Summary of Computer Architecture

Size: px
Start display at page:

Download "Summary of Computer Architecture"

Transcription

1 Summary of Computer Architecture

2 Summary CHAP 1: INTRODUCTION

3 Structure Top Level Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output

4 Structure - CPU CPU I/O Computer System Bus Memory CPU Registers Internal CPU Interconnection Arithmetic and Logic Unit Control Unit

5 CPU CPU controls the operation of the computer Components of CPU Control Unit control the operation of the CPU Arithmetic Logic Unit (ALU) performs data processing function e.g. calculation Internal CPU Interconnection provides communication between control unit, registers and ALU.

6 Structure - Control Unit Control Unit ALU CPU Internal Bus Registers Control Unit Sequencing Logic Control Unit Registers and Decoders Control Memory

7 Summary CHAP 2: BUS

8 Bus system Expansion slots (PCI, PCIe, )

9 Function of Control Unit For each operation a unique code is provided e.g. ADD, MOVE A hardware segment accepts the code and issues the control signals We have a computer! Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 9 BIT20303-Computer Architecture

10 Components The Control Unit and the Arithmetic and Logic Unit (ALU) constitute the Central Processing Unit (CPU) Data and instructions need to get into the system and results out Input/output Temporary storage of code and results is needed Main memory Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 10 BIT20303-Computer Architecture

11 Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 11 BIT20303-Computer Architecture

12 Computer Components: Top Level View Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 12 BIT20303-Computer Architecture

13 How Instruction is Executed? What is instruction? Instruction specify the action that the processor is suppose to take. The processing required for a single instruction is called an instruction cycle. Instruction cycle are made of these two steps: Fetch (processor reads from memory and also referred to as fetch cycle) Execute (Also referred to as execute cycle) Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 13 BIT20303-Computer Architecture

14 Fetch Cycle Program Counter (PC) holds address of next instruction to fetch Processor fetches instruction from memory location pointed to by PC Increment PC Unless told otherwise Instruction loaded into Instruction Register (IR) Processor interprets instruction and performs required actions Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 14 BIT20303-Computer Architecture

15 Execute Cycle An instruction s execution (execute cycle) may involve one or a combination of these actions Processor-memory Data transfer between CPU and main memory Processor I/O Data transfer between CPU and I/O module Data processing Some arithmetic or logical operation on data Control Alteration of operations sequences Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 15 BIT20303-Computer Architecture

16 Instruction Format Assume both instructions and data are 16 bits (2 bytes) long. The instruction format provides 4 bytes for the opcode, so that there can be as many as 2 4 = 16 different opcodes and up to 2 12 words of memory can be directly addressed. Instruction format Integer format Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 16 BIT20303-Computer Architecture

17 What is Word, Half-Word and Double Word? A "word," in computing, is a standard memory size used for data storage. The most popular word sizes for modern computers is 16, 32, or 64 bits. Some systems or programming languages do not declare specific sizes for variables and use "word," "half-word" and "double word" to describe how much storage space you are allocating. This means that if you have a system with a 32 bit word size, and you declare a double word integer, you have declared a 64 bit integer. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM

18 Example of Program Execution Internal CPU Registers PC (Program Counter) AC (Accumulator) a data register IR (Instruction Register) Program to be executed: Adds the content of the memory word at address 940 to the content of the memory word address 941 and stores the result in latter location. (Assume a word=16 bits/2 bytes) Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 18 BIT20303-Computer Architecture

19 (cont.) Example of Program Execution Requires 3 fetch and 3 execute cycles. 1. {1 st Fetch cycle} The PC contains 300, the address of the first instruction. This instruction (the value 1940 in hexadecimal) is loaded into the instruction register IR and the PC is incremented. Note that this process involves the use of a memory address register (MAR) and a memory buffer register (MBR). For simplicity these intermediate registers are ignored. NOTE: The number used in this example is in hexadecimal e.g. 0x1940. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 19 BIT20303-Computer Architecture

20 (cont.) Example of Program Execution 2. {1 st Execute cycle} The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded. The remaining 12 bits (3 hexadecimal digits) specify the address (940) from which data are to be loaded. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 20 BIT20303-Computer Architecture

21 (cont.) Example of Program Execution 3. {2 nd Fetch cycle} The next instruction (5941) is fetched from location 301 and the PC is incremented. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 21 BIT20303-Computer Architecture

22 (cont.) Example of Program Execution 4. {2 nd Execute cycle} The old content of the AC and the content of location 941 are added and the result is stored in the AC. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 22 BIT20303-Computer Architecture

23 (cont.) Example of Program Execution 5. {3 rd Fetch cycle} The next instruction (2941) is fetched from location 302 and the PC is incremented. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 23 BIT20303-Computer Architecture

24 (cont.) Example of Program Execution 6. {3 rd Execute cycle} The content of AC is stored in location 941. Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 24 BIT20303-Computer Architecture

25 ,10 7 4, Fakulti Sains Komputer dan Technology Maklumat (FSKTM), UTHM 25 BIT20303-Computer Architecture

26 Summary CHAP 3: MEMORY

27 Location Inside CPU (e.g. Registers) Internal (inside the computer e.g. RAM, Level 1 or L1 cache, L2 cache, L3 cache) External (outside of the computer e.g. Hard disks, SSD, removable drives)

28 A Modern Memory Hierarchy Memory Abstraction Register File 32 words, sub-nsec L1 cache ~32 KB, ~nsec manual/compiler register spilling L2 cache 512 KB ~ 1MB, many nsec L3 cache,... Automatic HW cache management Main memory (DRAM), GB, ~100 nsec Swap Disk 100 GB, ~10 msec automatic demand paging 28

29 How to access memory location? Random (e.g. RAM) individual address identify locations exactly Direct (e.g. hard disk) Each block has unique address; access by jumping to specific block plus sequential search Associative (e.g. cache) data is retrieved based on the portion of its contents rather than its address Sequentially (e.g. tape) start from the beginning of the tape; access time depends on location of data and previous location.

30 RAM Two types Static RAM (SRAM) Dynamic RAM (DRAM)

31 _bitline Memory Technology: DRAM Dynamic random access memory Capacitor charge state indicates stored value Whether the capacitor is charged or discharged indicates storage of 1 or 0 1 capacitor 1 access transistor Capacitor leaks through the RC path DRAM cell loses charge over time DRAM cell needs to be refreshed row enable

32 bitline _bitline Memory Technology: SRAM Static random access memory Two cross coupled inverters store a single bit Feedback path enables the stored value to persist in the cell 4 transistors for storage 2 transistors for access row select

33 Fundamental tradeoff Fast memory: small Large memory: slow Idea: Memory hierarchy Memory Hierarchy CPU RF Cache Main Memory (DRAM) Hard Disk Latency, cost, size, bandwidth

34 Caching Basics: Exploit Temporal Locality Idea: Store recently accessed data in automatically managed fast memory (called cache) Anticipation: the data will be accessed again soon Temporal locality principle Recently accessed data will be again accessed in the near future This is what Maurice Wilkes had in mind: Wilkes, Slave Memories and Dynamic Storage Allocation, IEEE Trans. On Electronic Computers, The use is discussed of a fast core memory of, say words as a slave to a slower core memory of, say, one million words in such a way that in practical cases the effective access time is nearer that of the fast memory than that of the slow memory.

35 Caching Basics: Exploit Spatial Locality Idea: Store addresses adjacent to the recently accessed one in automatically managed fast memory Logically divide memory into equal size blocks Fetch to cache the accessed block in its entirety Anticipation: nearby data will be accessed soon Spatial locality principle Nearby data in memory will be accessed in the near future E.g., sequential instruction access, array traversal This is what IBM 360/85 implemented 16 Kbyte cache with 64 byte blocks Liptay, Structural aspects of the System/360 Model 85 II: the cache, IBM Systems Journal, 1968.

36 The Bookshelf Analogy Book in your hand Desk Bookshelf Boxes at home Boxes in storage Recently-used books tend to stay on desk Comp Arch books, books for classes you are currently taking Until the desk gets full Adjacent books in the shelf needed around the same time If I have organized/categorized my books well in the shelf

37 Cache Cache hits vs. Cache misses Cache types Direct-mapped cache Set Associativity cache

38 Summary CHAP 4: INPUT OUTPUT

39 Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In different formats All slower than CPU and RAM Need I/O modules BIT20303-Computer Architecture 39

40 Input/Output Module Interface to CPU and Memory Interface to one or more peripherals BIT20303-Computer Architecture 40

41 Generic Model of I/O Module BIT20303-Computer Architecture 41

42 External Devices Human readable Screen, printer, keyboard Machine readable Monitoring and control Communication Modem Network Interface Card (NIC) BIT20303-Computer Architecture 42

43 External Device Block Diagram Control Signal determines the function that the device will perform such as send data to the I/O module (INPUT or READ) or accept data from the I/O module (OUTPUT or WRITE). Status signal indicates the state of the device e.g. busy or idle. Data are according to the control signal either for READ or WRITE. Buffer is to temporarily hold the data being transferred between I/O and the external environment.

44 I/O Module Functions Control & Timing CPU Communication Device Communication Data Buffering Error Detection BIT20303-Computer Architecture 44

45 Three Techniques for Input of a Block of Data What are the differences between these techniques? BIT20303-Computer Architecture 45

46 Programmed I/O BIT20303-Computer Architecture 46

47 Programmed I/O CPU has direct control over I/O Sensing status Read/write commands Transferring data CPU waits for I/O module to complete operation Wastes CPU time BIT20303-Computer Architecture 47

48 Programmed I/O - detail CPU requests I/O operation I/O module performs operation I/O module sets status bits CPU checks status bits periodically I/O module does not inform CPU directly I/O module does not interrupt CPU CPU may wait or come back later BIT20303-Computer Architecture 48

49 Interrupt-Driven I/O BIT20303-Computer Architecture 49

50 Interrupt Driven I/O Basic Operation CPU issues read command I/O module gets data from peripheral whilst CPU does other work I/O module interrupts CPU CPU requests data I/O module transfers data BIT20303-Computer Architecture 50

51 Simple Interrupt Processing BIT20303-Computer Architecture 51

52 Direct Memory Access (DMA) BIT20303-Computer Architecture 52

53 DMA Interrupt driven and programmed I/O require active CPU intervention Transfer rate is limited CPU is tied up DMA is the answer BIT20303-Computer Architecture 53

54 DMA Operation CPU tells DMA controller:- Read/Write Device address Starting address of memory block for data Amount of data to be transferred CPU carries on with other work DMA controller deals with transfer DMA controller sends interrupt when finished BIT20303-Computer Architecture 54

55 DMA Transfer Cycle Stealing DMA controller takes over bus for a cycle Transfer of one word of data Not an interrupt CPU does not switch context CPU suspended just before it accesses bus i.e. before an operand or data fetch or a data write Slows down CPU but not as much as CPU doing transfer BIT20303-Computer Architecture 55

56 Summary CHAP 5: COMPUTER ARITHMETIC

57 Unsigned Integer =(4+1) + 2 =

58 0101 x x Unsigned Integer

59 (REVERSE BIT) (PLUS 1) Minimum value = = -64 Maximum value = = 63

60 Signed Integers (2 s Complement) OVERFLOW RULE If 2 numbers are added, and they are both positive or both negative, then OVERFLOW occurs if and only if the result has the opposite sign.

61 Fixed Floating Point = = 2 + (½) + (1/8) = = 2.75

62 Single-Precision Floating Point FORMULA: Sign (1 bit).exponent (3 bit).significand (4 bit) ANSWER: 1.125x0.5=1.625 Note: Bias = 3, Thus exponent = -1 (where 010 is 2; thus 2 3 = -1), 1.001=1 + (1/8)=

63 Single Precision Floating Point (8 bit) Sign = 0 Exponent = = -5 Significand = 0010 = 2-3 = (1/8) = 0.25 (-1) Sign x 1.significand x 2 exponent-bias = (-1) 0 x x 2-5 = 1 x (1+0.25) x (1/32) = 1.25 x = (24 bit) (-1) Sign x 1.significand x 2 exponent-bias = (-1) 1 x x = -1 x (1+0.25) x 2-1 = x 0.5 = NOTE: For 8 bit, bias=3 (-3 to 4); for 24 bit, bias=127 (-127 to 128)

64 3-bit bias 111=-3 011=3 8-bit bias = =127

65 CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data BIT20303-Computer Architecture 65

66 Summary CHAP 7: CPU

67 CPU With Systems Bus BIT20303-Computer Architecture 67

68 CPU Internal Structure BIT20303-Computer Architecture 68

69 Registers A small storage available in CPU Faster than main memory BIT20303-Computer Architecture 69

70 Type of Registers General Purpose Data Address hold addresses that are used by instructions to access main memory (RAM) Control and Status BIT20303-Computer Architecture 70

71 How to increase speed performance of CPU? Improving organization e.g. locate cache nearer to CPU, increase bus bandwidth Increase clock frequency e.g. from 1 GHz to 5 GHz Increase parallelism e.g. pipelining, superscalar, Simultaneous Multithreading (SMT)

72

73

74

75

76 Thank You

Computer Architecture

Computer Architecture Computer Architecture Lecture 7: Memory Hierarchy and Caches Dr. Ahmed Sallam Suez Canal University Spring 2015 Based on original slides by Prof. Onur Mutlu Memory (Programmer s View) 2 Abstraction: Virtual

More information

CSC D70: Compiler Optimization Memory Optimizations

CSC D70: Compiler Optimization Memory Optimizations CSC D70: Compiler Optimization Memory Optimizations Prof. Gennady Pekhimenko University of Toronto Winter 2018 The content of this lecture is adapted from the lectures of Todd Mowry, Greg Steffan, and

More information

Computer Architecture Lecture 19: Memory Hierarchy and Caches. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 3/19/2014

Computer Architecture Lecture 19: Memory Hierarchy and Caches. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 3/19/2014 18-447 Computer Architecture Lecture 19: Memory Hierarchy and Caches Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 3/19/2014 Extra Credit Recognition for Lab 3 1. John Greth (13157 ns) 2. Kevin

More information

Caches. Samira Khan March 21, 2017

Caches. Samira Khan March 21, 2017 Caches Samira Khan March 21, 2017 Agenda Logistics Review from last lecture Out-of-order execution Data flow model Superscalar processor Caches Final Exam Combined final exam 7-10PM on Tuesday, 9 May 2017

More information

18-447: Computer Architecture Lecture 17: Memory Hierarchy and Caches. Prof. Onur Mutlu Carnegie Mellon University Spring 2012, 3/26/2012

18-447: Computer Architecture Lecture 17: Memory Hierarchy and Caches. Prof. Onur Mutlu Carnegie Mellon University Spring 2012, 3/26/2012 18-447: Computer Architecture Lecture 17: Memory Hierarchy and Caches Prof. Onur Mutlu Carnegie Mellon University Spring 2012, 3/26/2012 Reminder: Homeworks Homework 5 Due April 2 Topics: Out-of-order

More information

18-447: Computer Architecture Lecture 22: Memory Hierarchy and Caches. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 3/27/2013

18-447: Computer Architecture Lecture 22: Memory Hierarchy and Caches. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 3/27/2013 18-447: Computer Architecture Lecture 22: Memory Hierarchy and Caches Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 3/27/2013 Reminder: Homework 5 Due April 1 Topics: Vector processing, VLIW,

More information

Lecture-14 (Memory Hierarchy) CS422-Spring

Lecture-14 (Memory Hierarchy) CS422-Spring Lecture-14 (Memory Hierarchy) CS422-Spring 2018 Biswa@CSE-IITK The Ideal World Instruction Supply Pipeline (Instruction execution) Data Supply - Zero-cycle latency - Infinite capacity - Zero cost - Perfect

More information

SAE5C Computer Organization and Architecture. Unit : I - V

SAE5C Computer Organization and Architecture. Unit : I - V SAE5C Computer Organization and Architecture Unit : I - V UNIT-I Evolution of Pentium and Power PC Evolution of Computer Components functions Interconnection Bus Basics of PCI Memory:Characteristics,Hierarchy

More information

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS UNIT-I OVERVIEW & INSTRUCTIONS 1. What are the eight great ideas in computer architecture? The eight

More information

Computer System Overview OPERATING SYSTEM TOP-LEVEL COMPONENTS. Simplified view: Operating Systems. Slide 1. Slide /S2. Slide 2.

Computer System Overview OPERATING SYSTEM TOP-LEVEL COMPONENTS. Simplified view: Operating Systems. Slide 1. Slide /S2. Slide 2. BASIC ELEMENTS Simplified view: Processor Slide 1 Computer System Overview Operating Systems Slide 3 Main Memory referred to as real memory or primary memory volatile modules 2004/S2 secondary memory devices

More information

The University of Adelaide, School of Computer Science 13 September 2018

The University of Adelaide, School of Computer Science 13 September 2018 Computer Architecture A Quantitative Approach, Sixth Edition Chapter 2 Memory Hierarchy Design 1 Programmers want unlimited amounts of memory with low latency Fast memory technology is more expensive per

More information

B.H.GARDI COLLEGE OF MASTER OF COMPUTER APPLICATION

B.H.GARDI COLLEGE OF MASTER OF COMPUTER APPLICATION Introduction :- An exploits the hardware resources of one or more processors to provide a set of services to system users. The OS also manages secondary memory and I/O devices on behalf of its users. So

More information

Computer Organization ECE514. Chapter 5 Input/Output (9hrs)

Computer Organization ECE514. Chapter 5 Input/Output (9hrs) Computer Organization ECE514 Chapter 5 Input/Output (9hrs) Learning Outcomes Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge

More information

Computer System Overview

Computer System Overview Computer System Overview Operating Systems 2005/S2 1 What are the objectives of an Operating System? 2 What are the objectives of an Operating System? convenience & abstraction the OS should facilitate

More information

Advanced Memory Organizations

Advanced Memory Organizations CSE 3421: Introduction to Computer Architecture Advanced Memory Organizations Study: 5.1, 5.2, 5.3, 5.4 (only parts) Gojko Babić 03-29-2018 1 Growth in Performance of DRAM & CPU Huge mismatch between CPU

More information

Computer Organization

Computer Organization INF 101 Fundamental Information Technology Computer Organization Assistant Prof. Dr. Turgay ĐBRĐKÇĐ Course slides are adapted from slides provided by Addison-Wesley Computing Fundamentals of Information

More information

Large and Fast: Exploiting Memory Hierarchy

Large and Fast: Exploiting Memory Hierarchy CSE 431: Introduction to Operating Systems Large and Fast: Exploiting Memory Hierarchy Gojko Babić 10/5/018 Memory Hierarchy A computer system contains a hierarchy of storage devices with different costs,

More information

Computer Architecture and Organization (CS-507)

Computer Architecture and Organization (CS-507) Computer Architecture and Organization (CS-507) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 4 Basic Computer Function, Instruction

More information

Chapter One. Introduction to Computer System

Chapter One. Introduction to Computer System Principles of Programming-I / 131101 Prepared by: Dr. Bahjat Qazzaz -------------------------------------------------------------------------------------------- Chapter One Introduction to Computer System

More information

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology Memory Hierarchies Instructor: Dmitri A. Gusev Fall 2007 CS 502: Computers and Communications Technology Lecture 10, October 8, 2007 Memories SRAM: value is stored on a pair of inverting gates very fast

More information

GUJARAT TECHNOLOGICAL UNIVERSITY MASTER OF COMPUTER APPLICATION SEMESTER: III

GUJARAT TECHNOLOGICAL UNIVERSITY MASTER OF COMPUTER APPLICATION SEMESTER: III GUJARAT TECHNOLOGICAL UNIVERSITY MASTER OF COMPUTER APPLICATION SEMESTER: III Subject Name: Operating System (OS) Subject Code: 630004 Unit-1: Computer System Overview, Operating System Overview, Processes

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science ã Cengage Learning Objectives After studying this chapter, the student should be able to: q List the three subsystems of a computer. q Describe

More information

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University Chapter 3 Top Level View of Computer Function and Interconnection Contents Computer Components Computer Function Interconnection Structures Bus Interconnection PCI 3-2 Program Concept Computer components

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (3 rd Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (3 rd Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (3 rd Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

ECE 152 Introduction to Computer Architecture

ECE 152 Introduction to Computer Architecture Introduction to Computer Architecture Main Memory and Virtual Memory Copyright 2009 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2009 1 Where We Are in This Course

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

Q.1 Explain Computer s Basic Elements

Q.1 Explain Computer s Basic Elements Q.1 Explain Computer s Basic Elements Ans. At a top level, a computer consists of processor, memory, and I/O components, with one or more modules of each type. These components are interconnected in some

More information

Computer Architecture Review. Jo, Heeseung

Computer Architecture Review. Jo, Heeseung Computer Architecture Review Jo, Heeseung Computer Abstractions and Technology Jo, Heeseung Below Your Program Application software Written in high-level language System software Compiler: translates HLL

More information

UNIT- 5. Chapter 12 Processor Structure and Function

UNIT- 5. Chapter 12 Processor Structure and Function UNIT- 5 Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data CPU With Systems Bus CPU Internal Structure Registers

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Seventh Edition By William Stallings Objectives of Chapter To provide a grand tour of the major computer system components:

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Ninth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Designing Computers. The Von Neumann Architecture. The Von Neumann Architecture. The Von Neumann Architecture

Designing Computers. The Von Neumann Architecture. The Von Neumann Architecture. The Von Neumann Architecture Chapter 5.1-5.2 Designing Computers All computers more or less based on the same basic design, the Von Neumann Architecture! Von Neumann Architecture CMPUT101 Introduction to Computing (c) Yngvi Bjornsson

More information

The Von Neumann Architecture. Designing Computers. The Von Neumann Architecture. CMPUT101 Introduction to Computing - Spring 2001

The Von Neumann Architecture. Designing Computers. The Von Neumann Architecture. CMPUT101 Introduction to Computing - Spring 2001 The Von Neumann Architecture Chapter 5.1-5.2 Von Neumann Architecture Designing Computers All computers more or less based on the same basic design, the Von Neumann Architecture! CMPUT101 Introduction

More information

Chapter 5 Large and Fast: Exploiting Memory Hierarchy (Part 1)

Chapter 5 Large and Fast: Exploiting Memory Hierarchy (Part 1) Department of Electr rical Eng ineering, Chapter 5 Large and Fast: Exploiting Memory Hierarchy (Part 1) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Engineering,

More information

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved.

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved. + William Stallings Computer Organization and Architecture 10 th Edition 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 2 + Chapter 3 A Top-Level View of Computer Function and Interconnection

More information

Computer Organization

Computer Organization Objectives 5.1 Chapter 5 Computer Organization Source: Foundations of Computer Science Cengage Learning 5.2 After studying this chapter, students should be able to: List the three subsystems of a computer.

More information

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches CS 61C: Great Ideas in Computer Architecture Direct Mapped Caches Instructor: Justin Hsia 7/05/2012 Summer 2012 Lecture #11 1 Review of Last Lecture Floating point (single and double precision) approximates

More information

CSC Memory System. A. A Hierarchy and Driving Forces

CSC Memory System. A. A Hierarchy and Driving Forces CSC1016 1. System A. A Hierarchy and Driving Forces 1A_1 The Big Picture: The Five Classic Components of a Computer Processor Input Control Datapath Output Topics: Motivation for Hierarchy View of Hierarchy

More information

CSC 553 Operating Systems

CSC 553 Operating Systems CSC 553 Operating Systems Lecture 1- Computer System Overview Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory

More information

Chapter Seven. Large & Fast: Exploring Memory Hierarchy

Chapter Seven. Large & Fast: Exploring Memory Hierarchy Chapter Seven Large & Fast: Exploring Memory Hierarchy 1 Memories: Review SRAM (Static Random Access Memory): value is stored on a pair of inverting gates very fast but takes up more space than DRAM DRAM

More information

CPU issues address (and data for write) Memory returns data (or acknowledgment for write)

CPU issues address (and data for write) Memory returns data (or acknowledgment for write) The Main Memory Unit CPU and memory unit interface Address Data Control CPU Memory CPU issues address (and data for write) Memory returns data (or acknowledgment for write) Memories: Design Objectives

More information

CENG4480 Lecture 09: Memory 1

CENG4480 Lecture 09: Memory 1 CENG4480 Lecture 09: Memory 1 Bei Yu byu@cse.cuhk.edu.hk (Latest update: November 8, 2017) Fall 2017 1 / 37 Overview Introduction Memory Principle Random Access Memory (RAM) Non-Volatile Memory Conclusion

More information

The Memory Hierarchy. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1

The Memory Hierarchy. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1 The Memory Hierarchy Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 3, 2018 L13-1 Memory Technologies Technologies have vastly different tradeoffs between capacity, latency,

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 7KH9RQ1HXPDQQ$UFKLWHFWXUH Chapter 5.1-5.2 Von Neumann Architecture 'HVLJQLQJ&RPSXWHUV All computers more or less based on the same basic design, the Von Neumann Architecture! CMPUT101 Introduction to Computing

More information

Computer Organization

Computer Organization Chapter 5 Computer Organization Figure 5-1 Computer hardware :: Review Figure 5-2 CPU :: Review CPU:: Review Registers are fast stand-alone storage locations that hold data temporarily Data Registers Instructional

More information

Announcement. Computer Architecture (CSC-3501) Lecture 20 (08 April 2008) Chapter 6 Objectives. 6.1 Introduction. 6.

Announcement. Computer Architecture (CSC-3501) Lecture 20 (08 April 2008) Chapter 6 Objectives. 6.1 Introduction. 6. Announcement Computer Architecture (CSC-350) Lecture 0 (08 April 008) Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark Chapter 6 Objectives 6. Introduction Master the concepts of hierarchical memory

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

Chapter 7 Large and Fast: Exploiting Memory Hierarchy. Memory Hierarchy. Locality. Memories: Review

Chapter 7 Large and Fast: Exploiting Memory Hierarchy. Memory Hierarchy. Locality. Memories: Review Memories: Review Chapter 7 Large and Fast: Exploiting Hierarchy DRAM (Dynamic Random Access ): value is stored as a charge on capacitor that must be periodically refreshed, which is why it is called dynamic

More information

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra Binary Representation Computer Systems Information is represented as a sequence of binary digits: Bits What the actual bits represent depends on the context: Seminar 3 Numerical value (integer, floating

More information

CSE 431 Computer Architecture Fall Chapter 5A: Exploiting the Memory Hierarchy, Part 1

CSE 431 Computer Architecture Fall Chapter 5A: Exploiting the Memory Hierarchy, Part 1 CSE 431 Computer Architecture Fall 2008 Chapter 5A: Exploiting the Memory Hierarchy, Part 1 Mary Jane Irwin ( www.cse.psu.edu/~mji ) [Adapted from Computer Organization and Design, 4 th Edition, Patterson

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches CS 61C: Great Ideas in Computer Architecture The Memory Hierarchy, Fully Associative Caches Instructor: Alan Christopher 7/09/2014 Summer 2014 -- Lecture #10 1 Review of Last Lecture Floating point (single

More information

William Stallings Computer Organization and Architecture. Chapter 11 CPU Structure and Function

William Stallings Computer Organization and Architecture. Chapter 11 CPU Structure and Function William Stallings Computer Organization and Architecture Chapter 11 CPU Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Registers

More information

Memory. From Chapter 3 of High Performance Computing. c R. Leduc

Memory. From Chapter 3 of High Performance Computing. c R. Leduc Memory From Chapter 3 of High Performance Computing c 2002-2004 R. Leduc Memory Even if CPU is infinitely fast, still need to read/write data to memory. Speed of memory increasing much slower than processor

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - Von Neumann Architecture 2 Two lessons Summary of the traditional computer architecture Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Cache 11232011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Review Memory Components/Boards Two-Level Memory Hierarchy

More information

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals

Generic Model of I/O Module Interface to CPU and Memory Interface to one or more peripherals William Stallings Computer Organization and Architecture 7 th Edition Chapter 7 Input/Output Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In

More information

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness EE 352 Unit 10 Memory System Overview SRAM vs. DRAM DMA & Endian-ness The Memory Wall Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

CPU Structure and Function. Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition

CPU Structure and Function. Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition CPU Structure and Function Chapter 12, William Stallings Computer Organization and Architecture 7 th Edition CPU must: CPU Function Fetch instructions Interpret/decode instructions Fetch data Process data

More information

BASIC COMPUTER ORGANIZATION. Operating System Concepts 8 th Edition

BASIC COMPUTER ORGANIZATION. Operating System Concepts 8 th Edition BASIC COMPUTER ORGANIZATION Silberschatz, Galvin and Gagne 2009 Topics CPU Structure Registers Memory Hierarchy (L1/L2/L3/RAM) Machine Language Assembly Language Running Process 3.2 Silberschatz, Galvin

More information

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection Unit 1 Chapter 3 Top Level View of Computer Function and Interconnection Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given correct control signals

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor Slide 1 Microprocessor A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device That reads binary instructions from a storage device

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 3, 2015 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

The Central Processing Unit

The Central Processing Unit The Central Processing Unit All computers derive from the same basic design, usually referred to as the von Neumann architecture. This concept involves solving a problem by defining a sequence of commands

More information

CPU Structure and Function

CPU Structure and Function Computer Architecture Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com http://www.yildiz.edu.tr/~naydin CPU Structure and Function 1 2 CPU Structure Registers

More information

CENG3420 Lecture 08: Memory Organization

CENG3420 Lecture 08: Memory Organization CENG3420 Lecture 08: Memory Organization Bei Yu byu@cse.cuhk.edu.hk (Latest update: February 22, 2018) Spring 2018 1 / 48 Overview Introduction Random Access Memory (RAM) Interleaving Secondary Memory

More information

Memory Technology. Caches 1. Static RAM (SRAM) Dynamic RAM (DRAM) Magnetic disk. Ideal memory. 0.5ns 2.5ns, $2000 $5000 per GB

Memory Technology. Caches 1. Static RAM (SRAM) Dynamic RAM (DRAM) Magnetic disk. Ideal memory. 0.5ns 2.5ns, $2000 $5000 per GB Memory Technology Caches 1 Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB Magnetic disk 5ms 20ms, $0.20 $2 per GB Ideal memory Average access time similar

More information

Chapter 12. CPU Structure and Function. Yonsei University

Chapter 12. CPU Structure and Function. Yonsei University Chapter 12 CPU Structure and Function Contents Processor organization Register organization Instruction cycle Instruction pipelining The Pentium processor The PowerPC processor 12-2 CPU Structures Processor

More information

CPU Structure and Function

CPU Structure and Function CPU Structure and Function Chapter 12 Lesson 17 Slide 1/36 Processor Organization CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Lesson 17 Slide 2/36 CPU With Systems

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Components of a personal computer

Components of a personal computer Components of a personal computer Computer systems ranging from a controller in a microwave oven to a large supercomputer contain components providing five functions. A typical personal computer has hard,

More information

Instruction Register. Instruction Decoder. Control Unit (Combinational Circuit) Control Signals (These signals go to register) The bus and the ALU

Instruction Register. Instruction Decoder. Control Unit (Combinational Circuit) Control Signals (These signals go to register) The bus and the ALU Hardwired and Microprogrammed Control For each instruction, the control unit causes the CPU to execute a sequence of steps correctly. In reality, there must be control signals to assert lines on various

More information

Computer Architecture. Memory Hierarchy. Lynn Choi Korea University

Computer Architecture. Memory Hierarchy. Lynn Choi Korea University Computer Architecture Memory Hierarchy Lynn Choi Korea University Memory Hierarchy Motivated by Principles of Locality Speed vs. Size vs. Cost tradeoff Locality principle Temporal Locality: reference to

More information

EEM 486: Computer Architecture. Lecture 9. Memory

EEM 486: Computer Architecture. Lecture 9. Memory EEM 486: Computer Architecture Lecture 9 Memory The Big Picture Designing a Multiple Clock Cycle Datapath Processor Control Memory Input Datapath Output The following slides belong to Prof. Onur Mutlu

More information

The Memory Hierarchy. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T.

The Memory Hierarchy. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. The Memory Hierarchy Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L13-1 Memory Technologies Technologies have vastly different tradeoffs between capacity, latency, bandwidth,

More information

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu.

Memories. Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu. Memories Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu http://www.syssec.ethz.ch/education/digitaltechnik_17 Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630 Computers and Microprocessors Lecture 34 PHYS3360/AEP3630 1 Contents Computer architecture / experiment control Microprocessor organization Basic computer components Memory modes for x86 series of microprocessors

More information

Memory Hierarchy, Fully Associative Caches. Instructor: Nick Riasanovsky

Memory Hierarchy, Fully Associative Caches. Instructor: Nick Riasanovsky Memory Hierarchy, Fully Associative Caches Instructor: Nick Riasanovsky Review Hazards reduce effectiveness of pipelining Cause stalls/bubbles Structural Hazards Conflict in use of datapath component Data

More information

Running Applications

Running Applications Running Applications Computer Hardware Central Processing Unit (CPU) CPU PC IR MAR MBR I/O AR I/O BR To exchange data with memory Brain of Computer, controls everything Few registers PC (Program Counter):

More information

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition

Chapter 5: Computer Systems Organization. Invitation to Computer Science, C++ Version, Third Edition Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition Objectives In this chapter, you will learn about: The components of a computer system Putting all the

More information

Chapter 5: Computer Systems Organization

Chapter 5: Computer Systems Organization Objectives Chapter 5: Computer Systems Organization Invitation to Computer Science, C++ Version, Third Edition In this chapter, you will learn about: The components of a computer system Putting all the

More information

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U C A N A D I A N I N T E R N A T I O N A L S C H O O L O F H O N G K O N G 5.1 Introduction 5.2 Components of a Computer System Algorithm The Von Neumann architecture is based on the following three characteristics:

More information

ECE 341. Lecture # 16

ECE 341. Lecture # 16 ECE 341 Lecture # 16 Instructor: Zeshan Chishti zeshan@ece.pdx.edu November 24, 2014 Portland State University Lecture Topics The Memory System Basic Concepts Semiconductor RAM Memories Organization of

More information

Where Have We Been? Ch. 6 Memory Technology

Where Have We Been? Ch. 6 Memory Technology Where Have We Been? Combinational and Sequential Logic Finite State Machines Computer Architecture Instruction Set Architecture Tracing Instructions at the Register Level Building a CPU Pipelining Where

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Computer Organization Chapter 5 Large and Fast: Exploiting Memory Hierarchy Chansu Yu Table of Contents Ch.1 Introduction Ch. 2 Instruction: Machine Language Ch. 3-4 CPU Implementation Ch. 5 Cache

More information

The Memory Hierarchy & Cache

The Memory Hierarchy & Cache Removing The Ideal Memory Assumption: The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory

More information

CPUs. Caching: The Basic Idea. Cache : MainMemory :: Window : Caches. Memory management. CPU performance. 1. Door 2. Bigger Door 3. The Great Outdoors

CPUs. Caching: The Basic Idea. Cache : MainMemory :: Window : Caches. Memory management. CPU performance. 1. Door 2. Bigger Door 3. The Great Outdoors CPUs Caches. Memory management. CPU performance. Cache : MainMemory :: Window : 1. Door 2. Bigger Door 3. The Great Outdoors 4. Horizontal Blinds 18% 9% 64% 9% Door Bigger Door The Great Outdoors Horizontal

More information

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University CS 201 The Memory Hierarchy Gerson Robboy Portland State University memory hierarchy overview (traditional) CPU registers main memory (RAM) secondary memory (DISK) why? what is different between these

More information

Organisasi Sistem Komputer

Organisasi Sistem Komputer LOGO Organisasi Sistem Komputer OSK 5 Input Output 1 1 PT. Elektronika FT UNY Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In different formats

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568/668 Part 11 Memory Hierarchy - I Israel Koren ECE568/Koren Part.11.1 ECE568/Koren Part.11.2 Ideal Memory

More information

Computer System Overview. Chapter 1

Computer System Overview. Chapter 1 Computer System Overview Chapter 1 Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory and I/O devices Basic Elements

More information