Software Distributed Shared Memory with High Bandwidth Network: Production and Evaluation

Size: px
Start display at page:

Download "Software Distributed Shared Memory with High Bandwidth Network: Production and Evaluation"

Transcription

1 ,,.,, InfiniBand PCI Express,,,. Software Distributed Shared Memory with High Bandwidth Network: Production and Evaluation Akira Nishida, The recent development of commodity hardware technologies makes building a software distributed shared memory computing environment a more practical approach for scientific computing that requires the repetitive solutions of large linear systems. In this study, we build a tightly connected PC cluster with PCI Express and InfiniBand technology for the scalable implementation of parallel iterative linear solvers, evaluate the performance and bottlenecks of commodity hardware technologies. The scalability of the implementation of parallel sparse matrix computations considering both the local memory bandwidth of the compute nodes and their internode communication bandwidth is evaluated. 1., PC, 2),6).,, PC,,.,,,,, -.,,,,.,, InfiniBand PCI Department of Computer Science, the University of Tokyo CREST CREST, JST Express,. 2. PCI Express PCI, Intel, NEC 24. PCI 1GB/s, PCI Express, 2.5Gb/s 32, 16GB/s. PCI Express, InfiniBand. Mellanox Technologies InfiniHost (HCA), 1 5Gbps DDR InfiniBand 4 ( 1 ), 8 PCI Express, 4Gbps. Opteron 1

2 2 PCI Express x16., 2.2GHz, 1MB Opteron 848, 4 16, MB PC32 DDR SDRAM (ECC Registered) 8. PCI Express x16 Internode communication InfiniHost HCA nforce Professional 22 1 Mellanox Technologies PCI Express DDR InfiniHost HCA MHGS18-XT DDR Fig. 1 InfiniHCA HCA MHGS18-XT DDR for PCI Express bus from Mellanox Technologies, Inc. DDR4 SDRAM DDR4 SDRAM DDR4 SDRAM DDR4 SDRAM AMD 64bit.,,.,, SuSE Linux Linux, Opteron.,, 4-way Opteron 4 IBQ, Mellanox Technologies 8x PCI Express single port DDR InfiniHost HCA, PCI Express MHGS18-XT DDR. 24 DDR InfiniBand MTS24 DDR. 2-way 8 IBD 9),, 1CPU 1.5GB/s. PCI Express x8 DDR InfiniBand HCA, 4-way, PCI Express x8 2., NVIDIA nforce Professional Uniwide (Appro), Iwill Uniserver 3346, Internode communication InfiniHost HCA PCI Express x16 AMD 8132 nforce Professional 225 PCI-X 2 quad Opteron Fig. 2 System Diagram of dual Opteron Cluster Node. 3 InfiniBand MTS24 DDR Opteron IBQ Fig. 3 Opteron Cluster IBQ, connected with InfiniBand switch MTS24 DDR., 17 1, MPI OpenMP SCASH-MPI.,, InfiniBand 2

3 . 3. SCASH-MPI, MPI,.,, InfiniBand MPI MVAPICH 4). MVAPICH, 5). MVAPICH.9.6., MHGS-18XT, Uniserver 3346., DDR InfiniBand Opteron, 1 HCA. 4-5 MVAPICH.9.6 Opteron/MHGS- 18XT MPI., MPI, MPI 3). Time (us) Intranode Internode e+6 1e+7 Message Size (Bytes) 4 MVAPICH.9.6 MPI ( DDR InfiniBand HCA (Mellanox MHGS18-XT) ) Fig. 4 MPI Latency of MVAPICH.9.6 (nodes connected with DDR InfiniHost HCA (Mellanox MHGS18-XT)). 3.1 STREAM benchmark,, STREAM benchmark 1) Uniwide., LAM, MPICH.,. 2 Intranode 18 Internode e+6 1e+7 Message Size (Bytes) 5 MVAPICH.9.6 ( DDR InfiniBand HCA (Mellanox MHGS18-XT) ) Fig. 5 MPI Bidirectional Bandwidth of MVAPICH.9.6 (nodes connected with DDR InfiniHost HCA (Mellanox MHGS18-XT)). Bandwidth (MB/s).,,. 1, 6 STREAM benchmark. /* - MAIN LOOP - repeat NTIMES times - */ scalar = 3.; for (k=; k<ntimes; k++) { times[][k] = second(); for (j=; j<n; j++) c[j] = a[j]; times[][k] = second() - times[][k]; times[1][k] = second(); for (j=; j<n; j++) b[j] = scalar*c[j]; times[1][k] = second() - times[1][k]; times[2][k] = second(); for (j=; j<n; j++) c[j] = a[j]+b[j]; times[2][k] = second() - times[2][k]; times[3][k] = second(); for (j=; j<n; j++) a[j] = b[j]+scalar*c[j]; times[3][k] = second() - times[3][k]; } 6 STREAM benchmark Fig. 6 Main loops of STREAM benchmark.,,. OpenMP stream d omp.c,., 7 4MPI 3

4 1 STREAM benchmark Table 1 STREAM benchmark types. Benchmark Operation Bytes per iteration a[i] = b[i] 16 a[i] = q * b[i] 16 a[i] = b[i] + c[i] 24 a[i] = b[i] + q * c[i] 24 STREAM benchmark. 4,,, 91.6MB., 1 3,., SCASH-MPI MPI 1 8)., 1 2., 8, 9 GbE. GbE MPI 24.27us, 226MB/s, InfiniBand., STREAM,,., 6 for,, MPI STREAM benchmark Fig. 7 Speedup of STREAM benckmark results with up to four processes per node. 4. NAS Parallel Benchmark,, NAS Parallel Benchmark 7) 3.2, MPI STREAM benchmark Fig. 8 Speedup of STREAM benckmark results with up to two processes per node MPI STREAM benchmark (GbE ) Fig. 9 Speedup of STREAM benckmark results with up to two processes per node on GbE , 4MPI STREAM benchmark Fig. 1 Speedup of STREAM benckmark results with up to four processes per node (Mapping specified and barrier synchronization removed). 4

5 CG kernel Class S B. vector r,p,q,z; /* working vector */ /* solve A*x */ real CGSOLVE(matrix A,vector x, real zeta) { int it; real alpha, beta, rho, rho; r = x; p = x; z =.; rho = x * x; for(it=; it < NITCG; it++) { q = A*p; alpha = rho/(p * q); z += alpha * p; rho = rho; r += -alpha * q; rho = r*r; beta = rho / rho; p += beta*r; } r=a*z-x; zeta = 1./x*z; x = (1./sqrt(z*z))*z; return sqrt(r*r); } 11 NPB CG Fig. 11 Algorithm of NPB CG main loop. CG kernel,. 11.,,.,. S=1,4, W=7,, A=14,, B=75,, C=15,, S=7, W=8, A=11, B=13, C=15., 16 75KB., MPI NPB CG kernel DDR InfiniHost HCA. CG kernel, 9). 12 MPI CG kernel IBD. 4-way 13, DDR InfiniBand, 2 SDR InfiniBand Class C,., MPI, 1 2MPI OpenMP NPB CG 14. NPB BT, SP 8),, CG. MPI, performance (MFLOPS) Class S Class W Class A Class B Class C number of processes 12 SDR InfiniHost HCA 2 NPB CG Fig. 12 Speedup of NPB CG with two ports of SDR InfiniHost HCA. performance (MFLOPS) Class S Class W Class A Class B Class C number of processes 13 DDR InfiniHost HCA NPB CG (MPI ) Fig. 13 Speedup of NPB CG (MPI version) with DDR InfiniHost HCA.,, CG,. 5., PCI Express InfiniBand,,.,, 4-way, 5

6 performance (MFLOPS) number of processes Class S Class W Class A Class B 14 DDR InfiniHost HCA NPB CG (OpenMP ). 1 2MPI Fig. 14 Speedup of NPB CG (OpenMP version) with DDR InfiniHost HCA, up to two processes per node.,,.,,. InfiniBand, Mellanox Technologies, Inc.,,,.,, ,. Conference on Supercomputing 3 (23). 5) Liu, J., Vishnu, A. and Panda, D. K.: Building Multirail InfiniBand Clusters: MPI-Level Design and Performance Evaluation, Proceedings of the International Conference on Supercomputing 4 (24). 6) Pfister, G. F.: In Search of Clusters, Prentice- Hall, second edition (1998). 7) van der Wijngaart, R.: The NAS Parallel Benchmarks 2.4, Technical ReportNAS-2-7, NASA (22). 8),,, : MPI, :, Vol. 46, No. SIG 7, pp (25). 9) : InfiniBand,, Vol. 25, No. 81, pp (25). 1) STREAM: Sustainable Memory Bandwidth in High Performance Computers, 2) Hennessy, J. I. and Patterson, D. A.: Computer Architecture: A Quantitative Approach, Third Edition, Morgan Kaufmann (23). 3) Jin, H. W., Sur, S., Chai, L. and Panda, D. K.: LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster, Proceedings of the International Conference on Parallel Processing (25). 4) Liu, J., Chandrasekaran, B., J. Wu, W. J., Kini, S. P., Yu, W., Buntinas, D., Wyckoff, P. and Panda, D. K.: Performance Comparison of MPI implementations over Infiniband, Myrinet and Quadrics, Proceedings of the International 6

Performance Evaluation of InfiniBand with PCI Express

Performance Evaluation of InfiniBand with PCI Express Performance Evaluation of InfiniBand with PCI Express Jiuxing Liu Amith Mamidala Abhinav Vishnu Dhabaleswar K Panda Department of Computer and Science and Engineering The Ohio State University Columbus,

More information

Performance Evaluation of InfiniBand with PCI Express

Performance Evaluation of InfiniBand with PCI Express Performance Evaluation of InfiniBand with PCI Express Jiuxing Liu Server Technology Group IBM T. J. Watson Research Center Yorktown Heights, NY 1598 jl@us.ibm.com Amith Mamidala, Abhinav Vishnu, and Dhabaleswar

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster H. W. Jin, S. Sur, L. Chai, and D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering

More information

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation Miao Luo, Ping Lai, Sreeram Potluri, Emilio P. Mancini, Hari Subramoni, Krishna Kandalla, Dhabaleswar K. Panda Department of Computer

More information

Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core System

Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core System Understanding the Impact of Multi- Architecture in Cluster Computing: A Case Study with Intel Dual- System Lei Chai Qi Gao Dhabaleswar K. Panda Department of Computer Science and Engineering The Ohio State

More information

Performance Analysis and Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand

Performance Analysis and Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand th IEEE Symposium on High Performance Interconnects Performance Analysis and Evaluation of PCIe. and Quad-Data Rate InfiniBand Matthew J. Koop Wei Huang Karthik Gopalakrishnan Dhabaleswar K. Panda Network-Based

More information

OpenMP on the FDSM software distributed shared memory. Hiroya Matsuba Yutaka Ishikawa

OpenMP on the FDSM software distributed shared memory. Hiroya Matsuba Yutaka Ishikawa OpenMP on the FDSM software distributed shared memory Hiroya Matsuba Yutaka Ishikawa 1 2 Software DSM OpenMP programs usually run on the shared memory computers OpenMP programs work on the distributed

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

High Performance MPI on IBM 12x InfiniBand Architecture

High Performance MPI on IBM 12x InfiniBand Architecture High Performance MPI on IBM 12x InfiniBand Architecture Abhinav Vishnu, Brad Benton 1 and Dhabaleswar K. Panda {vishnu, panda} @ cse.ohio-state.edu {brad.benton}@us.ibm.com 1 1 Presentation Road-Map Introduction

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Efficient SMP-Aware MPI-Level Broadcast over InfiniBand s Hardware Multicast

Efficient SMP-Aware MPI-Level Broadcast over InfiniBand s Hardware Multicast Efficient SMP-Aware MPI-Level Broadcast over InfiniBand s Hardware Multicast Amith R. Mamidala Lei Chai Hyun-Wook Jin Dhabaleswar K. Panda Department of Computer Science and Engineering The Ohio State

More information

EVALUATING INFINIBAND PERFORMANCE WITH PCI EXPRESS

EVALUATING INFINIBAND PERFORMANCE WITH PCI EXPRESS EVALUATING INFINIBAND PERFORMANCE WITH PCI EXPRESS INFINIBAND HOST CHANNEL ADAPTERS (HCAS) WITH PCI EXPRESS ACHIEVE 2 TO 3 PERCENT LOWER LATENCY FOR SMALL MESSAGES COMPARED WITH HCAS USING 64-BIT, 133-MHZ

More information

UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM

UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM Sweety Sen, Sonali Samanta B.Tech, Information Technology, Dronacharya College of Engineering,

More information

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Jiuxing Liu and Dhabaleswar K. Panda Computer Science and Engineering The Ohio State University Presentation Outline Introduction

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Designing An Efficient Kernel-level and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core Systems

Designing An Efficient Kernel-level and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core Systems Designing An Efficient Kernel-level and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core Systems Lei Chai Ping Lai Hyun-Wook Jin Dhabaleswar K. Panda Department of Computer Science

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Micro-Benchmark Level Performance Comparison of High-Speed Cluster Interconnects

Micro-Benchmark Level Performance Comparison of High-Speed Cluster Interconnects Micro-Benchmark Level Performance Comparison of High-Speed Cluster Interconnects Jiuxing Liu Balasubramanian Chandrasekaran Weikuan Yu Jiesheng Wu Darius Buntinas Sushmitha Kini Peter Wyckoff Dhabaleswar

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

Intra-MIC MPI Communication using MVAPICH2: Early Experience

Intra-MIC MPI Communication using MVAPICH2: Early Experience Intra-MIC MPI Communication using MVAPICH: Early Experience Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dhabaleswar K. Panda Department of Computer Science and Engineering Ohio State University

More information

HPC Challenge Awards 2010 Class2 XcalableMP Submission

HPC Challenge Awards 2010 Class2 XcalableMP Submission HPC Challenge Awards 2010 Class2 XcalableMP Submission Jinpil Lee, Masahiro Nakao, Mitsuhisa Sato University of Tsukuba Submission Overview XcalableMP Language and model, proposed by XMP spec WG Fortran

More information

Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet. Swamy N. Kandadai and Xinghong He and

Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet. Swamy N. Kandadai and Xinghong He and Performance of HPC Applications over InfiniBand, 10 Gb and 1 Gb Ethernet Swamy N. Kandadai and Xinghong He swamy@us.ibm.com and xinghong@us.ibm.com ABSTRACT: We compare the performance of several applications

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

Performance Evaluation of InfiniBand with PCI Express

Performance Evaluation of InfiniBand with PCI Express Performance Evaluation of InfiniBand with PCI Express Jiuxing Liu Amith Mamidala Abhinav Vishnn Dhabaleswar K Panda Department of Computer and Science and Engineering The Ohio State University Columbus,

More information

High Performance MPI-2 One-Sided Communication over InfiniBand

High Performance MPI-2 One-Sided Communication over InfiniBand High Performance MPI-2 One-Sided Communication over InfiniBand Weihang Jiang Jiuxing Liu Hyun-Wook Jin Dhabaleswar K. Panda William Gropp Rajeev Thakur Computer and Information Science The Ohio State University

More information

MICROBENCHMARK PERFORMANCE COMPARISON OF HIGH-SPEED CLUSTER INTERCONNECTS

MICROBENCHMARK PERFORMANCE COMPARISON OF HIGH-SPEED CLUSTER INTERCONNECTS MICROBENCHMARK PERFORMANCE COMPARISON OF HIGH-SPEED CLUSTER INTERCONNECTS HIGH-SPEED CLUSTER INTERCONNECTS MYRINET, QUADRICS, AND INFINIBAND ACHIEVE LOW LATENCY AND HIGH BANDWIDTH WITH LOW HOST OVERHEAD.

More information

Benchmarking CPU Performance. Benchmarking CPU Performance

Benchmarking CPU Performance. Benchmarking CPU Performance Cluster Computing Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance,

More information

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits Ashish Kumar Singh, Sreeram Potluri, Hao Wang, Krishna Kandalla, Sayantan Sur, and Dhabaleswar K. Panda Network-Based

More information

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst Ali Khajeh-Saeed Software Engineer CD-adapco J. Blair Perot Mechanical Engineering UMASS, Amherst Supercomputers Optimization Stream Benchmark Stag++ (3D Incompressible Flow Code) Matrix Multiply Function

More information

High Performance MPI-2 One-Sided Communication over InfiniBand

High Performance MPI-2 One-Sided Communication over InfiniBand High Performance MPI-2 One-Sided Communication over InfiniBand Weihang Jiang Jiuxing Liu Hyun-Wook Jin Dhabaleswar K. Panda William Gropp Rajeev Thakur Computer and Information Science The Ohio State University

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

Application Performance on Dual Processor Cluster Nodes

Application Performance on Dual Processor Cluster Nodes Application Performance on Dual Processor Cluster Nodes by Kent Milfeld milfeld@tacc.utexas.edu edu Avijit Purkayastha, Kent Milfeld, Chona Guiang, Jay Boisseau TEXAS ADVANCED COMPUTING CENTER Thanks Newisys

More information

InfiniBand Experiences of PC²

InfiniBand Experiences of PC² InfiniBand Experiences of PC² Dr. Jens Simon simon@upb.de Paderborn Center for Parallel Computing (PC²) Universität Paderborn hpcline-infotag, 18. Mai 2004 PC² - Paderborn Center for Parallel Computing

More information

Sami Saarinen Peter Towers. 11th ECMWF Workshop on the Use of HPC in Meteorology Slide 1

Sami Saarinen Peter Towers. 11th ECMWF Workshop on the Use of HPC in Meteorology Slide 1 Acknowledgements: Petra Kogel Sami Saarinen Peter Towers 11th ECMWF Workshop on the Use of HPC in Meteorology Slide 1 Motivation Opteron and P690+ clusters MPI communications IFS Forecast Model IFS 4D-Var

More information

Cluster Computing Paul A. Farrell 9/15/2011. Dept of Computer Science Kent State University 1. Benchmarking CPU Performance

Cluster Computing Paul A. Farrell 9/15/2011. Dept of Computer Science Kent State University 1. Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance, since it is designed to defeat any effort to

More information

PC DESY Peter Wegner. PC Cluster Definition 1

PC DESY Peter Wegner. PC Cluster Definition 1 PC Cluster @ DESY Peter Wegner 1. Motivation, History 2. Myrinet-Communication 4. Cluster Hardware 5. Cluster Software 6. Future PC Cluster Definition 1 Idee: Herbert Cornelius (Intel München) 1 PC Cluster

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects

1/5/2012. Overview of Interconnects. Presentation Outline. Myrinet and Quadrics. Interconnects. Switch-Based Interconnects Overview of Interconnects Myrinet and Quadrics Leading Modern Interconnects Presentation Outline General Concepts of Interconnects Myrinet Latest Products Quadrics Latest Release Our Research Interconnects

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

HIGH PERFORMANCE AND SCALABLE MPI INTRA-NODE COMMUNICATION MIDDLEWARE FOR MULTI-CORE CLUSTERS

HIGH PERFORMANCE AND SCALABLE MPI INTRA-NODE COMMUNICATION MIDDLEWARE FOR MULTI-CORE CLUSTERS HIGH PERFORMANCE AND SCALABLE MPI INTRA-NODE COMMUNICATION MIDDLEWARE FOR MULTI-CORE CLUSTERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the

More information

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster

Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Performance Analysis of Memory Transfers and GEMM Subroutines on NVIDIA TESLA GPU Cluster Veerendra Allada, Troy Benjegerdes Electrical and Computer Engineering, Ames Laboratory Iowa State University &

More information

COSC 6385 Computer Architecture - Multi Processor Systems

COSC 6385 Computer Architecture - Multi Processor Systems COSC 6385 Computer Architecture - Multi Processor Systems Fall 2006 Classification of Parallel Architectures Flynn s Taxonomy SISD: Single instruction single data Classical von Neumann architecture SIMD:

More information

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Intel Nerve Center (SC 7) Presentation Dhabaleswar K (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu Parallel

More information

Designing High Performance DSM Systems using InfiniBand Features

Designing High Performance DSM Systems using InfiniBand Features Designing High Performance DSM Systems using InfiniBand Features Ranjit Noronha and Dhabaleswar K. Panda The Ohio State University NBC Outline Introduction Motivation Design and Implementation Results

More information

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters *

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop and Dhabaleswar K. Panda Department of Computer Science and

More information

An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks

An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks An evaluation of the Performance and Scalability of a Yellowstone Test-System in 5 Benchmarks WRF Model NASA Parallel Benchmark Intel MPI Bench My own personal benchmark HPC Challenge Benchmark Abstract

More information

Slurm Configuration Impact on Benchmarking

Slurm Configuration Impact on Benchmarking Slurm Configuration Impact on Benchmarking José A. Moríñigo, Manuel Rodríguez-Pascual, Rafael Mayo-García CIEMAT - Dept. Technology Avda. Complutense 40, Madrid 28040, SPAIN Slurm User Group Meeting 16

More information

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Qi Gao, Weikuan Yu, Wei Huang, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of Computer Science & Engineering

More information

Comparative Performance Analysis of RDMA-Enhanced Ethernet

Comparative Performance Analysis of RDMA-Enhanced Ethernet Comparative Performance Analysis of RDMA-Enhanced Ethernet Casey B. Reardon and Alan D. George HCS Research Laboratory University of Florida Gainesville, FL July 24, 2005 Clement T. Cole Ammasso Inc. Boston,

More information

Organizational issues (I)

Organizational issues (I) COSC 6385 Computer Architecture Introduction and Organizational Issues Fall 2007 Organizational issues (I) Classes: Monday, 1.00pm 2.30pm, PGH 232 Wednesday, 1.00pm 2.30pm, PGH 232 Evaluation 25% homework

More information

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters G.Santhanaraman, T. Gangadharappa, S.Narravula, A.Mamidala and D.K.Panda Presented by:

More information

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT Krishna Kandalla (1), Hari Subramoni (1), Karen Tomko (2), Dmitry Pekurovsky

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

MM5 Modeling System Performance Research and Profiling. March 2009

MM5 Modeling System Performance Research and Profiling. March 2009 MM5 Modeling System Performance Research and Profiling March 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center

More information

Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2

Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2 Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2 H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, D. K. Panda Network-Based

More information

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand Matthew Koop 1,2 Terry Jones 2 D. K. Panda 1 {koop, panda}@cse.ohio-state.edu trj@llnl.gov 1 Network-Based Computing Lab, The

More information

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster : Support for High-Performance MPI Intra-Node Communication on Linux Cluster Hyun-Wook Jin Sayantan Sur Lei Chai Dhabaleswar K. Panda Department of Computer Science and Engineering The Ohio State University

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

Adaptive Connection Management for Scalable MPI over InfiniBand

Adaptive Connection Management for Scalable MPI over InfiniBand Adaptive Connection Management for Scalable MPI over InfiniBand Weikuan Yu Qi Gao Dhabaleswar K. Panda Network-Based Computing Lab Dept. of Computer Sci. & Engineering The Ohio State University {yuw,gaoq,panda}@cse.ohio-state.edu

More information

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda Network Based Computing Lab, The Ohio State University Presentation

More information

S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda. The Ohio State University

S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda. The Ohio State University Architecture for Caching Responses with Multiple Dynamic Dependencies in Multi-Tier Data- Centers over InfiniBand S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda The Ohio State University

More information

Performance of Voltaire InfiniBand in IBM 64-Bit Commodity HPC Clusters

Performance of Voltaire InfiniBand in IBM 64-Bit Commodity HPC Clusters Abstract Performance of Voltaire InfiniBand in IBM 64-Bit Commodity HPC Clusters Dr. Douglas M. Pase IBM xseries Performance Development and Analysis 339 Cornwallis Rd. Research Triangle Park, NC 2779-2195

More information

Evaluating the Impact of RDMA on Storage I/O over InfiniBand

Evaluating the Impact of RDMA on Storage I/O over InfiniBand Evaluating the Impact of RDMA on Storage I/O over InfiniBand J Liu, DK Panda and M Banikazemi Computer and Information Science IBM T J Watson Research Center The Ohio State University Presentation Outline

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda Department of Computer Science and Engineering

More information

Building Multirail InfiniBand Clusters: MPI-Level Designs and Performance Evaluation

Building Multirail InfiniBand Clusters: MPI-Level Designs and Performance Evaluation Building Multirail InfiniBand Clusters: MPI-Level Designs and Performance Evaluation Jiuxing Liu Abhinav Vishnu Dhabaleswar K Panda Computer and Information Science The Ohio State University Columbus,

More information

Optimizing LS-DYNA Productivity in Cluster Environments

Optimizing LS-DYNA Productivity in Cluster Environments 10 th International LS-DYNA Users Conference Computing Technology Optimizing LS-DYNA Productivity in Cluster Environments Gilad Shainer and Swati Kher Mellanox Technologies Abstract Increasing demand for

More information

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS)

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) DELIVERABLE D5.5 Report on ICARUS visualization cluster installation John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) 02 May 2011 NextMuSE 2 Next generation Multi-mechanics Simulation Environment Cluster

More information

Cray events. ! Cray User Group (CUG): ! Cray Technical Workshop Europe:

Cray events. ! Cray User Group (CUG): ! Cray Technical Workshop Europe: Cray events! Cray User Group (CUG):! When: May 16-19, 2005! Where: Albuquerque, New Mexico - USA! Registration: reserved to CUG members! Web site: http://www.cug.org! Cray Technical Workshop Europe:! When:

More information

Impact of Network Sharing in Multi-core Architectures

Impact of Network Sharing in Multi-core Architectures Impact of Network Sharing in Multi-core Architectures G. Narayanaswamy Dept. of Computer Science Virginia Tech cnganesh@cs.vt.edu Abstract As commodity components continue to dominate the realm of high-end

More information

Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 7-66, p- ISSN: 7-77Volume 5, Issue (Nov. - Dec. 3), PP -7 Performance Evaluation of over Gigabit Gurkirat Kaur, Manoj Kumar, Manju Bala Department

More information

Benchmarking CPU Performance

Benchmarking CPU Performance Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance, since it is designed

More information

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA. NVIDIA Corporation Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA NVIDIA Corporation Outline! Overview of CG benchmark! Overview of CUDA Libraries! CUSPARSE! CUBLAS! Porting Sequence! Algorithm Analysis! Data/Code

More information

The LiMIC Strikes Back. Hyun-Wook Jin System Software Laboratory Dept. of Computer Science and Engineering Konkuk University

The LiMIC Strikes Back. Hyun-Wook Jin System Software Laboratory Dept. of Computer Science and Engineering Konkuk University The LiMIC Strikes Back Hyun-Wook Jin System Software Laboratory Dept. of Computer Science and Engineering Konkuk University jinh@konkuk.ac.kr Contents MPI Intra-node Communication Introduction of LiMIC

More information

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda Network Based Computing Laboratory

More information

Cray XD1 Supercomputer Release 1.3 CRAY XD1 DATASHEET

Cray XD1 Supercomputer Release 1.3 CRAY XD1 DATASHEET CRAY XD1 DATASHEET Cray XD1 Supercomputer Release 1.3 Purpose-built for HPC delivers exceptional application performance Affordable power designed for a broad range of HPC workloads and budgets Linux,

More information

A C compiler for Large Data Sequential Processing using Remote Memory

A C compiler for Large Data Sequential Processing using Remote Memory A C compiler for Large Data Sequential Processing using Remote Memory Shiyo Yoshimura, Hiroko Midorikawa Graduate School of Science and Technology, Seikei University, Tokyo, Japan E-mail:dm106231@cc.seikei.ac.jp,

More information

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth by D.K. Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline Overview of MVAPICH2-GPU

More information

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract

Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand. Abstract Performance of Mellanox ConnectX Adapter on Multi-core Architectures Using InfiniBand Abstract...1 Introduction...2 Overview of ConnectX Architecture...2 Performance Results...3 Acknowledgments...7 For

More information

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems.

Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. Cluster Networks Introduction Communication has significant impact on application performance. Interconnection networks therefore have a vital role in cluster systems. As usual, the driver is performance

More information

Assessing the Ability of Computation/Communication Overlap and Communication Progress in Modern Interconnects

Assessing the Ability of Computation/Communication Overlap and Communication Progress in Modern Interconnects Assessing the Ability of Computation/Communication Overlap and Communication Progress in Modern Interconnects Mohammad J. Rashti Ahmad Afsahi Department of Electrical and Computer Engineering Queen s University,

More information

MULTI-CONNECTION AND MULTI-CORE AWARE ALL-GATHER ON INFINIBAND CLUSTERS

MULTI-CONNECTION AND MULTI-CORE AWARE ALL-GATHER ON INFINIBAND CLUSTERS MULTI-CONNECTION AND MULTI-CORE AWARE ALL-GATHER ON INFINIBAND CLUSTERS Ying Qian Mohammad J. Rashti Ahmad Afsahi Department of Electrical and Computer Engineering, Queen s University Kingston, ON, CANADA

More information

Organizational issues (I)

Organizational issues (I) COSC 6385 Computer Architecture Introduction and Organizational Issues Fall 2009 Organizational issues (I) Classes: Monday, 1.00pm 2.30pm, SEC 202 Wednesday, 1.00pm 2.30pm, SEC 202 Evaluation 25% homework

More information

Fast-communication PC Clusters at DESY Peter Wegner DV Zeuthen

Fast-communication PC Clusters at DESY Peter Wegner DV Zeuthen Fast-communication PC Clusters at DESY Peter Wegner DV Zeuthen 1. Motivation, History, Cluster Schema 2. PC cluster fast interconnect 3. PC Cluster Hardware 4. PC Cluster Software 5. Operating 6. Future

More information

Z RESEARCH, Inc. Commoditizing Supercomputing and Superstorage. Massive Distributed Storage over InfiniBand RDMA

Z RESEARCH, Inc. Commoditizing Supercomputing and Superstorage. Massive Distributed Storage over InfiniBand RDMA Z RESEARCH, Inc. Commoditizing Supercomputing and Superstorage Massive Distributed Storage over InfiniBand RDMA What is GlusterFS? GlusterFS is a Cluster File System that aggregates multiple storage bricks

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?

Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC? Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC? Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, Mateo Valero SC 13, November 19 th 2013, Denver, CO, USA

More information

C PGAS XcalableMP(XMP) Unified Parallel

C PGAS XcalableMP(XMP) Unified Parallel PGAS XcalableMP Unified Parallel C 1 2 1, 2 1, 2, 3 C PGAS XcalableMP(XMP) Unified Parallel C(UPC) XMP UPC XMP UPC 1 Berkeley UPC GASNet 1. MPI MPI 1 Center for Computational Sciences, University of Tsukuba

More information

page migration Implementation and Evaluation of Dynamic Load Balancing Using Runtime Performance Monitoring on Omni/SCASH

page migration Implementation and Evaluation of Dynamic Load Balancing Using Runtime Performance Monitoring on Omni/SCASH Omni/SCASH 1 2 3 4 heterogeneity Omni/SCASH page migration Implementation and Evaluation of Dynamic Load Balancing Using Runtime Performance Monitoring on Omni/SCASH Yoshiaki Sakae, 1 Satoshi Matsuoka,

More information

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Jiuxing Liu Dhabaleswar K. Panda Computer and Information Science The Ohio State University Columbus, OH 43210 liuj, panda

More information

I/O Channels. RAM size. Chipsets. Cluster Computing Paul A. Farrell 9/8/2011. Memory (RAM) Dept of Computer Science Kent State University 1

I/O Channels. RAM size. Chipsets. Cluster Computing Paul A. Farrell 9/8/2011. Memory (RAM) Dept of Computer Science Kent State University 1 Memory (RAM) Standard Industry Memory Module (SIMM) RDRAM and SDRAM Access to RAM is extremely slow compared to the speed of the processor Memory busses (front side busses FSB) run at 100MHz to 800MHz

More information

PM2: High Performance Communication Middleware for Heterogeneous Network Environments

PM2: High Performance Communication Middleware for Heterogeneous Network Environments PM2: High Performance Communication Middleware for Heterogeneous Network Environments Toshiyuki Takahashi, Shinji Sumimoto, Atsushi Hori, Hiroshi Harada, and Yutaka Ishikawa Real World Computing Partnership,

More information

Analysis of the Component Architecture Overhead in Open MPI

Analysis of the Component Architecture Overhead in Open MPI Analysis of the Component Architecture Overhead in Open MPI B. Barrett 1, J.M. Squyres 1, A. Lumsdaine 1, R.L. Graham 2, G. Bosilca 3 Open Systems Laboratory, Indiana University {brbarret, jsquyres, lums}@osl.iu.edu

More information

Assessment of LS-DYNA Scalability Performance on Cray XD1

Assessment of LS-DYNA Scalability Performance on Cray XD1 5 th European LS-DYNA Users Conference Computing Technology (2) Assessment of LS-DYNA Scalability Performance on Cray Author: Ting-Ting Zhu, Cray Inc. Correspondence: Telephone: 651-65-987 Fax: 651-65-9123

More information

HYCOM Performance Benchmark and Profiling

HYCOM Performance Benchmark and Profiling HYCOM Performance Benchmark and Profiling Jan 2011 Acknowledgment: - The DoD High Performance Computing Modernization Program Note The following research was performed under the HPC Advisory Council activities

More information