Now we are going to speak about the CPU, the Central Processing Unit.

Size: px
Start display at page:

Download "Now we are going to speak about the CPU, the Central Processing Unit."

Transcription

1 Now we are going to speak about the CPU, the Central Processing Unit.

2 The central processing unit or CPU is the component that executes the instructions of the program that is stored in the computer s memory. It is the brain of the computer.

3 Processors are manufactured in silicon wafers, each one of them can include between five hundred and one thousand processors.

4 In a modern CPU, we can find more than 2,000 million transistors. And this number is increasing while the miniaturisation process achieves manufacturing of components at more and more reduced scales.

5 This evolution was outlined by Gordon Moore, co-founder of Intel, in He predicted that the number of components in a integrated circuit would double each 18 months. This is known as Moore's law and nowadays it is still valid. But it won't last forever. Some studies suggest that the end of this law will arrive in about twenty years.

6 The processor that we can find in our own computer is developed with a fourteen nanometers technology. In a plate of eighty-two millimetres, we have near 2 billion transistors.

7 But, how big is fourteen nanometers? Well, you can see the scale in the picture. This size is ten times smaller than a virus, and about fifty times bigger than a single silicon atom.

8 A computer is able to do very complex tasks, but its CPU only executes simple instructions, it is the software what makes the hard work of converting this complex tasks into these simple instructions. A CPU is only able to get data from the memory, to perform simple arithmetical and logical operations (that are comparisons such as greater than or equal to), to jump to a different part of the program depending on the results and to put data back into the memory, nothing more and nothing less. It has also mechanisms to interrupt a program after receiving an external signal (to be able to cater for requests of devices that need to be attended immediately). How a CPU works? The prefetch unit extracts the next instruction from the memory and the decode unit decodes it to obtain the operation. It later fetches the data needed from the memory and puts it in the CPU s internal memory (that is called the CPU registers). The arithmetic-logic unit is in

9 charge of performing the operation with the data stored in the registers and obtaining the result, which is returned later to the main memory from the internal registers. After this, the next instruction is loaded from RAM. Sometimes, before loading the new instruction, a jump to another memory location is executed depending on the results of the previous instruction. The control unit organises the complete process synchronised to a central clock.

10 The performance of the CPU depends on several factors. One of the most relevant and known is the speed, that is measured in hertz (cycles per second). But hertz is not a measure of speed, but a measure of the frequency of the internal clock. Usually more herzts mean more processing speed, but it is not always like this, because there are other mechanisms that also influence processing speed. The CPUs used in nowadays computers have clock frequencies in the gigaherzt range (1 GHz is equivalent to one US billion hertzs) The problem is that, with high frequencies, the temperature rises and with miniaturisation heat dissipation becomes harder, so you will have noticed that several years ago the increments in processor clock speed of new processors got stuck. They are now improving their performance using other techniques as the heat dissipation limit is near of what technology can achieve today.

11 The clock gives a signal with a given frequency. Each instruction needs a specific number of clock cycles to be executed. For instance, lets assume that an instruction needs 3,5 clock cycles to be executed as in the image. If the computer works at 1 hertz (1 cycle per second), the instruction will need 3,5 seconds to be completed. But, if it works at 2 hertzs (2 cycles per second), it will complete the operation in just 1,75 seconds. The speed of a modern CPU is measured in millions of operations by second. That's why, given the same processor, the more gigahertzs,

12 the faster it is.

13 Another important feature is word length. Basically, it is the number of bits that the CPU can receive when accessing the memory. You can imagine it as the number of lanes in a highway. When we increase the number of bits that can be transferred simultaneously, the performance of the CPU improves.

14 The last characteristic that affects the CPU performance is the number of cores of the processor. A processor with one core only can execute one instruction at a time.

15 If we add another core, then two instructions of the same or different programs can be executed in parallel, resulting in a processor twice as fast.

16 Current CPUs for personal computers have four or even six cores.

17 Cores can be combined with another technology called hyper threading, that allows to execute two different threads of the same program almost in parallel. For example, each tab of a web browser or each avatar of a video game runs in an independent thread.

18 As result, a single processor can execute 8 instructions in parallel, increasing the performance of the CPU.

19 In the consumer market, there are two main processor manufacturers, Intel and AMD. Their products are compatible, so we can execute the same instruction set in all of them. For desktop computers, Intel has the i3 i5 and i7 models, with some specific designs for laptops and tablets. The equivalent in AMD are the Athlon processors. Both brands have more powerful CPUs oriented to the workstation and server segments: the Xeon and Opteron respectively.

20

Computers: Inside and Out

Computers: Inside and Out Computers: Inside and Out Computer Components To store binary information the most basic components of a computer must exist in two states State # 1 = 1 State # 2 = 0 1 Transistors Computers use transistors

More information

CIT 668: System Architecture

CIT 668: System Architecture CIT 668: System Architecture Computer Systems Architecture I 1. System Components 2. Processor 3. Memory 4. Storage 5. Network 6. Operating System Topics Images courtesy of Majd F. Sakr or from Wikipedia

More information

7/28/ Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc.

7/28/ Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc. Technology in Action Technology in Action Chapter 9 Behind the Scenes: A Closer Look a System Hardware Chapter Topics Computer switches Binary number system Inside the CPU Cache memory Types of RAM Computer

More information

Calendar Description

Calendar Description ECE212 B1: Introduction to Microprocessors Lecture 1 Calendar Description Microcomputer architecture, assembly language programming, memory and input/output system, interrupts All the instructions are

More information

Systems Architecture

Systems Architecture Systems Architecture Friday, 27 April 2018 Systems Architecture Today s Objectives: 1. To be able to explain the purposes and uses of embedded systems. 2. To be able to describe how the CPU executes instructions

More information

Unit 4 Part A Evaluating & Purchasing a Computer. Computer Applications

Unit 4 Part A Evaluating & Purchasing a Computer. Computer Applications Unit 4 Part A Evaluating & Purchasing a Computer Computer Applications Making Informed Computer Purchasing Decisions Before Buying a Computer Speaking the language of the computer world can be tricky It

More information

Homeschool Enrichment. The System Unit: Processing & Memory

Homeschool Enrichment. The System Unit: Processing & Memory Homeschool Enrichment The System Unit: Processing & Memory Overview This chapter covers: How computers represent data and programs How the CPU, memory, and other components are arranged inside the system

More information

Install and Configure ICT Equipment and Operating Systems Unit 229 Central Processing Unit (CPU)

Install and Configure ICT Equipment and Operating Systems Unit 229 Central Processing Unit (CPU) Install and Configure ICT Equipment and Operating Systems Unit 229 Central Processing Unit (CPU) Definition of CPU Alternately referred to as a processor, central processor, or microprocessor, the CPU

More information

Technology in Action

Technology in Action Technology in Action Chapter 9 Behind the Scenes: A Closer Look at System Hardware 1 Binary Language Computers work in binary language. Consists of two numbers: 0 and 1 Everything a computer does is broken

More information

Electricity: Voltage. Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal.

Electricity: Voltage. Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal. Hardware CSCE 101 Electricity: Voltage Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal. The signals voltage will either be between

More information

INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 ELEC : Computer Architecture and Design

INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 ELEC : Computer Architecture and Design INTEL Architectures GOPALAKRISHNAN IYER FALL 2009 GBI0001@AUBURN.EDU ELEC 6200-001: Computer Architecture and Design Silicon Technology Moore s law Moore's Law describes a long-term trend in the history

More information

CPU Architecture system clock

CPU Architecture system clock CPU Architecture system clock Memory 64-bit adder Every CPU architecture is implemented using digital logic. In each cycle of the system clock, logic is executed and results are saved. System designers

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Processor: Faster and Faster

Processor: Faster and Faster Chapter 4 Processor: Faster and Faster Most of the computers, no matter how it looks, can be cut into five parts: Input/Output brings things in and, once done, sends out the result; a memory remembers

More information

UNIT 1.1 SYSTEMS ARCHITECTURE MCQS

UNIT 1.1 SYSTEMS ARCHITECTURE MCQS The numbers after the question are an approximate estimation of relative difficulty, broadly based around the new GCSE Numbering System. Please note that these were produced before final guidance was released

More information

Parallelism and Concurrency. COS 326 David Walker Princeton University

Parallelism and Concurrency. COS 326 David Walker Princeton University Parallelism and Concurrency COS 326 David Walker Princeton University Parallelism What is it? Today's technology trends. How can we take advantage of it? Why is it so much harder to program? Some preliminary

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

Computer Organization & Assembly Language Programming (CSE 2312)

Computer Organization & Assembly Language Programming (CSE 2312) Computer Organization & Assembly Language Programming (CSE 2312) Lecture 2 Taylor Johnson Summary from Last Time This course aims to answer the question: how do computers compute? Complex and fundamental

More information

Scaling through more cores

Scaling through more cores Scaling through more cores From single to multi core by Thomas Walther Seminar on 30.11.2015 1/32 Index 1. Introduction 2. Scaling with single core until 2005 Problems and barriers 3. Solution through

More information

Microprocessors. Chapter The McGraw-Hill Companies, Inc. All rights reserved. Mike Meyers CompTIA A+ Guide to Managing and Troubleshooting PCs

Microprocessors. Chapter The McGraw-Hill Companies, Inc. All rights reserved. Mike Meyers CompTIA A+ Guide to Managing and Troubleshooting PCs Microprocessors Chapter 6 Overview In this chapter, you will learn how to Identify the core components of a CPU Describe the relationship of CPUs and memory Explain the varieties of modern CPUs Select

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor Slide 1 Microprocessor A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device That reads binary instructions from a storage device

More information

Intentionally Blank 0

Intentionally Blank 0 Intentionally Blank 0 Technology in Action Chapter 2 Looking at Computers: Understanding the Parts 1 Understanding Your Computer: Computers are Data Processing Devices Perform four major functions Input:

More information

MSc-IT 1st Semester Fall 2016, Course Instructor M. Imran khalil 1

MSc-IT 1st Semester Fall 2016, Course Instructor M. Imran khalil 1 Objectives Overview Differentiate among various styles of system units on desktop computers, notebook computers, and mobile devices Identify chips, adapter cards, and other components of a motherboard

More information

Computer Organization & Assembly Language Programming (CSE 2312)

Computer Organization & Assembly Language Programming (CSE 2312) Computer Organization & Assembly Language Programming (CSE 2312) Lecture 3 Taylor Johnson Summary from Last Time Binary to decimal, decimal to binary, ASCII Structured computers Multilevel computers and

More information

The personal computer system uses the following hardware device types -

The personal computer system uses the following hardware device types - EIT, Author Gay Robertson, 2016 The personal computer system uses the following hardware device types - Input devices Input devices Processing devices Storage devices Processing Cycle Processing devices

More information

Worksheet - Storing Data

Worksheet - Storing Data Unit 1 Lesson 12 Name(s) Period Date Worksheet - Storing Data At the smallest scale in the computer, information is stored as bits and bytes. In this section, we'll look at how that works. Bit Bit, like

More information

Computer Hardware. In this lesson we will learn about Computer Hardware, so that we have a better understanding of what a computer is.

Computer Hardware. In this lesson we will learn about Computer Hardware, so that we have a better understanding of what a computer is. In this lesson we will learn about, so that we have a better understanding of what a computer is. USB Port Ports and Connectors USB Cable and Connector Universal Serial Bus (USB) is by far the most common

More information

MICROPROCESSOR ARCHITECTURE

MICROPROCESSOR ARCHITECTURE MICROPROCESSOR ARCHITECTURE UOP S.E.COMP (SEM-I) MULTICORE DESIGN Prof.P.C.Patil Department of Computer Engg Matoshri College of Engg.Nasik pcpatil18@gmail.com. History 2 History The most important part

More information

CIT 668: System Architecture. Computer Systems Architecture

CIT 668: System Architecture. Computer Systems Architecture CIT 668: System Architecture Computer Systems Architecture 1. System Components Topics 2. Bandwidth and Latency 3. Processor 4. Memory 5. Storage 6. Network 7. Operating System 8. Performance Implications

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

HW Trends and Architectures

HW Trends and Architectures Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 1/29 HW Trends and Architectures prof. Ing. Pavel Tvrdík CSc. Ing. Jiří Kašpar Department of Computer Systems Faculty

More information

ECE 2162 Intro & Trends. Jun Yang Fall 2009

ECE 2162 Intro & Trends. Jun Yang Fall 2009 ECE 2162 Intro & Trends Jun Yang Fall 2009 Prerequisites CoE/ECE 0142: Computer Organization; or CoE/CS 1541: Introduction to Computer Architecture I will assume you have detailed knowledge of Pipelining

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

More advanced CPUs. August 4, Howard Huang 1

More advanced CPUs. August 4, Howard Huang 1 More advanced CPUs In the last two weeks we presented the design of a basic processor. The datapath performs operations on register and memory data. A control unit translates program instructions into

More information

Fundamentals of Computer Design

Fundamentals of Computer Design Fundamentals of Computer Design Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems Computer Architecture Review ICS332 - Spring 2016 Operating Systems ENIAC (1946) Electronic Numerical Integrator and Calculator Stored-Program Computer (instead of Fixed-Program) Vacuum tubes, punch cards

More information

ECE 154A. Architecture. Dmitri Strukov

ECE 154A. Architecture. Dmitri Strukov ECE 154A Introduction to Computer Architecture Dmitri Strukov Lecture 1 Outline Admin What this class is about? Prerequisites ii Simple computer Performance Historical trends Economics 2 Admin Office Hours:

More information

Heterogenous Computing

Heterogenous Computing Heterogenous Computing Fall 2018 CS, SE - Freshman Seminar 11:00 a 11:50a Computer Architecture What are the components of a computer? How do these components work together to perform computations? How

More information

CISC / RISC. Complex / Reduced Instruction Set Computers

CISC / RISC. Complex / Reduced Instruction Set Computers Systems Architecture CISC / RISC Complex / Reduced Instruction Set Computers CISC / RISC p. 1/12 Instruction Usage Instruction Group Average Usage 1 Data Movement 45.28% 2 Flow Control 28.73% 3 Arithmetic

More information

Introduction. A Look Inside a Laptop Computer. What is inside a laptop computer? What is Inside a Laptop Computer?

Introduction. A Look Inside a Laptop Computer. What is inside a laptop computer? What is Inside a Laptop Computer? What is inside a laptop computer? Introduction What is Inside a Laptop Computer? Watch the video (3:44). Need help? Have you ever looked inside a desktop computer case before? There is a lot of extra room

More information

Computer Systems. Hardware, Software and Layers of Abstraction

Computer Systems. Hardware, Software and Layers of Abstraction Computer Systems Hardware, Software and Layers of Abstraction 1 Automation & Computers Fundamental question of computer science: What can be automated? Computers automate processing of information Computer

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

Bits and Bytes. Here is a sort of glossary of computer buzzwords you will encounter in computer use:

Bits and Bytes. Here is a sort of glossary of computer buzzwords you will encounter in computer use: Bits and Bytes Here is a sort of glossary of computer buzzwords you will encounter in computer use: Bit Computer processors can only tell if a wire is on or off. Luckily, they can look at lots of wires

More information

HISTORY OF COMPUTERS HISTORY OF COMPUTERS. Mesleki İngilizce - Technical English. Punch Card. Digital Data. II Prof. Dr. Nizamettin AYDIN.

HISTORY OF COMPUTERS HISTORY OF COMPUTERS. Mesleki İngilizce - Technical English. Punch Card. Digital Data. II Prof. Dr. Nizamettin AYDIN. Mesleki İngilizce - Technical English II Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr Notes: In the slides, texts enclosed by curly parenthesis, { }, are examples. texts enclosed by square parenthesis,

More information

Blazer Pro V2.1 Client Requirements & Hardware Performance

Blazer Pro V2.1 Client Requirements & Hardware Performance Blazer Pro V2.1 Client Requirements & Hardware Performance Table of Contents Chapter 1 Client Requirements... 2 Chapter 2 Control Client Performance... 3 2.1 Local Control Client on Blazer Pro Server...

More information

Lecture 28 Multicore, Multithread" Suggested reading:" (H&P Chapter 7.4)"

Lecture 28 Multicore, Multithread Suggested reading: (H&P Chapter 7.4) Lecture 28 Multicore, Multithread" Suggested reading:" (H&P Chapter 7.4)" 1" Processor components" Multicore processors and programming" Processor comparison" CSE 30321 - Lecture 01 - vs." Goal: Explain

More information

Software within building physics and ground heat storage. HEAT3 version 7. A PC-program for heat transfer in three dimensions Update manual

Software within building physics and ground heat storage. HEAT3 version 7. A PC-program for heat transfer in three dimensions Update manual Software within building physics and ground heat storage HEAT3 version 7 A PC-program for heat transfer in three dimensions Update manual June 15, 2015 BLOCON www.buildingphysics.com Contents 1. WHAT S

More information

Contents. Slide Set 1. About these slides. Outline of Slide Set 1. Typographical conventions: Italics. Typographical conventions. About these slides

Contents. Slide Set 1. About these slides. Outline of Slide Set 1. Typographical conventions: Italics. Typographical conventions. About these slides Slide Set 1 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014 ENCM 369 W14 Section

More information

Introduction. Look Inside a Desktop Computer. What is inside a desktop computer? What is Inside a Desktop Computer?

Introduction. Look Inside a Desktop Computer. What is inside a desktop computer? What is Inside a Desktop Computer? What is inside a desktop computer? Introduction What is Inside a Desktop Computer? Watch the video (3:44). Need help? Have you ever looked inside a computer case before? Or seen pictures of the inside

More information

Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica

Microelettronica. J. M. Rabaey, Digital integrated circuits: a design perspective EE141 Microelettronica Microelettronica J. M. Rabaey, "Digital integrated circuits: a design perspective" Introduction Why is designing digital ICs different today than it was before? Will it change in future? The First Computer

More information

Chapter 2 The Systems Unit: Processing and Memory

Chapter 2 The Systems Unit: Processing and Memory 15 th Edition Understanding Computers Today and Tomorrow Comprehensive Chapter 2 The Systems Unit: Processing and Memory Deborah Morley Charles S. Parker Copyright 2015 Cengage Learning Learning Objectives

More information

How What When Why CSC3501 FALL07 CSC3501 FALL07. Louisiana State University 1- Introduction - 1. Louisiana State University 1- Introduction - 2

How What When Why CSC3501 FALL07 CSC3501 FALL07. Louisiana State University 1- Introduction - 1. Louisiana State University 1- Introduction - 2 Computer Organization and Design Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu d These slides are available at: http://www.csc.lsu.edu/~durresi/csc3501_07/ Louisiana

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 03, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 03, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 03, SPRING 2013 TOPICS TODAY Moore s Law Evolution of Intel CPUs IA-32 Basic Execution Environment IA-32 General Purpose Registers

More information

1.2.1 Electronic computers based on digital switching

1.2.1 Electronic computers based on digital switching 1.2.1 Electronic computers based on digital switching The first true digital electronic computer was created by John V Atanasoff during 1937-1942. The Atanasoff-Berry Computer (called ABC figure 2.8) was

More information

1.3 Data processing; data storage; data movement; and control.

1.3 Data processing; data storage; data movement; and control. CHAPTER 1 OVERVIEW ANSWERS TO QUESTIONS 1.1 Computer architecture refers to those attributes of a system visible to a programmer or, put another way, those attributes that have a direct impact on the logical

More information

SYSTEM BUS AND MOCROPROCESSORS HISTORY

SYSTEM BUS AND MOCROPROCESSORS HISTORY SYSTEM BUS AND MOCROPROCESSORS HISTORY Dr. M. Hebaishy momara@su.edu.sa http://colleges.su.edu.sa/dawadmi/fos/pages/hebaishy.aspx Digital Logic Design Ch1-1 SYSTEM BUS The CPU sends various data values,

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework and numa control Examples

More information

Multi-core Microprocessors

Multi-core Microprocessors Multi-core Microprocessors V Rajaraman Multi-core microprocessor is an interconnected set of independent processors called cores integrated on a single silicon chip These processing cores communicate and

More information

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport CPS 303 High Performance Computing Wensheng Shen Department of Computational Science SUNY Brockport Chapter 1: Introduction to High Performance Computing van Neumann Architecture CPU and Memory Speed Motivation

More information

Management Information Systems OUTLINE OBJECTIVES. Information Systems: Computer Hardware. Dr. Shankar Sundaresan

Management Information Systems OUTLINE OBJECTIVES. Information Systems: Computer Hardware. Dr. Shankar Sundaresan Management Information Systems Information Systems: Computer Hardware Dr. Shankar Sundaresan (Adapted from Introduction to IS, Rainer and Turban) OUTLINE Introduction The Central Processing Unit Computer

More information

Computer Organization CS 206T

Computer Organization CS 206T Computer Organization CS 206T Topics Introduction Historical Background Structure & Function System Interconnection 2 1. Introduction Why study computer organization and architecture? Design better programs,

More information

Chapter 2. Prepared By: Humeyra Saracoglu

Chapter 2. Prepared By: Humeyra Saracoglu Chapter 2 The Components of the System Unit Prepared By: Humeyra Saracoglu The System Unit What is the system unit? Case that contains electronic components of the computer used to process data Sometimes

More information

STAR Watch Statewide Technology Assistance Resources Project A publication of the Western New York Law Center,Inc.

STAR Watch Statewide Technology Assistance Resources Project A publication of the Western New York Law Center,Inc. STAR Watch Statewide Technology Assistance Resources Project A publication of the Western New York Law Center,Inc. Volume 9 Issue 3 June 2005 Double the Performance: Dual-Core CPU s Make Their Debut Starting

More information

Unit 2: Technology Systems. Computer and technology systems

Unit 2: Technology Systems. Computer and technology systems Unit 2: Technology Systems Computer and technology systems So far Introduction Applications in different industries Issues Sustainability Privacy and copyright Networking Today Learning aim B: Understand

More information

So computers can't think in the same way that people do. But what they do, they do excellently well and very, very fast.

So computers can't think in the same way that people do. But what they do, they do excellently well and very, very fast. Input What is Processing? Processing Output Processing is the thinking that the computer does - the calculations, comparisons, and decisions. Storage People also process data. What you see and hear and

More information

Homework Question. Faster, faster, faster! (40 points)

Homework Question. Faster, faster, faster! (40 points) Homework Question. Faster, faster, faster! (40 points) Microprocessor Challenge to Intel Launched By MATTHEW FORDAHL, The Associated Press, Monday, February 7, 2005; 8:11 PM http://www.washingtonpost.com/wp-dyn/articles/a6039-2005feb7.html

More information

CSE 1310: Introduction Mariottini UT Arlington

CSE 1310: Introduction Mariottini UT Arlington Kind of obvious, but a computer is something that does computa0on. What is interes8ng in it is what is going to be computed. In the 1960 s, when computers were becoming popular, they were commonly called

More information

Knowledge Organiser. Computing. Year 10 Term 1 Hardware

Knowledge Organiser. Computing. Year 10 Term 1 Hardware Organiser Computing Year 10 Term 1 Hardware Enquiry Question How does a computer do everything it does? Big questions that will help you answer this enquiry question: 1. What is the purpose of the CPU?

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

System Unit Components Chapter2

System Unit Components Chapter2 System Unit Components Chapter2 ITBIS105 IS-IT-UOB 2013 The System Unit What is the system unit? Case that contains electronic components of the computer used to process data Sometimes called the chassis

More information

Computer Architecture

Computer Architecture Instruction Cycle Computer Architecture Program Execution and Instruction Sets INFO 2603 Platform Technologies The basic function performed by a computer is the execution of a program, which is a set of

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

The Central Processing Unit

The Central Processing Unit The Central Processing Unit All computers derive from the same basic design, usually referred to as the von Neumann architecture. This concept involves solving a problem by defining a sequence of commands

More information

System Unit Components. Chapter2

System Unit Components. Chapter2 System Unit Components Chapter2 ITBIS105 IS-IT-UOB 2016 The System Unit What is the system Case that contains electronic components of the computer use d to process data Sometimes called the chassis unit?

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 15 1.5 Historical Development 16 1.5.1 Generation

More information

Update on logistics ECS 15

Update on logistics ECS 15 Update on logistics ECS 15 Topic 2: 2.2 Digital Logic: Transistors, Topic 3: Computers 3.1 Hardware Lab 4 starts Tues. Building html pages. Progress report due Friday. Get advice at labs this week! Direct

More information

C Program Adventures. From C code to motion

C Program Adventures. From C code to motion C Program Adventures From C code to motion ECE 100 Prof. Erdal Oruklu From C code to motion C Code Motion x=5; if (x!=y) { z=0; } else { z=1; } 1 Compilation of C code Virtual machine program Program download

More information

Multicore Hardware and Parallelism

Multicore Hardware and Parallelism Multicore Hardware and Parallelism Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3

More information

LECTURE 1. Introduction

LECTURE 1. Introduction LECTURE 1 Introduction CLASSES OF COMPUTERS When we think of a computer, most of us might first think of our laptop or maybe one of the desktop machines frequently used in the Majors Lab. Computers, however,

More information

Name: Date: Hour: The abacus (still in use today) is about 5,000 years old. Not a computer.

Name: Date: Hour: The abacus (still in use today) is about 5,000 years old. Not a computer. Introduction to Computers - Intel: The Journey Inside Name: Date: Hour: Directions: Read/review each lesson and write your short answers on this paper. If there is a video available, watch it using headphones.

More information

The Power Wall. Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s?

The Power Wall. Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s? The Power Wall Why Aren t Modern CPUs Faster? What Happened in the Late 1990 s? Edward L. Bosworth, Ph.D. Associate Professor TSYS School of Computer Science Columbus State University Columbus, Georgia

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D.

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. An Older Computer The figure at right is an older computer, called a PDP-11/20. It was designed in the

More information

Parallelism in Hardware

Parallelism in Hardware Parallelism in Hardware Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3 Moore s Law

More information

Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor.

Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor. CS 320 Ch. 18 Multicore Computers Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor. Definitions: Hyper-threading Intel's proprietary simultaneous

More information

High Performance Computing

High Performance Computing High Performance Computing CS701 and IS860 Basavaraj Talawar basavaraj@nitk.edu.in Course Syllabus Definition, RISC ISA, RISC Pipeline, Performance Quantification Instruction Level Parallelism Pipeline

More information

Computers Programming Introduction. Iulian Năstac

Computers Programming Introduction. Iulian Năstac Computers Programming Introduction Iulian Năstac Contents Overview of the computer systems Operating Systems 2 Note: Electronic files (in pdf format) can be downloaded from the website : http://www.euroqual.pub.ro/programareacalculatoarelor/#download

More information

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My!

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Or what s happening inside the computer? Digital Data Representation Computers may seem smart, but

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 13 1.5 Historical Development 14 1.5.1 Generation

More information

Chapter 1: Introduction to the Microprocessor and Computer 1 1 A HISTORICAL BACKGROUND

Chapter 1: Introduction to the Microprocessor and Computer 1 1 A HISTORICAL BACKGROUND Chapter 1: Introduction to the Microprocessor and Computer 1 1 A HISTORICAL BACKGROUND The Microprocessor Called the CPU (central processing unit). The controlling element in a computer system. Controls

More information

CPU Benchmarks Over 1,000,000 CPUs Benchmarked

CPU Benchmarks Over 1,000,000 CPUs Benchmarked 1 of 5 10/16/2018, 9:04 AM Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» New Desktop CPU Performance CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks

More information

Parallelism: The Real Y2K Crisis. Darek Mihocka August 14, 2008

Parallelism: The Real Y2K Crisis. Darek Mihocka August 14, 2008 Parallelism: The Real Y2K Crisis Darek Mihocka August 14, 2008 The Free Ride For decades, Moore's Law allowed CPU vendors to rely on steady clock speed increases: late 1970's: 1 MHz (6502) mid 1980's:

More information

Suggested Readings! Lecture 24" Parallel Processing on Multi-Core Chips! Technology Drive to Multi-core! ! Readings! ! H&P: Chapter 7! vs.! CSE 30321!

Suggested Readings! Lecture 24 Parallel Processing on Multi-Core Chips! Technology Drive to Multi-core! ! Readings! ! H&P: Chapter 7! vs.! CSE 30321! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7!! (Over next 2 weeks)! Lecture 24" Parallel Processing on Multi-Core Chips! 3! Processor components! Multicore processors and programming! Processor

More information

ECE 486/586. Computer Architecture. Lecture # 2

ECE 486/586. Computer Architecture. Lecture # 2 ECE 486/586 Computer Architecture Lecture # 2 Spring 2015 Portland State University Recap of Last Lecture Old view of computer architecture: Instruction Set Architecture (ISA) design Real computer architecture:

More information

INTEL MULTI-CORE FACTS, FIGURES AND DECODER RING

INTEL MULTI-CORE FACTS, FIGURES AND DECODER RING Intel Corporation 2200 Mission College Blvd. P.O. Box 58119 Santa Clara, CA 95052-8119 Fact Sheet INTEL MULTI-CORE FACTS, FIGURES AND DECODER RING INTEL DEVELOPER FORUM, SAN FRANCISCO, March 1, 2005 Today

More information

FPGA Based Digital Design Using Verilog HDL

FPGA Based Digital Design Using Verilog HDL FPGA Based Digital Design Using Course Designed by: IRFAN FAISAL MIR ( Verilog / FPGA Designer ) irfanfaisalmir@yahoo.com * Organized by Electronics Division Integrated Circuits Uses for digital IC technology

More information

Module 3. CPUs and Cooling

Module 3. CPUs and Cooling Module 3 CPUs and Cooling Objectives PC Hardware 1.1.4 Differentiate among various CPU types and features 2.1.4 Select the appropriate cooling method 2 THE CENTRAL PROCESSING UNIT (CPU) 3 Microprocessor

More information

What is a computer? Units of Measurement. - A machine that: - Counts.

What is a computer? Units of Measurement. - A machine that: - Counts. What is a computer? - A machine that: - Counts. - Does Arithmetic (Addition, Subtraction, Multiplication, and Division) in binary system. - Stores numbers. - Retrieves numbers. Units of Measurement - The

More information

DEDICATED SERVERS WITH EBS

DEDICATED SERVERS WITH EBS DEDICATED WITH EBS TABLE OF CONTENTS WHY CHOOSE A DEDICATED SERVER? 3 DEDICATED WITH EBS 4 INTEL ATOM DEDICATED 5 AMD OPTERON DEDICATED 6 INTEL XEON DEDICATED 7 MANAGED SERVICES 8 SERVICE GUARANTEES 9

More information