Introduc)on to High Performance Compu)ng Advanced Research Computing

Size: px
Start display at page:

Download "Introduc)on to High Performance Compu)ng Advanced Research Computing"

Transcription

1 Introduc)on to High Performance Compu)ng Advanced Research Computing

2 Outline What cons)tutes high performance compu)ng (HPC)? When to consider HPC resources What kind of problems are typically solved? What are the components of HPC? What resources are available? Overview of HPC Resources at Virginia Tech 2

3 Should I Pursue HPC for my Problem? Are local resources insufficient to meet your needs? Very large jobs Very many jobs Large data Do you have na)onal collaborators? Share projects between different en))es Convenient mechanisms for data sharing 3

4 Who Uses HPC? Training (51) 2% Earth Sci (29) 2% ScienEfic CompuEng (60) 2% Chemistry (161) 7% Chemical, Thermal Sys (89) 8% Materials Research (131) 9% Atmospheric Sciences (72) 11% Physics (91) 19% Molecular Biosciences (271) 17% Astronomical Sciences (115) 13% >2 billion cpu- hours allocated 1400 alloca)ons 350 ins)tu)ons 32 research domains

5 Learning Curve Linux: Command- line interface Scheduler: Shares resources among mul)ple users Parallel Compu)ng: Need to parallelize code to take advantage of supercomputer s resources Third party programs or libraries make this easier

6 Popular SoYware Packages Molecular Dynamics: Gromacs, LAMMPS CFD: OpenFOAM, Ansys Finite Elements: Deal II, Abaqus Chemistry: VASP, Gaussian Climate: CESM Bioinforma)cs: Mothur, QIIME, MPIBLAST Numerical Compu)ng/Sta)s)cs: R, Matlab Visualiza)on: ParaView, Ensight

7 WHAT IS PARALLEL COMPUTING? 8

8 Parallel Compu)ng 101 Parallel compu)ng: use of mul)ple processors or computers working together on a common task. Each processor works on its sec)on of the problem Processors can exchange informa)on Grid of Problem to be solved CPU #1 works on this area of the problem CPU #2 works on this area of the problem y exchange exchange exchange CPU #3 works on this area of the problem exchange CPU #4 works on this area of the problem x 9

9 Why Do Parallel Compu)ng? Limits of single CPU compu)ng performance available memory I/O rates Parallel compu)ng allows one to: solve problems that don t fit on a single CPU solve problems that can t be solved in a reasonable )me We can solve larger problems faster more cases 10

10 A Change in Moore s Law

11 Parallelism is the New Moore s Law Power and energy efficiency impose a key constraint on design of micro- architectures Clock speeds have plateaued Hardware parallelism is increasing rapidly to make up the difference

12 WHAT DOES A MODERN SUPERCOMPUTER LOOK LIKE? 13

13 Essential Components of HPC Supercompu)ng resources Storage Visualiza)on Data management Network infrastructure Support 15

14 Blade : Rack : System 1 node : 2 x 8 cores = 16 cores 1 chassis : 10 nodes = 160 cores 1 rack (frame) : 4 chassis = 640 cores system : 10 racks = 6,400 cores x 10 x 4

15 Shared and distributed memory Memory M M M M M P P P P P P P P P Network P All processors have access to a pool of shared memory Access )mes vary from CPU to CPU in NUMA systems Example: SGI UV, CPUs on same node Memory is local to each processor Data exchange by message passing over a network Example: Clusters with single- socket blades 18

16 HPC Trends Memory Memory M P GPU Architecture Single core Mul)core GPU Cluster Code Serial OpenMP, Pthreads CUDA, OpenACC MPI

17 How are accelerators different? Intel Xeon E (CPU) Intel Xeon Phi 5110P (MIC) Nvidia Tesla K20X (GPU) Cores SMX Logical Cores ,688 CUDA cores Frequency 2.60 GHz 1.05 GHz 0.74 MHz GFLOPs (double) 333 1,010 1,317 Memory 64 GB 8GB 6GB Memory B/W 51.2GB/s 320GB/s 250GB/s

18 Mul)- core systems Memory Memory Memory Memory Memory Network Current processors place mul)ple processor cores on a die Communica)on details are increasingly complex Cache access Main memory access Quick Path / Hyper Transport socket connec)ons Node to node connec)on via network

19 Accelerator- based Systems Memory Memory Memory Memory G P U G P U G P U G P U Network Calcula)ons made in both CPUs and Graphical Processing Unit No longer limited to single precision calcula)ons Load balancing cri)cal for performance Requires specific libraries and compilers (CUDA, OpenCL) Co- processor from Intel: MIC (Many Integrated Core)

20 Batch Submission Process Login Node Compute Nodes Internet ssh qsub job Queue Master Node C1 C2 C3 mpirun np #./a.out Queue: Job script waits for resources. Master: Compute node that executes the job script, launches all MPI processes. ibrun./a.out

21 ARC OVERVIEW 24

22 (ARC) Unit within the Office of the Vice President of Informa)on Technology Provide centralized resources for: Research compu)ng Visualiza)on Staff to assist users Website: hmp://

23 Goals Advance the use of compu)ng and visualiza)on in VT research Centralize resource acquisi)on, maintenance, and support for research community Provide support to facilitate usage of resources and minimize barriers to entry Enable and par)cipate in research collabora)ons between departments

24 Personnel Associate VP for Research Compu)ng: Terry Herdman Director, HPC: Vijay Agarwala Director, Visualiza)on: Nicholas Polys Computa)onal Scien)sts Jus)n Krome)s James McClure Brian Marshall Srinivas Yarlanki Srijith Rajamohan

25 Personnel (Con)nued) System Administrators Tim Rhodes Chris Snapp Brandon Sawyers Vis & Virtual Reality Specialist: Wole Oyekoya Business Manager: Alana Romanella User Support GRAs: Umar Kalim and Di Zhang

26 Computa)onal Resources Name BlueRidge HokieSpeed HokieOne Ithaca Key Features, Uses Large- scale CPU or MIC GPU Shared Memory Beginners, MATLAB Available March 2013 Sept 2012 Apr 2012 Fall 2009 Theore)cal Peak (TFlops/s) Nodes N/A 79 Cores 6,528 2, Cores/Node N/A* 8 Accelerators/ Coprocessors 260 Intel Xeon Phi 8 Nvidia K40 GPU 408 Nvidia Tesla GPU N/A N/A Memory Size 27.3 TB 5.0 TB 2.62 TB 2 TB Memory/Core 4 GB* 2 GB 5.3 GB 3 GB* Memory/Node 64 GB* 24 GB N/A* 24 GB*

27 Visualiza)on Resources VisCube: 3D immersion environment with three 10ʹ by 10ʹ walls and a floor of stereo projec)on screens DeepSix: Six )led monitors with combined resolu)on of ROVR Stereo Wall AISB Stereo Wall

28 Gewng Started on ARC Systems 1. Review ARC s system specifica)ons and choose the right system(s) for you a. Specialty soyware 2. Apply for an account online the Advanced Research Compu)ng website 3. When your account is ready, you will receive confirma)on from ARC s system administrators

29 Resources ARC Website: hmp:// ARC Compute Resources & Documenta)on: hmp:// New Users Guide: hmp:// Frequently Asked Ques)ons: hmp:// Linux Introduc)on: hmp://

30 Thank you. Ques)ons?

Introduction to ARC Systems

Introduction to ARC Systems Introduction to ARC Systems Presenter Name Advanced Research Computing Division of IT Feb 20, 2018 Before We Start Sign in Request account if necessary Windows Users: MobaXterm PuTTY Web Interface: ETX

More information

Advanced Research Compu2ng Informa2on Technology Virginia Tech

Advanced Research Compu2ng Informa2on Technology Virginia Tech Advanced Research Compu2ng Informa2on Technology Virginia Tech www.arc.vt.edu Personnel Associate VP for Research Compu6ng: Terry Herdman (herd88@vt.edu) Director, HPC: Vijay Agarwala (vijaykag@vt.edu)

More information

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop Before We Start Sign in hpcxx account slips Windows Users: Download PuTTY Google PuTTY First result Save putty.exe to Desktop Research Computing at Virginia Tech Advanced Research Computing Compute Resources

More information

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing Programming Models for Multi- Threading Brian Marshall, Advanced Research Computing Why Do Parallel Computing? Limits of single CPU computing performance available memory I/O rates Parallel computing allows

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University Introduction to High Performance Computing Shaohao Chen Research Computing Services (RCS) Boston University Outline What is HPC? Why computer cluster? Basic structure of a computer cluster Computer performance

More information

HPC DOCUMENTATION. 3. Node Names and IP addresses:- Node details with respect to their individual IP addresses are given below:-

HPC DOCUMENTATION. 3. Node Names and IP addresses:- Node details with respect to their individual IP addresses are given below:- HPC DOCUMENTATION 1. Hardware Resource :- Our HPC consists of Blade chassis with 5 blade servers and one GPU rack server. a.total available cores for computing: - 96 cores. b.cores reserved and dedicated

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

IT4Innovations national supercomputing center. Branislav Jansík

IT4Innovations national supercomputing center. Branislav Jansík IT4Innovations national supercomputing center Branislav Jansík branislav.jansik@vsb.cz Anselm Salomon Data center infrastructure Anselm and Salomon Anselm Intel Sandy Bridge E5-2665 2x8 cores 64GB RAM

More information

Faster Code for Free: Linear Algebra Libraries. Advanced Research Compu;ng 22 Feb 2017

Faster Code for Free: Linear Algebra Libraries. Advanced Research Compu;ng 22 Feb 2017 Faster Code for Free: Linear Algebra Libraries Advanced Research Compu;ng 22 Feb 2017 Outline Introduc;on Implementa;ons Using them Use on ARC systems Hands on session Conclusions Introduc;on 3 BLAS Level

More information

UL HPC Monitoring in practice: why, what, how, where to look

UL HPC Monitoring in practice: why, what, how, where to look C. Parisot UL HPC Monitoring in practice: why, what, how, where to look 1 / 22 What is HPC? Best Practices Getting Fast & Efficient UL HPC Monitoring in practice: why, what, how, where to look Clément

More information

Introduc)on to Hyades

Introduc)on to Hyades Introduc)on to Hyades Shawfeng Dong Department of Astronomy & Astrophysics, UCSSC Hyades 1 Hardware Architecture 2 Accessing Hyades 3 Compu)ng Environment 4 Compiling Codes 5 Running Jobs 6 Visualiza)on

More information

SuperMike-II Launch Workshop. System Overview and Allocations

SuperMike-II Launch Workshop. System Overview and Allocations : System Overview and Allocations Dr Jim Lupo CCT Computational Enablement jalupo@cct.lsu.edu SuperMike-II: Serious Heterogeneous Computing Power System Hardware SuperMike provides 442 nodes, 221TB of

More information

Umeå University

Umeå University HPC2N @ Umeå University Introduction to HPC2N and Kebnekaise Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö Outline Short presentation of HPC2N HPC at a glance. HPC2N Abisko, Kebnekaise HPC Programming

More information

Umeå University

Umeå University HPC2N: Introduction to HPC2N and Kebnekaise, 2017-09-12 HPC2N @ Umeå University Introduction to HPC2N and Kebnekaise Jerry Eriksson, Pedro Ojeda-May, and Birgitte Brydsö Outline Short presentation of HPC2N

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI for Physical Scientists Michael Milligan MSI Scientific Computing Consultant Goals Introduction to MSI resources Show you how to access our systems

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What is HPC Concept? What is

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC On-class PBIO/BINF8350 Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What

More information

Introduction to HPC Using zcluster at GACRC

Introduction to HPC Using zcluster at GACRC Introduction to HPC Using zcluster at GACRC On-class STAT8330 Georgia Advanced Computing Resource Center University of Georgia Suchitra Pakala pakala@uga.edu Slides courtesy: Zhoufei Hou 1 Outline What

More information

High Performance Computing (HPC) Using zcluster at GACRC

High Performance Computing (HPC) Using zcluster at GACRC High Performance Computing (HPC) Using zcluster at GACRC On-class STAT8060 Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC?

More information

Introduction to High-Performance Computing

Introduction to High-Performance Computing Introduction to High-Performance Computing Dr. Axel Kohlmeyer Associate Dean for Scientific Computing, CST Associate Director, Institute for Computational Science Assistant Vice President for High-Performance

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

Accelerating High Performance Computing.

Accelerating High Performance Computing. Accelerating High Performance Computing http://www.nvidia.com/tesla Computing The 3 rd Pillar of Science Drug Design Molecular Dynamics Seismic Imaging Reverse Time Migration Automotive Design Computational

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

GPU ACCELERATED COMPUTING. 1 st AlsaCalcul GPU Challenge, 14-Jun-2016, Strasbourg Frédéric Parienté, Tesla Accelerated Computing, NVIDIA Corporation

GPU ACCELERATED COMPUTING. 1 st AlsaCalcul GPU Challenge, 14-Jun-2016, Strasbourg Frédéric Parienté, Tesla Accelerated Computing, NVIDIA Corporation GPU ACCELERATED COMPUTING 1 st AlsaCalcul GPU Challenge, 14-Jun-2016, Strasbourg Frédéric Parienté, Tesla Accelerated Computing, NVIDIA Corporation GAMING PRO ENTERPRISE VISUALIZATION DATA CENTER AUTO

More information

High Performance Computing Resources at MSU

High Performance Computing Resources at MSU MICHIGAN STATE UNIVERSITY High Performance Computing Resources at MSU Last Update: August 15, 2017 Institute for Cyber-Enabled Research Misson icer is MSU s central research computing facility. The unit

More information

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010

Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Making Supercomputing More Available and Accessible Windows HPC Server 2008 R2 Beta 2 Microsoft High Performance Computing April, 2010 Windows HPC Server 2008 R2 Windows HPC Server 2008 R2 makes supercomputing

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Agenda 1 Agenda-Day 1 HPC Overview What is a cluster? Shared v.s. Distributed Parallel v.s. Massively Parallel Interconnects

More information

Parallel Visualiza,on At TACC

Parallel Visualiza,on At TACC Parallel Visualiza,on At TACC Visualiza,on Problems * With thanks to Sean Ahern for the metaphor Huge problems: Data cannot be moved off system where it is computed Visualiza,on requires equivalent resources

More information

Unstructured Finite Volume Code on a Cluster with Mul6ple GPUs per Node

Unstructured Finite Volume Code on a Cluster with Mul6ple GPUs per Node Unstructured Finite Volume Code on a Cluster with Mul6ple GPUs per Node Keith Obenschain & Andrew Corrigan Laboratory for Computa;onal Physics and Fluid Dynamics Naval Research Laboratory Washington DC,

More information

Introduc)on to Xeon Phi

Introduc)on to Xeon Phi Introduc)on to Xeon Phi ACES Aus)n, TX Dec. 04 2013 Kent Milfeld, Luke Wilson, John McCalpin, Lars Koesterke TACC What is it? Co- processor PCI Express card Stripped down Linux opera)ng system Dense, simplified

More information

Intel Xeon Phi Coprocessors

Intel Xeon Phi Coprocessors Intel Xeon Phi Coprocessors Reference: Parallel Programming and Optimization with Intel Xeon Phi Coprocessors, by A. Vladimirov and V. Karpusenko, 2013 Ring Bus on Intel Xeon Phi Example with 8 cores Xeon

More information

High Performance Computing with Accelerators

High Performance Computing with Accelerators High Performance Computing with Accelerators Volodymyr Kindratenko Innovative Systems Laboratory @ NCSA Institute for Advanced Computing Applications and Technologies (IACAT) National Center for Supercomputing

More information

GPU Computing with NVIDIA s new Kepler Architecture

GPU Computing with NVIDIA s new Kepler Architecture GPU Computing with NVIDIA s new Kepler Architecture Axel Koehler Sr. Solution Architect HPC HPC Advisory Council Meeting, March 13-15 2013, Lugano 1 NVIDIA: Parallel Computing Company GPUs: GeForce, Quadro,

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI Systems Andrew Gustafson The Machines at MSI Machine Type: Cluster Source: http://en.wikipedia.org/wiki/cluster_%28computing%29 Machine Type: Cluster

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

Introduction to PICO Parallel & Production Enviroment

Introduction to PICO Parallel & Production Enviroment Introduction to PICO Parallel & Production Enviroment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Nicola Spallanzani n.spallanzani@cineca.it

More information

Introduction to High Performance Computing (HPC) Resources at GACRC

Introduction to High Performance Computing (HPC) Resources at GACRC Introduction to High Performance Computing (HPC) Resources at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? Concept

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

GPU Cluster Computing. Advanced Computing Center for Research and Education

GPU Cluster Computing. Advanced Computing Center for Research and Education GPU Cluster Computing Advanced Computing Center for Research and Education 1 What is GPU Computing? Gaming industry and high- defini3on graphics drove the development of fast graphics processing Use of

More information

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions How to run applications on Aziz supercomputer Mohammad Rafi System Administrator Fujitsu Technology Solutions Agenda Overview Compute Nodes Storage Infrastructure Servers Cluster Stack Environment Modules

More information

Large Scale Remote Interactive Visualization

Large Scale Remote Interactive Visualization Large Scale Remote Interactive Visualization Kelly Gaither Director of Visualization Senior Research Scientist Texas Advanced Computing Center The University of Texas at Austin March 1, 2012 Visualization

More information

Timothy Lanfear, NVIDIA HPC

Timothy Lanfear, NVIDIA HPC GPU COMPUTING AND THE Timothy Lanfear, NVIDIA FUTURE OF HPC Exascale Computing will Enable Transformational Science Results First-principles simulation of combustion for new high-efficiency, lowemision

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2017 Our Environment This Week Your laptops or workstations: only used for portal access Bridges

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

GPU Architecture. Alan Gray EPCC The University of Edinburgh

GPU Architecture. Alan Gray EPCC The University of Edinburgh GPU Architecture Alan Gray EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? Architectural reasons for accelerator performance advantages Latest GPU Products From

More information

Erkenntnisse aus aktuellen Performance- Messungen mit LS-DYNA

Erkenntnisse aus aktuellen Performance- Messungen mit LS-DYNA 14. LS-DYNA Forum, Oktober 2016, Bamberg Erkenntnisse aus aktuellen Performance- Messungen mit LS-DYNA Eric Schnepf 1, Dr. Eckardt Kehl 1, Chih-Song Kuo 2, Dymitrios Kyranas 2 1 Fujitsu Technology Solutions

More information

Supercomputer and grid infrastructure! in Poland!

Supercomputer and grid infrastructure! in Poland! Supercomputer and grid infrastructure in Poland Franciszek Rakowski Interdisciplinary Centre for Mathematical and Computational Modelling 12th INCF Nodes Workshop, 16.04.2015 Warsaw, Nencki Institute.

More information

VSC Users Day 2018 Start to GPU Ehsan Moravveji

VSC Users Day 2018 Start to GPU Ehsan Moravveji Outline A brief intro Available GPUs at VSC GPU architecture Benchmarking tests General Purpose GPU Programming Models VSC Users Day 2018 Start to GPU Ehsan Moravveji Image courtesy of Nvidia.com Generally

More information

GPU Computing with Fornax. Dr. Christopher Harris

GPU Computing with Fornax. Dr. Christopher Harris GPU Computing with Fornax Dr. Christopher Harris ivec@uwa CAASTRO GPU Training Workshop 8-9 October 2012 Introducing the Historical GPU Graphics Processing Unit (GPU) n : A specialised electronic circuit

More information

GPUs and the Future of Accelerated Computing Emerging Technology Conference 2014 University of Manchester

GPUs and the Future of Accelerated Computing Emerging Technology Conference 2014 University of Manchester NVIDIA GPU Computing A Revolution in High Performance Computing GPUs and the Future of Accelerated Computing Emerging Technology Conference 2014 University of Manchester John Ashley Senior Solutions Architect

More information

Parallel Programming on Ranger and Stampede

Parallel Programming on Ranger and Stampede Parallel Programming on Ranger and Stampede Steve Lantz Senior Research Associate Cornell CAC Parallel Computing at TACC: Ranger to Stampede Transition December 11, 2012 What is Stampede? NSF-funded XSEDE

More information

Introduc)on to Pacman

Introduc)on to Pacman Introduc)on to Pacman Don Bahls User Consultant dmbahls@alaska.edu (Significant Slide Content from Tom Logan) Overview Connec)ng to Pacman Hardware Programming Environment Compilers Queuing System Interac)ve

More information

Cuda C Programming Guide Appendix C Table C-

Cuda C Programming Guide Appendix C Table C- Cuda C Programming Guide Appendix C Table C-4 Professional CUDA C Programming (1118739329) cover image into the powerful world of parallel GPU programming with this down-to-earth, practical guide Table

More information

Managing CAE Simulation Workloads in Cluster Environments

Managing CAE Simulation Workloads in Cluster Environments Managing CAE Simulation Workloads in Cluster Environments Michael Humphrey V.P. Enterprise Computing Altair Engineering humphrey@altair.com June 2003 Copyright 2003 Altair Engineering, Inc. All rights

More information

Introduction to High Performance Computing (HPC) Resources at GACRC

Introduction to High Performance Computing (HPC) Resources at GACRC Introduction to High Performance Computing (HPC) Resources at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu 1 Outline GACRC? High Performance

More information

Implementing MPI on Windows: Comparison with Common Approaches on Unix

Implementing MPI on Windows: Comparison with Common Approaches on Unix Implementing MPI on Windows: Comparison with Common Approaches on Unix Jayesh Krishna, 1 Pavan Balaji, 1 Ewing Lusk, 1 Rajeev Thakur, 1 Fabian Tillier 2 1 Argonne Na+onal Laboratory, Argonne, IL, USA 2

More information

Fra superdatamaskiner til grafikkprosessorer og

Fra superdatamaskiner til grafikkprosessorer og Fra superdatamaskiner til grafikkprosessorer og Brødtekst maskinlæring Prof. Anne C. Elster IDI HPC/Lab Parallel Computing: Personal perspective 1980 s: Concurrent and Parallel Pascal 1986: Intel ipsc

More information

rabbit.engr.oregonstate.edu What is rabbit?

rabbit.engr.oregonstate.edu What is rabbit? 1 rabbit.engr.oregonstate.edu Mike Bailey mjb@cs.oregonstate.edu rabbit.pptx What is rabbit? 2 NVIDIA Titan Black PCIe Bus 15 SMs 2880 CUDA cores 6 GB of memory OpenGL support OpenCL support Xeon system

More information

Introduction to GALILEO

Introduction to GALILEO November 27, 2016 Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it SuperComputing Applications and Innovation Department

More information

UAntwerpen, 24 June 2016

UAntwerpen, 24 June 2016 Tier-1b Info Session UAntwerpen, 24 June 2016 VSC HPC environment Tier - 0 47 PF Tier -1 623 TF Tier -2 510 Tf 16,240 CPU cores 128/256 GB memory/node IB EDR interconnect Tier -3 HOPPER/TURING STEVIN THINKING/CEREBRO

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Waiting for Moore s Law to save your serial code start getting bleak in 2004 Source: published SPECInt data Moore s Law is not at all

More information

Introduction to HPC Using zcluster at GACRC On-Class GENE 4220

Introduction to HPC Using zcluster at GACRC On-Class GENE 4220 Introduction to HPC Using zcluster at GACRC On-Class GENE 4220 Georgia Advanced Computing Resource Center University of Georgia Suchitra Pakala pakala@uga.edu Slides courtesy: Zhoufei Hou 1 OVERVIEW GACRC

More information

General Plasma Physics

General Plasma Physics Present and Future Computational Requirements General Plasma Physics Center for Integrated Computation and Analysis of Reconnection and Turbulence () Kai Germaschewski, Homa Karimabadi Amitava Bhattacharjee,

More information

Introduction to HPC Using the New Cluster at GACRC

Introduction to HPC Using the New Cluster at GACRC Introduction to HPC Using the New Cluster at GACRC Georgia Advanced Computing Resource Center University of Georgia Zhuofei Hou, HPC Trainer zhuofei@uga.edu Outline What is GACRC? What is the new cluster

More information

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory

Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Office of Science Titan - Early Experience with the Titan System at Oak Ridge National Laboratory Buddy Bland Project Director Oak Ridge Leadership Computing Facility November 13, 2012 ORNL s Titan Hybrid

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

DATARMOR: Comment s'y préparer? Tina Odaka

DATARMOR: Comment s'y préparer? Tina Odaka DATARMOR: Comment s'y préparer? Tina Odaka 30.09.2016 PLAN DATARMOR: Detailed explanation on hard ware What can you do today to be ready for DATARMOR DATARMOR : convention de nommage ClusterHPC REF SCRATCH

More information

Heterogeneous CPU+GPU Molecular Dynamics Engine in CHARMM

Heterogeneous CPU+GPU Molecular Dynamics Engine in CHARMM Heterogeneous CPU+GPU Molecular Dynamics Engine in CHARMM 25th March, GTC 2014, San Jose CA AnE- Pekka Hynninen ane.pekka.hynninen@nrel.gov NREL is a na*onal laboratory of the U.S. Department of Energy,

More information

Vectorisation and Portable Programming using OpenCL

Vectorisation and Portable Programming using OpenCL Vectorisation and Portable Programming using OpenCL Mitglied der Helmholtz-Gemeinschaft Jülich Supercomputing Centre (JSC) Andreas Beckmann, Ilya Zhukov, Willi Homberg, JSC Wolfram Schenck, FH Bielefeld

More information

Introduction to GALILEO

Introduction to GALILEO Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Alessandro Grottesi a.grottesi@cineca.it SuperComputing Applications and

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Advanced Research Computing. ARC3 and GPUs. Mark Dixon

Advanced Research Computing. ARC3 and GPUs. Mark Dixon Advanced Research Computing Mark Dixon m.c.dixon@leeds.ac.uk ARC3 (1st March 217) Included 2 GPU nodes, each with: 24 Intel CPU cores & 128G RAM (same as standard compute node) 2 NVIDIA Tesla K8 24G RAM

More information

Experiences with GPGPUs at HLRS

Experiences with GPGPUs at HLRS ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: Experiences with GPGPUs at HLRS Stefan Wesner, Managing Director High

More information

Performance comparison between a massive SMP machine and clusters

Performance comparison between a massive SMP machine and clusters Performance comparison between a massive SMP machine and clusters Martin Scarcia, Stefano Alberto Russo Sissa/eLab joint Democritos/Sissa Laboratory for e-science Via Beirut 2/4 34151 Trieste, Italy Stefano

More information

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS)

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) DELIVERABLE D5.5 Report on ICARUS visualization cluster installation John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) 02 May 2011 NextMuSE 2 Next generation Multi-mechanics Simulation Environment Cluster

More information

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Tutorial Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld dan/lars/bbarth/milfeld@tacc.utexas.edu XSEDE 12 July 16, 2012

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

Name Department/Research Area Have you used the Linux command line?

Name Department/Research Area Have you used the Linux command line? Please log in with HawkID (IOWA domain) Macs are available at stations as marked To switch between the Windows and the Mac systems, press scroll lock twice 9/27/2018 1 Ben Rogers ITS-Research Services

More information

ACCELERATED COMPUTING: THE PATH FORWARD. Jensen Huang, Founder & CEO SC17 Nov. 13, 2017

ACCELERATED COMPUTING: THE PATH FORWARD. Jensen Huang, Founder & CEO SC17 Nov. 13, 2017 ACCELERATED COMPUTING: THE PATH FORWARD Jensen Huang, Founder & CEO SC17 Nov. 13, 2017 COMPUTING AFTER MOORE S LAW Tech Walker 40 Years of CPU Trend Data 10 7 GPU-Accelerated Computing 10 5 1.1X per year

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

Programming Techniques for Supercomputers. HPC RRZE University Erlangen-Nürnberg Sommersemester 2018

Programming Techniques for Supercomputers. HPC RRZE University Erlangen-Nürnberg Sommersemester 2018 Programming Techniques for Supercomputers HPC Services @ RRZE University Erlangen-Nürnberg Sommersemester 2018 Outline Login to RRZE s Emmy cluster Basic environment Some guidelines First Assignment 2

More information

HPC Resources at Lehigh. Steve Anthony March 22, 2012

HPC Resources at Lehigh. Steve Anthony March 22, 2012 HPC Resources at Lehigh Steve Anthony March 22, 2012 HPC at Lehigh: Resources What's Available? Service Level Basic Service Level E-1 Service Level E-2 Leaf and Condor Pool Altair Trits, Cuda0, Inferno,

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2016 Our Environment This Week Your laptops or workstations: only used for portal access Bridges

More information

ACCELERATED COMPUTING: THE PATH FORWARD. Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015

ACCELERATED COMPUTING: THE PATH FORWARD. Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015 ACCELERATED COMPUTING: THE PATH FORWARD Jen-Hsun Huang, Co-Founder and CEO, NVIDIA SC15 Nov. 16, 2015 COMMODITY DISRUPTS CUSTOM SOURCE: Top500 ACCELERATED COMPUTING: THE PATH FORWARD It s time to start

More information

New Storage Technologies First Impressions: SanDisk IF150 & Intel Omni-Path. Brian Marshall GPFS UG - SC16 November 13, 2016

New Storage Technologies First Impressions: SanDisk IF150 & Intel Omni-Path. Brian Marshall GPFS UG - SC16 November 13, 2016 New Storage Technologies First Impressions: SanDisk IF150 & Intel Omni-Path Brian Marshall GPFS UG - SC16 November 13, 2016 Presenter Background Brian Marshall Computational Scientist at Virginia Tech

More information

Introduction to GALILEO

Introduction to GALILEO Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Maurizio Cremonesi m.cremonesi@cineca.it

More information

SCALABLE HYBRID PROTOTYPE

SCALABLE HYBRID PROTOTYPE SCALABLE HYBRID PROTOTYPE Scalable Hybrid Prototype Part of the PRACE Technology Evaluation Objectives Enabling key applications on new architectures Familiarizing users and providing a research platform

More information

HOKUSAI System. Figure 0-1 System diagram

HOKUSAI System. Figure 0-1 System diagram HOKUSAI System October 11, 2017 Information Systems Division, RIKEN 1.1 System Overview The HOKUSAI system consists of the following key components: - Massively Parallel Computer(GWMPC,BWMPC) - Application

More information

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016 RECENT TRENDS IN GPU ARCHITECTURES Perspectives of GPU computing in Science, 26 th Sept 2016 NVIDIA THE AI COMPUTING COMPANY GPU Computing Computer Graphics Artificial Intelligence 2 NVIDIA POWERS WORLD

More information

Parallel Computing. November 20, W.Homberg

Parallel Computing. November 20, W.Homberg Mitglied der Helmholtz-Gemeinschaft Parallel Computing November 20, 2017 W.Homberg Why go parallel? Problem too large for single node Job requires more memory Shorter time to solution essential Better

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Real Parallel Computers

Real Parallel Computers Real Parallel Computers Modular data centers Overview Short history of parallel machines Cluster computing Blue Gene supercomputer Performance development, top-500 DAS: Distributed supercomputing Short

More information