages as a supercomputing resource: Low energy consumption. Limited floor space requirements Fast

More information

FAST FORWARD TO YOUR <NEXT> CREATION

FAST FORWARD TO YOUR <NEXT> CREATION FAST FORWARD TO YOUR CREATION THE ULTIMATE PROFESSIONAL WORKSTATIONS POWERED BY INTEL XEON PROCESSORS 7 SEPTEMBER 2017 WHAT S NEW INTRODUCING THE NEW INTEL XEON SCALABLE PROCESSOR BREAKTHROUGH PERFORMANCE

More information

VLPL-S Optimization on Knights Landing

VLPL-S Optimization on Knights Landing VLPL-S Optimization on Knights Landing 英特尔软件与服务事业部 周姗 2016.5 Agenda VLPL-S 性能分析 VLPL-S 性能优化 总结 2 VLPL-S Workload Descriptions VLPL-S is the in-house code from SJTU, paralleled with MPI and written in C++.

More information

ELP. Effektive Laufzeitunterstützung für zukünftige Programmierstandards. Speaker: Tim Cramer, RWTH Aachen University

ELP. Effektive Laufzeitunterstützung für zukünftige Programmierstandards. Speaker: Tim Cramer, RWTH Aachen University ELP Effektive Laufzeitunterstützung für zukünftige Programmierstandards Agenda ELP Project Goals ELP Achievements Remaining Steps ELP Project Goals Goals of ELP: Improve programmer productivity By influencing

More information

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS Ferdinando Alessi Annalisa Massini Roberto Basili INGV Introduction The simulation of wave propagation

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Background Information Recent trends in the marketplace of high performance computing Strohmaier, Dongarra, Meuer, Simon Parallel Computing 2005 Short history

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

WHAT S NEW IN CUDA 8. Siddharth Sharma, Oct 2016

WHAT S NEW IN CUDA 8. Siddharth Sharma, Oct 2016 WHAT S NEW IN CUDA 8 Siddharth Sharma, Oct 2016 WHAT S NEW IN CUDA 8 Why Should You Care >2X Run Computations Faster* Solve Larger Problems** Critical Path Analysis * HOOMD Blue v1.3.3 Lennard-Jones liquid

More information

Dr. Ilia Bermous, the Australian Bureau of Meteorology. Acknowledgements to Dr. Martyn Corden (Intel), Dr. Zhang Zhang (Intel), Dr. Martin Dix (CSIRO)

Dr. Ilia Bermous, the Australian Bureau of Meteorology. Acknowledgements to Dr. Martyn Corden (Intel), Dr. Zhang Zhang (Intel), Dr. Martin Dix (CSIRO) Performance, accuracy and bit-reproducibility aspects in handling transcendental functions with Cray and Intel compilers for the Met Office Unified Model Dr. Ilia Bermous, the Australian Bureau of Meteorology

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks

An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks WRF Model NASA Parallel Benchmark Intel MPI Bench My own personal benchmark HPC Challenge Benchmark Abstract

More information

Progress Report on QDP-JIT

Progress Report on QDP-JIT Progress Report on QDP-JIT F. T. Winter Thomas Jefferson National Accelerator Facility USQCD Software Meeting 14 April 16-17, 14 at Jefferson Lab F. Winter (Jefferson Lab) QDP-JIT USQCD-Software 14 1 /

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information