The Many-Core Revolution Understanding Change. Alejandro Cabrera January 29, 2009

Size: px
Start display at page:

Download "The Many-Core Revolution Understanding Change. Alejandro Cabrera January 29, 2009"

Transcription

1 The Many-Core Revolution Understanding Change Alejandro Cabrera January 29, 2009

2 Disclaimer This presentation currently contains several claims requiring proper citations and a few images that may or may not be licensed under the Creative Commons. The dwarf twins later on are CC-compatible. In short, it is not ready for production use. You've been warned.

3 Acknowledgements Berkeley View: The bulk of the presentation is based off of this paper. NVIDIA: Their GPUs and spec-sheets provide some exciting numbers. Google: Image searching made easy. Tilera: Many-core CPU.

4 Overview Exciting Pictures, Exciting Numbers State of the Core Why Many-Core? Common Wisdoms Refuted Dwarves and Applications Programming Many-Core Discussion

5 Many-Core CPU: Tilera Pictures

6 Many-Core CPU: Tilera Numbers Memory Installed 2.5GB DDR2 Processor Clock 700 MHz

7 Many-Core CPU: Tilera Numbers Not many numbers available yet... Memory Installed 2.5GB DDR2 Processor Clock 700 MHz

8 Many-Core GPU: Nvidia GTX 295 Pictures

9 Many-Core GPU: Nvidia GTX 295 Numbers GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec Memory Specs Memory Clock 999 MHz Memory Config 1792 MB GDDR3 Memory Interface Width 896-bit Memory Bandwidth GB/s

10 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec Typical CPU has no more than 4 cores!

11 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec 92.2 billion pixels per second...

12 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec 92.2 billion pixels per second... A high-end monitor has a resolution of 2560 x 1600

13 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec 92.2 billion pixels per second... A high-end monitor has a resolution of 2560 x 1600 That's...

14 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec 92.2 billion pixels per second... A high-end monitor has a resolution of 2560 x 1600 That's million pixels

15 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec 4.1 million << 92.2 billion You could re-draw an entire scene about 22,500 times per second!

16 Many-Core GPU: Nvidia GTX 295 GPU Engine Specs Cores 480 Graphics Clock 576 MHz Processor Clock 1242 MHz Texture Fill Rate 92.2 billion pixels/sec 4.1 million << 92.2 billion You could re-draw an entire scene about 22,500 times per second! (assumes trivial, flat scene)

17 Many-Core GPU: Nvidia GTX 295 Numbers GB/s Memory Specs Memory Clock 999 MHz Memory Config 1792 MB GDDR3 Memory Interface Width 896-bit Memory Bandwidth GB/s

18 Many-Core GPU: Nvidia GTX 295 Numbers GB/s ~1TB / 4 seconds Memory Specs Memory Clock 999 MHz Memory Config 1792 MB GDDR3 Memory Interface Width 896-bit Memory Bandwidth GB/s

19 Many-Core GPU: Nvidia GTX 295 Numbers GB/s ~1TB / 4 seconds Let's picture it. Memory Specs Memory Clock 999 MHz Memory Config 1792 MB GDDR3 Memory Interface Width 896-bit Memory Bandwidth GB/s

20 Many-Core GPU: Nvidia GTX 295 Numbers WARNING The following slides feature assumptions that have no basis in reality. *A disk cannot store data at 223.8GB/s (yet)

21 Many-Core GPU: Nvidia GTX seconds of data processing ~1 TB

22 Many-Core GPU: Nvidia GTX minute of data processing

23 Many-Core GPU: Nvidia GTX hour of data processing 3.5 form factor = 4 x 5.75 x 1 = 23in 3 15 x 60 disks filled in one hour 23in 3 x 15 x 60 = 20,700in 3 = 1,725ft 3 Height of world's tallest building: 1,730ft To fit all the data, would require a cube as wide, long, and tall as Sears (Willis) Tower!

24 State of the Core Where Are We Now? Sequential processors aren't getting any faster No free lunch via Moore's Law voucher Quad-core = commodity Parallel applications few and far between in consumer markets Look to scientific and enterprise computing Multi-process Google Chrome browser Vendors want more performance and they want it yesterday Often a selling point

25 State of the Core Where Are We Now? Graphics processors no longer take the back seat GPGPU (2002) CUDA v1.1 (2007) CUDA v3.0b (2010) Powerful accelerators mingling with CPU IBM Cell

26 Biggest problem: State of the Core Where Are We Now? How do we develop efficient, correct, scalable parallel components? How do we develop highly-parallel applications composed of those components? Components: Data structures Algorithms

27 Why Many-Core? Beyond Exciting Numbers It's not a victory parade towards a bright, new idea. It's a retreat from an even greater challenge. We can't make sequential processors faster without melting them (or exploding our energy bills). We still want to get faster as quickly as possible, so we pursue the most immediate solution towards that end. As a result, many of our conventional wisdoms acquired over previous decades of computing have been overturned.

28 Common Wisdoms (Refuted) Power vs. Transistors Old Wisdom Power is free, but transistors are expensive. New Wisdom Power is expensive, but transistors are free. We can fit as many transistors on a chip as we have power to turn them on!

29 Common Wisdoms (Refuted) Dynamic vs. Static Power Old Wisdom You should only worry about dynamic power (voltage scaling). New Wisdom For desktops and servers, static power leakage can be 40% of total power.

30 Common Wisdoms (Refuted) Hardware Errors Old Wisdom Uniprocessors are reliable internally. New Wisdom With transistor designs falling below 65nm scale, errors occur at quantum level.

31 Common Wisdoms (Refuted) Scaling Designs Old Wisdom Old successes guide future successes, so we need only build upon prior designs. New Wisdom As design size (nanometer) drops, a multitude of factors will stretch development time.

32 Common Wisdoms (Refuted) Architecture Research Old Wisdom Let academia evaluate experimental designs they can build their own chips. New Wisdom Academia can no longer afford tools required to build believable chips.

33 Common Wisdoms (Refuted) Bandwidth vs. Latency Old Wisdom Performance improvements latency drops and bandwidth increases New Wisdom Bandwidth improves exponentially compared to latency (memory wall)

34 Common Wisdoms (Refuted) Computation vs. Memory Access Old Wisdom Store common computations in tables arithmetic is slow. New Wisdom Re-compute needed results data storage is slow.

35 Common Wisdoms (Refuted) Instruction Level Parallelism Old Wisdom There's an abundance of ILP waiting to be found by compilers, architectures designs, VLIW... New Wisdom Diminishing returns on ILP.

36 Common Wisdoms (Refuted) Moore's Law Old Wisdom Performance doubles every 18 months on a uniprocessor. New Wisdom Power Wall + Memory Wall + ILP Wall greater than 60 months to maintain Moore's Law for uniprocessors

37 Common Wisdoms (Refuted) Why Parallelize? Old Wisdom Don't bother parallelizing Moore's Law promises it'll run faster in a couple of years, unmodified. New Wisdom It'll be a long time before an unmodified program gets faster.

38 Common Wisdoms (Refuted) Parallel Performance Value Old Wisdom If it doesn't scale linearly, trash it. New Wisdom Any performance scaling is better than none- it's the only way to get faster now!

39 Common Wisdoms Moore's Law II New Wisdom The number of cores available on a chip doubles every 18 months.

40 Classifying Parallelism Dwarves To better understand parallel applications, a series of areas where parallelism is commonly exploited were analyzed. These areas are dwarves, patterns of communication and computation that identify a category of application.

41 Classifying Parallelism The Seven Dwarves

42 The Seven Dwarves Dense Linear Algebra (BLAS) Sparse Linear Algebra (conjugate gradient) Spectral Methods (FFT, DSP) N-Body simulation Structured Grid (PDE solver) Unstructured Grid Monte Carlo (embarrassingly parallel why?) Independent events

43 The Six (Other) Dwarves Why more dwarves? Up and coming algorithmic techniques and application domains require parallelization Observed domains: Combinatorial logic (SHA, MD5, AES, cryptography) Graph traversal (BFS, A*, maximum network flow) Finite state machines Bayesian networks, Hidden Markov Models Machine learning Dynamic programming Backtrack, branch-and-bound

44 The Six (Other) Dwarves In particular, no approach is currently known for parallel evaluation of a finite state machine. How can a system be in multiple states at once? Thought to be embarrassingly sequential. This brings us to our crux how do we develop new parallel applications?

45 Programming Many-Core We have exciting equipment. GPUs, CPUs, accelerators... We have clear applications areas. Linear algebra, graph traversal, dynamic programming... How do we use those exciting machines to satisfy those application requirements?

46 Programming Many-Core #include <???> import??? from

47 Programming Many-Core #include <???> import??? from How did I get here...?

48 Programming Many-Core #include <???> import??? from and who is that behind me?

49 Parallel Programming Models There are many (more) details that may be necessary to manage in order to produce an efficient parallel application versus a sequential application. Programming models seek to simplify the management of one or more of the following: Task identification Task mapping Data distribution Communication mapping Synchronization

50 MPI Parallel Programming Models A Few Existing Examples Pthreads MapReduce OpenMP CUDA OpenCL

51 Parallel Programming Models A Few Existing Examples Model Task ID Task Mapping Data Distrib. Comm. Mapping Sync MPI explicit explicit explicit implicit implicit Pthreads explicit explicit implicit implicit explicit MapReduce explicit implicit implicit implicit explicit OpenMP implicit implicit implicit implicit implicit CUDA explicit explicit explicit implicit explicit OpenCL N/A N/A N/A N/A N/A

52 Parallel Programming Models Message passing: Pros: Harder to make mistakes Much upfront planning Highly verifiable model Cons: Difficult to learn Hardware not yet thought of widely as networked components Shared Memory Pros: Friendly learning curve Matches hardware layout Cons: May not scale Cache coherence... Easy to make mistakes

53 Looking to the Many-Core Future We need: Better parallel programming models Better compilers A set of primitives to build APIs from Thoroughly tested parallel components Libraries Tools

54 Looking to the Many-Core Future Many challenges await. However, thanks to the revised Moore's Law, we have much to look forward to. Now, more than ever before, we'll be able to make great advances in sciences depending on extensive computation. All we have to do is add another core.

55

56 We'll yet get to the core of this issue.

6 February Parallel Computing: A View From Berkeley. E. M. Hielscher. Introduction. Applications and Dwarfs. Hardware. Programming Models

6 February Parallel Computing: A View From Berkeley. E. M. Hielscher. Introduction. Applications and Dwarfs. Hardware. Programming Models Parallel 6 February 2008 Motivation All major processor manufacturers have switched to parallel architectures This switch driven by three Walls : the Power Wall, Memory Wall, and ILP Wall Power = Capacitance

More information

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS Agenda Forming a GPGPU WG 1 st meeting Future meetings Activities Forming a GPGPU WG To raise needs and enhance information sharing A platform for knowledge

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010 Introduction to Multicore architecture Tao Zhang Oct. 21, 2010 Overview Part1: General multicore architecture Part2: GPU architecture Part1: General Multicore architecture Uniprocessor Performance (ECint)

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

Why GPUs? Robert Strzodka (MPII), Dominik Göddeke G. TUDo), Dominik Behr (AMD)

Why GPUs? Robert Strzodka (MPII), Dominik Göddeke G. TUDo), Dominik Behr (AMD) Why GPUs? Robert Strzodka (MPII), Dominik Göddeke G (TUDo( TUDo), Dominik Behr (AMD) Conference on Parallel Processing and Applied Mathematics Wroclaw, Poland, September 13-16, 16, 2009 www.gpgpu.org/ppam2009

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

The Art of Parallel Processing

The Art of Parallel Processing The Art of Parallel Processing Ahmad Siavashi April 2017 The Software Crisis As long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a

More information

Parallel and High Performance Computing CSE 745

Parallel and High Performance Computing CSE 745 Parallel and High Performance Computing CSE 745 1 Outline Introduction to HPC computing Overview Parallel Computer Memory Architectures Parallel Programming Models Designing Parallel Programs Parallel

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing Chieh-Sen (Jason) Huang Department of Applied Mathematics National Sun Yat-sen University Thank Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar for providing

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

CFD Solvers on Many-core Processors

CFD Solvers on Many-core Processors CFD Solvers on Many-core Processors Tobias Brandvik Whittle Laboratory CFD Solvers on Many-core Processors p.1/36 CFD Backgroud CFD: Computational Fluid Dynamics Whittle Laboratory - Turbomachinery CFD

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

GPUs and GPGPUs. Greg Blanton John T. Lubia

GPUs and GPGPUs. Greg Blanton John T. Lubia GPUs and GPGPUs Greg Blanton John T. Lubia PROCESSOR ARCHITECTURAL ROADMAP Design CPU Optimized for sequential performance ILP increasingly difficult to extract from instruction stream Control hardware

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 39 Intra-machine Parallelism 2010-04-30!!!Head TA Scott Beamer!!!www.cs.berkeley.edu/~sbeamer Old-Fashioned Mud-Slinging with

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav

CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CUDA PROGRAMMING MODEL Chaithanya Gadiyam Swapnil S Jadhav CMPE655 - Multiple Processor Systems Fall 2015 Rochester Institute of Technology Contents What is GPGPU? What s the need? CUDA-Capable GPU Architecture

More information

Fra superdatamaskiner til grafikkprosessorer og

Fra superdatamaskiner til grafikkprosessorer og Fra superdatamaskiner til grafikkprosessorer og Brødtekst maskinlæring Prof. Anne C. Elster IDI HPC/Lab Parallel Computing: Personal perspective 1980 s: Concurrent and Parallel Pascal 1986: Intel ipsc

More information

Parallelism and Concurrency. COS 326 David Walker Princeton University

Parallelism and Concurrency. COS 326 David Walker Princeton University Parallelism and Concurrency COS 326 David Walker Princeton University Parallelism What is it? Today's technology trends. How can we take advantage of it? Why is it so much harder to program? Some preliminary

More information

Administration. Course material. Prerequisites. CS 395T: Topics in Multicore Programming. Instructors: TA: Course in computer architecture

Administration. Course material. Prerequisites. CS 395T: Topics in Multicore Programming. Instructors: TA: Course in computer architecture CS 395T: Topics in Multicore Programming Administration Instructors: Keshav Pingali (CS,ICES) 4.26A ACES Email: pingali@cs.utexas.edu TA: Xin Sui Email: xin@cs.utexas.edu University of Texas, Austin Fall

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D HPC with GPU and its applications from Inspur Haibo Xie, Ph.D xiehb@inspur.com 2 Agenda I. HPC with GPU II. YITIAN solution and application 3 New Moore s Law 4 HPC? HPC stands for High Heterogeneous Performance

More information

8/28/12. CSE 820 Graduate Computer Architecture. Richard Enbody. Dr. Enbody. 1 st Day 2

8/28/12. CSE 820 Graduate Computer Architecture. Richard Enbody. Dr. Enbody. 1 st Day 2 CSE 820 Graduate Computer Architecture Richard Enbody Dr. Enbody 1 st Day 2 1 Why Computer Architecture? Improve coding. Knowledge to make architectural choices. Ability to understand articles about architecture.

More information

Moore s Law. Computer architect goal Software developer assumption

Moore s Law. Computer architect goal Software developer assumption Moore s Law The number of transistors that can be placed inexpensively on an integrated circuit will double approximately every 18 months. Self-fulfilling prophecy Computer architect goal Software developer

More information

Fundamentals of Computer Design

Fundamentals of Computer Design Fundamentals of Computer Design Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

Scientific Computing on GPUs: GPU Architecture Overview

Scientific Computing on GPUs: GPU Architecture Overview Scientific Computing on GPUs: GPU Architecture Overview Dominik Göddeke, Jakub Kurzak, Jan-Philipp Weiß, André Heidekrüger and Tim Schröder PPAM 2011 Tutorial Toruń, Poland, September 11 http://gpgpu.org/ppam11

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

Heterogenous Computing

Heterogenous Computing Heterogenous Computing Fall 2018 CS, SE - Freshman Seminar 11:00 a 11:50a Computer Architecture What are the components of a computer? How do these components work together to perform computations? How

More information

Carlo Cavazzoni, HPC department, CINECA

Carlo Cavazzoni, HPC department, CINECA Introduction to Shared memory architectures Carlo Cavazzoni, HPC department, CINECA Modern Parallel Architectures Two basic architectural scheme: Distributed Memory Shared Memory Now most computers have

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

Parallelism. CS6787 Lecture 8 Fall 2017

Parallelism. CS6787 Lecture 8 Fall 2017 Parallelism CS6787 Lecture 8 Fall 2017 So far We ve been talking about algorithms We ve been talking about ways to optimize their parameters But we haven t talked about the underlying hardware How does

More information

CSE 599 I Accelerated Computing - Programming GPUS. Memory performance

CSE 599 I Accelerated Computing - Programming GPUS. Memory performance CSE 599 I Accelerated Computing - Programming GPUS Memory performance GPU Teaching Kit Accelerated Computing Module 6.1 Memory Access Performance DRAM Bandwidth Objective To learn that memory bandwidth

More information

Administration. Prerequisites. CS 395T: Topics in Multicore Programming. Why study parallel programming? Instructors: TA:

Administration. Prerequisites. CS 395T: Topics in Multicore Programming. Why study parallel programming? Instructors: TA: CS 395T: Topics in Multicore Programming Administration Instructors: Keshav Pingali (CS,ICES) 4.126A ACES Email: pingali@cs.utexas.edu TA: Aditya Rawal Email: 83.aditya.rawal@gmail.com University of Texas,

More information

From Brook to CUDA. GPU Technology Conference

From Brook to CUDA. GPU Technology Conference From Brook to CUDA GPU Technology Conference A 50 Second Tutorial on GPU Programming by Ian Buck Adding two vectors in C is pretty easy for (i=0; i

More information

Administration. Coursework. Prerequisites. CS 378: Programming for Performance. 4 or 5 programming projects

Administration. Coursework. Prerequisites. CS 378: Programming for Performance. 4 or 5 programming projects CS 378: Programming for Performance Administration Instructors: Keshav Pingali (Professor, CS department & ICES) 4.126 ACES Email: pingali@cs.utexas.edu TA: Hao Wu (Grad student, CS department) Email:

More information

Trends and Challenges in Multicore Programming

Trends and Challenges in Multicore Programming Trends and Challenges in Multicore Programming Eva Burrows Bergen Language Design Laboratory (BLDL) Department of Informatics, University of Bergen Bergen, March 17, 2010 Outline The Roadmap of Multicores

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Performance COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals What is Performance? How do we measure the performance of

More information

The Future of High Performance Computing

The Future of High Performance Computing The Future of High Performance Computing Randal E. Bryant Carnegie Mellon University http://www.cs.cmu.edu/~bryant Comparing Two Large-Scale Systems Oakridge Titan Google Data Center 2 Monolithic supercomputer

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

CS 475: Parallel Programming Introduction

CS 475: Parallel Programming Introduction CS 475: Parallel Programming Introduction Wim Bohm, Sanjay Rajopadhye Colorado State University Fall 2014 Course Organization n Let s make a tour of the course website. n Main pages Home, front page. Syllabus.

More information

CS 220: Introduction to Parallel Computing. Introduction to CUDA. Lecture 28

CS 220: Introduction to Parallel Computing. Introduction to CUDA. Lecture 28 CS 220: Introduction to Parallel Computing Introduction to CUDA Lecture 28 Today s Schedule Project 4 Read-Write Locks Introduction to CUDA 5/2/18 CS 220: Parallel Computing 2 Today s Schedule Project

More information

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Computer Abstractions and Technology (4) Fengguang Song Department of Computer & Information Science IUPUI Contents 1.7 - End of Chapter 1 Power wall The multicore era

More information

Accelerating CFD with Graphics Hardware

Accelerating CFD with Graphics Hardware Accelerating CFD with Graphics Hardware Graham Pullan (Whittle Laboratory, Cambridge University) 16 March 2009 Today Motivation CPUs and GPUs Programming NVIDIA GPUs with CUDA Application to turbomachinery

More information

GPU Architecture. Alan Gray EPCC The University of Edinburgh

GPU Architecture. Alan Gray EPCC The University of Edinburgh GPU Architecture Alan Gray EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? Architectural reasons for accelerator performance advantages Latest GPU Products From

More information

Lecture 1: Gentle Introduction to GPUs

Lecture 1: Gentle Introduction to GPUs CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming Lecture 1: Gentle Introduction to GPUs Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Who Am I? Mohamed

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

PFAC Library: GPU-Based String Matching Algorithm

PFAC Library: GPU-Based String Matching Algorithm PFAC Library: GPU-Based String Matching Algorithm Cheng-Hung Lin Lung-Sheng Chien Chen-Hsiung Liu Shih-Chieh Chang Wing-Kai Hon National Taiwan Normal University, Taipei, Taiwan National Tsing-Hua University,

More information

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model

Parallel Programming Principle and Practice. Lecture 9 Introduction to GPGPUs and CUDA Programming Model Parallel Programming Principle and Practice Lecture 9 Introduction to GPGPUs and CUDA Programming Model Outline Introduction to GPGPUs and Cuda Programming Model The Cuda Thread Hierarchy / Memory Hierarchy

More information

GPGPU on ARM. Tom Gall, Gil Pitney, 30 th Oct 2013

GPGPU on ARM. Tom Gall, Gil Pitney, 30 th Oct 2013 GPGPU on ARM Tom Gall, Gil Pitney, 30 th Oct 2013 Session Description This session will discuss the current state of the art of GPGPU technologies on ARM SoC systems. What standards are there? Where are

More information

What Next? Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. * slides thanks to Kavita Bala & many others

What Next? Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. * slides thanks to Kavita Bala & many others What Next? Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University * slides thanks to Kavita Bala & many others Final Project Demo Sign-Up: Will be posted outside my office after lecture today.

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Parallel Computing. Parallel Computing. Hwansoo Han

Parallel Computing. Parallel Computing. Hwansoo Han Parallel Computing Parallel Computing Hwansoo Han What is Parallel Computing? Software with multiple threads Parallel vs. concurrent Parallel computing executes multiple threads at the same time on multiple

More information

The Implications of Multi-core

The Implications of Multi-core The Implications of Multi- What I want to do today Given that everyone is heralding Multi- Is it really the Holy Grail? Will it cure cancer? A lot of misinformation has surfaced What multi- is and what

More information

Part IV. Review of hardware-trends for real-time ray tracing

Part IV. Review of hardware-trends for real-time ray tracing Part IV Review of hardware-trends for real-time ray tracing Hardware Trends For Real-time Ray Tracing Philipp Slusallek Saarland University, Germany Large Model Visualization at Boeing CATIA Model of Boeing

More information

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D.

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. An Older Computer The figure at right is an older computer, called a PDP-11/20. It was designed in the

More information

Lecture 13: Memory Consistency. + Course-So-Far Review. Parallel Computer Architecture and Programming CMU /15-618, Spring 2014

Lecture 13: Memory Consistency. + Course-So-Far Review. Parallel Computer Architecture and Programming CMU /15-618, Spring 2014 Lecture 13: Memory Consistency + Course-So-Far Review Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2014 Tunes Beggin Madcon (So Dark the Con of Man) 15-418 students tend to

More information

The Use of Cloud Computing Resources in an HPC Environment

The Use of Cloud Computing Resources in an HPC Environment The Use of Cloud Computing Resources in an HPC Environment Bill, Labate, UCLA Office of Information Technology Prakashan Korambath, UCLA Institute for Digital Research & Education Cloud computing becomes

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

ECE 8823: GPU Architectures. Objectives

ECE 8823: GPU Architectures. Objectives ECE 8823: GPU Architectures Introduction 1 Objectives Distinguishing features of GPUs vs. CPUs Major drivers in the evolution of general purpose GPUs (GPGPUs) 2 1 Chapter 1 Chapter 2: 2.2, 2.3 Reading

More information

Optimizing Data Locality for Iterative Matrix Solvers on CUDA

Optimizing Data Locality for Iterative Matrix Solvers on CUDA Optimizing Data Locality for Iterative Matrix Solvers on CUDA Raymond Flagg, Jason Monk, Yifeng Zhu PhD., Bruce Segee PhD. Department of Electrical and Computer Engineering, University of Maine, Orono,

More information

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important?

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important? 0.1 What is This Course About? 0.2 CS 356 Unit 0 Class Introduction Basic Hardware Organization Introduction to Computer Systems a.k.a. Computer Organization or Architecture Filling in the "systems" details

More information

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany Computing on GPUs Prof. Dr. Uli Göhner DYNAmore GmbH Stuttgart, Germany Summary: The increasing power of GPUs has led to the intent to transfer computing load from CPUs to GPUs. A first example has been

More information

Roofline Model (Will be using this in HW2)

Roofline Model (Will be using this in HW2) Parallel Architecture Announcements HW0 is due Friday night, thank you for those who have already submitted HW1 is due Wednesday night Today Computing operational intensity Dwarves and Motifs Stencil computation

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

General introduction: GPUs and the realm of parallel architectures

General introduction: GPUs and the realm of parallel architectures General introduction: GPUs and the realm of parallel architectures GPU Computing Training August 17-19 th 2015 Jan Lemeire (jan.lemeire@vub.ac.be) Graduated as Engineer in 1994 at VUB Worked for 4 years

More information

Chapter 1: Introduction to Parallel Computing

Chapter 1: Introduction to Parallel Computing Parallel and Distributed Computing Chapter 1: Introduction to Parallel Computing Jun Zhang Laboratory for High Performance Computing & Computer Simulation Department of Computer Science University of Kentucky

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know.

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know. Administrivia HW0 scores, HW1 peer-review assignments out. HW2 out, due Nov. 2. If you re having Cython trouble with HW2, let us know. Review on Wednesday: Post questions on Piazza Introduction to GPUs

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Performance comparison between a massive SMP machine and clusters

Performance comparison between a massive SMP machine and clusters Performance comparison between a massive SMP machine and clusters Martin Scarcia, Stefano Alberto Russo Sissa/eLab joint Democritos/Sissa Laboratory for e-science Via Beirut 2/4 34151 Trieste, Italy Stefano

More information

Multi-Core Microprocessor Chips: Motivation & Challenges

Multi-Core Microprocessor Chips: Motivation & Challenges Multi-Core Microprocessor Chips: Motivation & Challenges Dileep Bhandarkar, Ph. D. Architect at Large DEG Architecture & Planning Digital Enterprise Group Intel Corporation October 2005 Copyright 2005

More information

GPGPU. Peter Laurens 1st-year PhD Student, NSC

GPGPU. Peter Laurens 1st-year PhD Student, NSC GPGPU Peter Laurens 1st-year PhD Student, NSC Presentation Overview 1. What is it? 2. What can it do for me? 3. How can I get it to do that? 4. What s the catch? 5. What s the future? What is it? Introducing

More information

CDA3101 Recitation Section 13

CDA3101 Recitation Section 13 CDA3101 Recitation Section 13 Storage + Bus + Multicore and some exam tips Hard Disks Traditional disk performance is limited by the moving parts. Some disk terms Disk Performance Platters - the surfaces

More information

CS654 Advanced Computer Architecture. Lec 1 - Introduction

CS654 Advanced Computer Architecture. Lec 1 - Introduction CS654 Advanced Computer Architecture Lec 1 - Introduction Peter Kemper Adapted from the slides of EECS 252 by Prof. David Patterson Electrical Engineering and Computer Sciences University of California,

More information

Tesla GPU Computing A Revolution in High Performance Computing

Tesla GPU Computing A Revolution in High Performance Computing Tesla GPU Computing A Revolution in High Performance Computing Gernot Ziegler, Developer Technology (Compute) (Material by Thomas Bradley) Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction

More information

Contour Detection on Mobile Platforms

Contour Detection on Mobile Platforms Contour Detection on Mobile Platforms Bor-Yiing Su, subrian@eecs.berkeley.edu Prof. Kurt Keutzer, keutzer@eecs.berkeley.edu Parallel Computing Lab, University of California, Berkeley 1/26 Diagnosing Power/Performance

More information

CS758: Multicore Programming

CS758: Multicore Programming CS758: Multicore Programming Introduction Fall 2009 1 CS758 Credits Material for these slides has been contributed by Prof. Saman Amarasinghe, MIT Prof. Mark Hill, Wisconsin Prof. David Patterson, Berkeley

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Background Information Recent trends in the marketplace of high performance computing Strohmaier, Dongarra, Meuer, Simon Parallel Computing 2005 Short history

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

GPGPU Applications. for Hydrological and Atmospheric Simulations. and Visualizations on the Web. Ibrahim Demir

GPGPU Applications. for Hydrological and Atmospheric Simulations. and Visualizations on the Web. Ibrahim Demir GPGPU Applications for Hydrological and Atmospheric Simulations and Visualizations on the Web Ibrahim Demir Big Data We are collecting and generating data on a petabyte scale (1Pb = 1,000 Tb = 1M Gb) Data

More information

System-on-Chip Architecture for Mobile Applications. Sabyasachi Dey

System-on-Chip Architecture for Mobile Applications. Sabyasachi Dey System-on-Chip Architecture for Mobile Applications Sabyasachi Dey Email: sabyasachi.dey@gmail.com Agenda What is Mobile Application Platform Challenges Key Architecture Focus Areas Conclusion Mobile Revolution

More information

Administration. Prerequisites. Website. CSE 392/CS 378: High-performance Computing: Principles and Practice

Administration. Prerequisites. Website. CSE 392/CS 378: High-performance Computing: Principles and Practice CSE 392/CS 378: High-performance Computing: Principles and Practice Administration Professors: Keshav Pingali 4.126 ACES Email: pingali@cs.utexas.edu Jim Browne Email: browne@cs.utexas.edu Robert van de

More information

Scientific Programming in C XIV. Parallel programming

Scientific Programming in C XIV. Parallel programming Scientific Programming in C XIV. Parallel programming Susi Lehtola 11 December 2012 Introduction The development of microchips will soon reach the fundamental physical limits of operation quantum coherence

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

Multicore Hardware and Parallelism

Multicore Hardware and Parallelism Multicore Hardware and Parallelism Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

The ECMWF forecast model, quo vadis?

The ECMWF forecast model, quo vadis? The forecast model, quo vadis? by Nils Wedi European Centre for Medium-Range Weather Forecasts wedi@ecmwf.int contributors: Piotr Smolarkiewicz, Mats Hamrud, George Mozdzynski, Sylvie Malardel, Christian

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c Review! UC Berkeley CS61C : Machine Structures Lecture 28 Intra-machine Parallelism Parallelism is necessary for performance! It looks like itʼs It is the future of computing!

More information

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto

FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs October 13, 2009 Overview Presenting: Alex Papakonstantinou, Karthik Gururaj, John Stratton, Jason Cong, Deming Chen, Wen-mei Hwu. FCUDA:

More information

Measurement of real time information using GPU

Measurement of real time information using GPU Measurement of real time information using GPU Pooja Sharma M. Tech Scholar, Department of Electronics and Communication E-mail: poojachaturvedi1985@gmail.com Rajni Billa M. Tech Scholar, Department of

More information

NAMD Serial and Parallel Performance

NAMD Serial and Parallel Performance NAMD Serial and Parallel Performance Jim Phillips Theoretical Biophysics Group Serial performance basics Main factors affecting serial performance: Molecular system size and composition. Cutoff distance

More information