HW Trends and Architectures

Size: px
Start display at page:

Download "HW Trends and Architectures"

Transcription

1 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 1/29 HW Trends and Architectures prof. Ing. Pavel Tvrdík CSc. Ing. Jiří Kašpar Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Pavel Tvrdík, Jiří Kašpar, 2011 Advanced Computer System Architectures, MI-POA, 02/2011, Lecture 1 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

2 What is Computer Architecture? What is Computer Architecture? Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 2/29

3 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 3/29 What is Computer Architecture? Computer Architecture A modern meaning of the term computer architecture covers three aspects of computer design: instruction set architecture, computer organization, and computer hardware.

4 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 4/29 What is Computer Architecture? Instruction Set Architecture (ISA) ISA defines machine interfaces like: instruction set, register sets, memory organization, and interrupt and exception handling. Instruction Set Architecture (ISA) ISA determines a hardware functionality of a given computer.

5 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 5/29 What is Computer Architecture? Computer Organization and Hardware Computer organization describes the high-level aspects of a design: the memory system, the bus structure, and Computer Organization and Hardware the design of the CPU internals (i.e. how arithmetic, logic, branching, and data transfers are implemented). Computer hardware refers to the specifics of a machine, included the detailed logic design and the packaging technology of the machine.

6 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 6/29 But, Architecture of computer systems as other engineering disciplines highly depends on the compromise between: Cost of contemporary technology. Limits of contemporary technology. Time to market. What is Computer Architecture? Computer Organization and Hardware So how it depends on evolution of technology?

7 Technology Evolution Technology Evolution Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 7/29

8 Technology Evolution Computer Performance per $1000 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 8/29

9 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 9/29 Technology Improvements Vacuum tube transistor integrated circuit VLSI Processor Transistor count: increases about 30% to 40% per year Memory Disk Technology Evolution DRAM capacity: increases about 60% per year (4x every 3 yrs.) Cost per bit: decreases about 25% per year Capacity: increases about 60% per year New technologicals principles (e.g. flash memory)

10 Technology Evolution Moore s Law Moore s Law In 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 to 24 months (i.e., grow exponentially with time). Amazingly visionary million transistor/chip barrier was crossed in the 1980 s transistors, 1 MHz clock (Intel 4004) Million transistors (Ultra Sparc III) Million transistors, 2 GHz clock (Intel Xeon) Million transistors, 3 GHz, 130nm technology, 250mm 2 die (Intel Pentium 4) Million transistors (HP PA-8500) Billion transistors (Intel Itanium Tukwila) Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 10/29

11 Technology Evolution Moore s Law Intel Processors: Transistors per Chip Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 11/29

12 Technology Evolution Intel x86 Processors Intel x86 Processors Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 12/29

13 Technology Evolution Intel x86 Processors Cost of Circuit and its Speed Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 13/29

14 Technology Evolution The CPU Power Wall The CPU Power Wall Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 14/29

15 Performance Technology Evolution The CPU Power Wall Processor-Memory Performance Gap Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 15/ Moore s Law CPU: 55% per year Processor-Memory Performance Gap: (grows 50% per year) 1 DRAM: 7% per year o 1980 No caches in microprocessors o 1995 Two-level cache on a microprocessor

16 Faster Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 16/29 Bigger Typical Single Core Memory Hierarchy Registers are at the top of the hierarchy Typical size < 1 KB Access time < 0.5 ns Level 1 Cache (8 64 KB) Access time: ns L2 Cache (512KB 8MB) Access time: 2 10 ns Main Memory (1 2 GB) Access time: ns Disk Storage (> 200 GB) Access time: milliseconds Technology Evolution The CPU Power Wall Microprocessor Registers L1 Cache L2 Cache Memory Bus Memory I/O Bus Disk, Tape, etc

17 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 17/29 Common Features of Contemporary Server CPUs Mesh/torus topology Technology Evolution The CPU Power Wall high speed cpu-cpu interconnect. Packet routing. Integrated memory controller. Multiple cores. Multiple execution units per core. Execution of multiple threads in a core. Global address space. Memory cache hierarchy: one or two level caches in a core. Next cache level (private or shared) on a chip.

18 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 18/29 Overview of contemporary CPUs We can see similar features and functionalities in design of all major architectures (in alphabetic order): AMD x64 IBM Power Intel Itanium Intel x64 Sun Niagara Technology Evolution Overview of contemporary CPUs

19 Technology Evolution Overview of contemporary CPUs IBM Processor Technology Roadmap POWER5 130 nm POWER6 65 nm POWER7 45 nm POWER8 POWER4 180 nm Dual Core Chip Multi Processing Distributed Switch Shared L2 Dynamic LPARs (32) Dual Core Enhanced Scaling SMT Distributed Switch + Core Parallelism + FP Performance + Memory bandwidth + Virtualization Dual Core High Frequencies Virtualization + Memory Subsystem + Altivec Instruction Retry Dyn Energy Mgmt SMT + Protection Keys Multi Core On-Chip edram Power Optimized Cores Mem Subsystem ++ SMT++ Reliability + VSM & VSX (AltiVec) Protection Keys+ Concept Phase Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 19/29

20 Technology Evolution Overview of contemporary CPUs Processor Designs Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 20/29 POWER5 POWER5+ POWER6 POWER7 Technology 130 nm 90 nm 60 nm 45 nm Size 389 mm mm mm mm 2 Transistors 276 M 276 M 790 M 1.2 B Cores / 6 / 8 Frequencies 1.65 GHz 1.9 GHz 3-5 GHz 3-4 GHz L2 Cache 1.9 MB Shared 1.9 MB Shared 4 MB / Core 256 KB / Core L3 Cache 36 MB 36 MB 32 MB 4 MB / Core Memory Cntrl / 1 2

21 Technology Evolution Overview of contemporary CPUs IBM POWER7 Processor Chip Local SMP Links Cores : 8 ( 4 / 6 core options ) 567mm 2 Technology: POWER7 CORE L2 Cache F A S T POWER7 CORE L2 Cache POWER7 CORE L2 Cache POWER7 CORE L2 Cache 45nm lithography, Cu, SOI, edram Transistors: 1.2 B Equivalent function of 2.7B L3 REGION edram efficiency MC0 L3 Cache and Chip Interconnect MC1 Eight processor cores L2 Cache L2 Cache L2 Cache L2 Cache 12 execution units per core 4 Way SMT per core up to 4 threads per core POWER7 CORE POWER7 CORE POWER7 CORE POWER7 CORE 32 Threads per chip L1: 32 KB I Cache / 32 KB D Cache Remote SMP & I/O Links L2: 256 KB per core L3: Shared 32MB on chip edram Dual DDR3 Memory Controllers 90 GB/s Memory bandwidth per chip Scalability up to 32 Sockets 360 GB/s SMP bandwidth/chip 20,000 coherent operations in flight Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 21/29

22 cache cache system interface Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 22/29 Intel Itanium Processor 9300 Series (Tukwila) core core core core Technology Evolution cache cache Overview of contemporary CPUs Up to 4 Cores/8 Threads 6MB private L3 cache per core Four Intel QPI Links Up to 8 sockets glueless, max. 64 with node controllers two DDR3 Memory Controllers Intel Hyper-Threading Technology First 2Billion Transistor Processor

23 Technology Evolution Overview of contemporary CPUs Intel Xeon 7500 Series Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 23/29 8cores 2 threads per core 24 MB shared L3 cache Four Intel QPI Links Up to 8 sockets glueless 4 channel DDR3 memory controller Intel Hyper-Threading Technology

24 Technology Evolution Overview of contemporary CPUs AMD Opteron 6000 Series Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 24/29 12 cores 8 threads per core 12MB shared L2 cache 4 HyperTransport links (up to 4 socket system) 4 channel DDR3 memory

25 Technology Evolution Overview of contemporary CPUs Sun Niagara 2 Server on a Chip (SoC) Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 25/29 8 cores 8 threads per core Single socket system 4MB shared L2 cache 4 dual-channel DDR3 controllers two 1G/10G Ethernet ports one 2.5Gb/s PCIe port 503 million transistors

26 Technology Evolution Overview of contemporary CPUs Sun Niagara 3 (not released) Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 26/29 16 cores 8 threads per core 6MB shared L2 cache 6 coherence links (up to 4 socket system) two DDR3 controllers four channels of DDR3 two 1G/10G Ethernet ports two 5Gb/s PCIe ports 1 billion-transistor

27 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 27/29 Technology Evolution Perspective: 100+ Cores? Perspective: 100+ Cores? Multicore: 2X / 2 years 64 cores in 8 years Manycore: 8X multicore x86 Uniprocessors No longer sold way MP laptops for sale in future

28 Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 28/29 Technology Evolution A New Era of Parallel Computing is Coming A New Era of Parallel Computing is Coming,000,000,000 TF Multi-core Era: A new paradigm in computing 1,000,000 TF 1,000 TF Massively Parallel Era 1 TF Vector Era.001 TF

29 Sources John Hennessy: Technology Trends: The Datacenter is the Computer, The Cellphone/Laptop is the Computer, October, David Patterson and John Hennessy: Computer Organization & Design: The Hardware/Software Interface Muhamed Mudawar: Introduction to Computer Architecture Mary Jane Irwin: CSE 431 Computer Architecture, Lecture 01 Sources Sudip S. Dosanjh: HPC User Forum, Norfolk, Ben Schrooten, Shawn Borchardt, Eddie Willett, Vandana Chopra: Computer Architecture & Related Topics Edward L. Bosworth: The Power Wall, January Ray Kurzweil: The Web Within Us: When Minds and Machines Become One, 2009, Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 29/29

Servers II. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc.

Servers II. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Jiří Kašpar, Pavel Tvrdík (ČVUT FIT) Servers II. MI-POA, 2011, Lecture 6 1/20 Servers II. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Department of Computer Systems Faculty of Information Technology

More information

Servers I. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc.

Servers I. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Jiří Kašpar, Pavel Tvrdík (ČVUT FIT) Servers I. MI-POA, 2011, Lecture 5 1/17 Servers I. Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Department of Computer Systems Faculty of Information Technology Czech

More information

CS Computer Architecture Spring Lecture 01: Introduction

CS Computer Architecture Spring Lecture 01: Introduction CS 35101 Computer Architecture Spring 2008 Lecture 01: Introduction Created by Shannon Steinfadt Indicates slide was adapted from :Kevin Schaffer*, Mary Jane Irwinº, and from Computer Organization and

More information

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction ECE484 VLSI Digital Circuits Fall 2017 Lecture 01: Introduction Adapted from slides provided by Mary Jane Irwin. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] CSE477 L01 Introduction.1

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

POWER9 Announcement. Martin Bušek IBM Server Solution Sales Specialist

POWER9 Announcement. Martin Bušek IBM Server Solution Sales Specialist POWER9 Announcement Martin Bušek IBM Server Solution Sales Specialist Announce Performance Launch GA 2/13 2/27 3/19 3/20 POWER9 is here!!! The new POWER9 processor ~1TB/s 1 st chip with PCIe4 4GHZ 2x Core

More information

CS758: Multicore Programming

CS758: Multicore Programming CS758: Multicore Programming Introduction Fall 2009 1 CS758 Credits Material for these slides has been contributed by Prof. Saman Amarasinghe, MIT Prof. Mark Hill, Wisconsin Prof. David Patterson, Berkeley

More information

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng IT 252 Computer Organization and Architecture Introduction Chia-Chi Teng What is computer architecture about? Computer architecture is the study of building computer systems. IT 252 is roughly split into

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D.

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. An Older Computer The figure at right is an older computer, called a PDP-11/20. It was designed in the

More information

Computer Architecture. Introduction. Lynn Choi Korea University

Computer Architecture. Introduction. Lynn Choi Korea University Computer Architecture Introduction Lynn Choi Korea University Class Information Lecturer Prof. Lynn Choi, School of Electrical Eng. Phone: 3290-3249, 공학관 411, lchoi@korea.ac.kr, TA: 윤창현 / 신동욱, 3290-3896,

More information

CMPSCI 201: Architecture and Assembly Language

CMPSCI 201: Architecture and Assembly Language CMPSCI 201: Architecture and Assembly Language Deepak Ganesan Computer Science Department 1-1 Course Administration Instructor: Deepak Ganesan (dganesan@cs.umass.edu) 250 CS Building Office Hrs: T 10:45-12:15,

More information

Introduction. Summary. Why computer architecture? Technology trends Cost issues

Introduction. Summary. Why computer architecture? Technology trends Cost issues Introduction 1 Summary Why computer architecture? Technology trends Cost issues 2 1 Computer architecture? Computer Architecture refers to the attributes of a system visible to a programmer (that have

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 15, 2007 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 18, 2005 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 18 Multicore Computers

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 18 Multicore Computers William Stallings Computer Organization and Architecture 8 th Edition Chapter 18 Multicore Computers Hardware Performance Issues Microprocessors have seen an exponential increase in performance Improved

More information

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 1: Introduction

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 1: Introduction 5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner Topic 1: Introduction These slides are mostly taken verbatim, or with minor changes, from

More information

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Performance COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Performance COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals What is Performance? How do we measure the performance of

More information

CSC501 Operating Systems Principles. OS Structure

CSC501 Operating Systems Principles. OS Structure CSC501 Operating Systems Principles OS Structure 1 Announcements q TA s office hour has changed Q Thursday 1:30pm 3:00pm, MRC-409C Q Or email: awang@ncsu.edu q From department: No audit allowed 2 Last

More information

Distributed and Cloud Computing

Distributed and Cloud Computing Jiří Kašpar, Pavel Tvrdík (ČVUT FIT) Distributed and Cloud Computing MI-POA, 2011, Lecture 12 1/28 Distributed and Cloud Computing Ing. Jiří Kašpar prof. Ing. Pavel Tvrdík CSc. Department of Computer Systems

More information

HISTORY OF MICROPROCESSORS

HISTORY OF MICROPROCESSORS HISTORY OF MICROPROCESSORS CONTENTS Introduction 4-Bit Microprocessors 8-Bit Microprocessors 16-Bit Microprocessors 1 32-Bit Microprocessors 64-Bit Microprocessors 2 INTRODUCTION Fairchild Semiconductors

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Computer Organization and Design The Hardware / Software Interface David A. Patterson and John L. Hennessy Course based on the

More information

Advanced Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Advanced Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Advanced Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Modern Microprocessors More than just GHz CPU Clock Speed SPECint2000

More information

CIT 668: System Architecture. Computer Systems Architecture

CIT 668: System Architecture. Computer Systems Architecture CIT 668: System Architecture Computer Systems Architecture 1. System Components Topics 2. Bandwidth and Latency 3. Processor 4. Memory 5. Storage 6. Network 7. Operating System 8. Performance Implications

More information

Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console

Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console Computer Architecture Unit 11: Putting it All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Milo Martin & Amir Roth at University of Pennsylvania! Computer Architecture

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Computer Architecture

Computer Architecture Computer Architecture Mehran Rezaei m.rezaei@eng.ui.ac.ir Welcome Office Hours: TBA Office: Eng-Building, Last Floor, Room 344 Tel: 0313 793 4533 Course Web Site: eng.ui.ac.ir/~m.rezaei/architecture/index.html

More information

PERFORMANCE MEASUREMENT

PERFORMANCE MEASUREMENT Administrivia CMSC 411 Computer Systems Architecture Lecture 3 Performance Measurement and Reliability Homework problems for Unit 1 posted today due next Thursday, 2/12 Start reading Appendix C Basic Pipelining

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

Alternate definition: Instruction Set Architecture (ISA) What is Computer Architecture? Computer Organization. Computer structure: Von Neumann model

Alternate definition: Instruction Set Architecture (ISA) What is Computer Architecture? Computer Organization. Computer structure: Von Neumann model What is Computer Architecture? Structure: static arrangement of the parts Organization: dynamic interaction of the parts and their control Implementation: design of specific building blocks Performance:

More information

Advanced Processor Architecture

Advanced Processor Architecture Advanced Processor Architecture Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong

More information

POWER7: IBM's Next Generation Server Processor

POWER7: IBM's Next Generation Server Processor POWER7: IBM's Next Generation Server Processor Acknowledgment: This material is based upon work supported by the Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002 Outline

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. What is Computer Architecture? Sources

This Unit: Putting It All Together. CIS 501 Computer Architecture. What is Computer Architecture? Sources This Unit: Putting It All Together CIS 501 Computer Architecture Unit 12: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital Circuits

More information

CS/EE 6810: Computer Architecture

CS/EE 6810: Computer Architecture CS/EE 6810: Computer Architecture Class format: Most lectures on YouTube *BEFORE* class Use class time for discussions, clarifications, problem-solving, assignments 1 Introduction Background: CS 3810 or

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 2 Introduction to Computers

Computer Organization & Assembly Language Programming. CSE 2312 Lecture 2 Introduction to Computers Computer Organization & Assembly Language Programming CSE 2312 Lecture 2 Introduction to Computers 1 Languages, Levels, Virtual Machines A multilevel machine 2 Contemporary Multilevel Machines A six-level

More information

CIT 668: System Architecture

CIT 668: System Architecture CIT 668: System Architecture Computer Systems Architecture I 1. System Components 2. Processor 3. Memory 4. Storage 5. Network 6. Operating System Topics Images courtesy of Majd F. Sakr or from Wikipedia

More information

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 371 Computer Organization and Design Unit 15: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

CS5222 Advanced Computer Architecture. Lecture 1 Introduction

CS5222 Advanced Computer Architecture. Lecture 1 Introduction CS5222 Advanced Computer Architecture Lecture 1 Introduction Overview Teaching Staff Introduction to Computer Architecture History Future / Trends Significance The course Content Workload Administrative

More information

Moore s Law. CS 6534: Tech Trends / Intro. Good Ol Days: Frequency Scaling. The Power Wall. Charles Reiss. 24 August 2016

Moore s Law. CS 6534: Tech Trends / Intro. Good Ol Days: Frequency Scaling. The Power Wall. Charles Reiss. 24 August 2016 Moore s Law CS 6534: Tech Trends / Intro Microprocessor Transistor Counts 1971-211 & Moore's Law 2,6,, 1,,, Six-Core Core i7 Six-Core Xeon 74 Dual-Core Itanium 2 AMD K1 Itanium 2 with 9MB cache POWER6

More information

Lecture 26: Multiprocessing continued Computer Architecture and Systems Programming ( )

Lecture 26: Multiprocessing continued Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 26: Multiprocessing continued Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Today Non-Uniform

More information

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems

Computer Architecture Review. ICS332 - Spring 2016 Operating Systems Computer Architecture Review ICS332 - Spring 2016 Operating Systems ENIAC (1946) Electronic Numerical Integrator and Calculator Stored-Program Computer (instead of Fixed-Program) Vacuum tubes, punch cards

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

CS 6534: Tech Trends / Intro

CS 6534: Tech Trends / Intro 1 CS 6534: Tech Trends / Intro Charles Reiss 24 August 2016 Moore s Law Microprocessor Transistor Counts 1971-2011 & Moore's Law 16-Core SPARC T3 2,600,000,000 1,000,000,000 Six-Core Core i7 Six-Core Xeon

More information

Reference. T1 Architecture. T1 ( Niagara ) Case Study of a Multi-core, Multithreaded

Reference. T1 Architecture. T1 ( Niagara ) Case Study of a Multi-core, Multithreaded Reference Case Study of a Multi-core, Multithreaded Processor The Sun T ( Niagara ) Computer Architecture, A Quantitative Approach, Fourth Edition, by John Hennessy and David Patterson, chapter. :/C:8

More information

SYSTEM BUS AND MOCROPROCESSORS HISTORY

SYSTEM BUS AND MOCROPROCESSORS HISTORY SYSTEM BUS AND MOCROPROCESSORS HISTORY Dr. M. Hebaishy momara@su.edu.sa http://colleges.su.edu.sa/dawadmi/fos/pages/hebaishy.aspx Digital Logic Design Ch1-1 SYSTEM BUS The CPU sends various data values,

More information

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. What is Computer Architecture? Sources

This Unit: Putting It All Together. CIS 371 Computer Organization and Design. What is Computer Architecture? Sources This Unit: Putting It All Together CIS 371 Computer Organization and Design Unit 15: Putting It All Together: Anatomy of the XBox 360 Game Console Application OS Compiler Firmware CPU I/O Memory Digital

More information

7/28/ Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc.

7/28/ Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc Prentice-Hall, Inc. Technology in Action Technology in Action Chapter 9 Behind the Scenes: A Closer Look a System Hardware Chapter Topics Computer switches Binary number system Inside the CPU Cache memory Types of RAM Computer

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor Slide 1 Microprocessor A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device That reads binary instructions from a storage device

More information

Lecture 1: CS/ECE 3810 Introduction

Lecture 1: CS/ECE 3810 Introduction Lecture 1: CS/ECE 3810 Introduction Today s topics: Why computer organization is important Logistics Modern trends 1 Why Computer Organization 2 Image credits: uber, extremetech, anandtech Why Computer

More information

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction CMPEN 411 VLSI Digital Circuits Kyusun Choi Lecture 01: Introduction CMPEN 411 Course Website link at: http://www.cse.psu.edu/~kyusun/teach/teach.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

Today. SMP architecture. SMP architecture. Lecture 26: Multiprocessing continued Computer Architecture and Systems Programming ( )

Today. SMP architecture. SMP architecture. Lecture 26: Multiprocessing continued Computer Architecture and Systems Programming ( ) Lecture 26: Multiprocessing continued Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Systems Group Department of Computer Science ETH Zürich SMP architecture

More information

CO403 Advanced Microprocessors IS860 - High Performance Computing for Security. Basavaraj Talawar,

CO403 Advanced Microprocessors IS860 - High Performance Computing for Security. Basavaraj Talawar, CO403 Advanced Microprocessors IS860 - High Performance Computing for Security Basavaraj Talawar, basavaraj@nitk.edu.in Course Syllabus Technology Trends: Transistor Theory. Moore's Law. Delay, Power,

More information

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing

More information

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System?

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System? Chapter 2: Computer-System Structures Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure of a computer system and understanding

More information

Uniprocessor Computer Architecture Example: Cray T3E

Uniprocessor Computer Architecture Example: Cray T3E Chapter 2: Computer-System Structures MP Example: Intel Pentium Pro Quad Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure

More information

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996

Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 Lecture 1: Course Introduction and Overview Prof. Randy H. Katz Computer Science 252 Spring 1996 RHK.S96 1 Computer Architecture Is the attributes of a [computing] system as seen by the programmer, i.e.,

More information

Computer Architecture

Computer Architecture Lecture 1: Introduction Iakovos Mavroidis Computer Science Department University of Crete 1 Outline Logistics CPU Evolution (what is?) 2 Course Administration Instructors Iakovos Mavroidis (jacob@ics.forth.gr)

More information

Intel Enterprise Processors Technology

Intel Enterprise Processors Technology Enterprise Processors Technology Kosuke Hirano Enterprise Platforms Group March 20, 2002 1 Agenda Architecture in Enterprise Xeon Processor MP Next Generation Itanium Processor Interconnect Technology

More information

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

Advanced d Processor Architecture. Computer Systems Laboratory Sungkyunkwan University

Advanced d Processor Architecture. Computer Systems Laboratory Sungkyunkwan University Advanced d Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Modern Microprocessors More than just GHz CPU Clock Speed SPECint2000

More information

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers

Agenda. System Performance Scaling of IBM POWER6 TM Based Servers System Performance Scaling of IBM POWER6 TM Based Servers Jeff Stuecheli Hot Chips 19 August 2007 Agenda Historical background POWER6 TM chip components Interconnect topology Cache Coherence strategies

More information

POWER7: IBM's Next Generation Server Processor

POWER7: IBM's Next Generation Server Processor Hot Chips 21 POWER7: IBM's Next Generation Server Processor Ronald Kalla Balaram Sinharoy POWER7 Chief Engineer POWER7 Chief Core Architect Acknowledgment: This material is based upon work supported by

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

Module 18: "TLP on Chip: HT/SMT and CMP" Lecture 39: "Simultaneous Multithreading and Chip-multiprocessing" TLP on Chip: HT/SMT and CMP SMT

Module 18: TLP on Chip: HT/SMT and CMP Lecture 39: Simultaneous Multithreading and Chip-multiprocessing TLP on Chip: HT/SMT and CMP SMT TLP on Chip: HT/SMT and CMP SMT Multi-threading Problems of SMT CMP Why CMP? Moore s law Power consumption? Clustered arch. ABCs of CMP Shared cache design Hierarchical MP file:///e /parallel_com_arch/lecture39/39_1.htm[6/13/2012

More information

Part 1 of 3 -Understand the hardware components of computer systems

Part 1 of 3 -Understand the hardware components of computer systems Part 1 of 3 -Understand the hardware components of computer systems The main circuit board, the motherboard provides the base to which a number of other hardware devices are connected. Devices that connect

More information

Computer Architecture s Changing Definition

Computer Architecture s Changing Definition Computer Architecture s Changing Definition 1950s Computer Architecture Computer Arithmetic 1960s Operating system support, especially memory management 1970s to mid 1980s Computer Architecture Instruction

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Boris Grot and Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh General Information Instructors: Boris

More information

Chapter 1: Introduction to the Microprocessor and Computer 1 1 A HISTORICAL BACKGROUND

Chapter 1: Introduction to the Microprocessor and Computer 1 1 A HISTORICAL BACKGROUND Chapter 1: Introduction to the Microprocessor and Computer 1 1 A HISTORICAL BACKGROUND The Microprocessor Called the CPU (central processing unit). The controlling element in a computer system. Controls

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

EEM 486: Computer Architecture

EEM 486: Computer Architecture EEM 486: Computer Architecture Lecture 1 Course Introduction and the Five Components of a Computer EEM 486 Course Information Instructor: Atakan Doğan (atdogan@anadolu.edu.tr) Office Hours: Anytime Materials:

More information

HPC Technology Trends

HPC Technology Trends HPC Technology Trends High Performance Embedded Computing Conference September 18, 2007 David S Scott, Ph.D. Petascale Product Line Architect Digital Enterprise Group Risk Factors Today s s presentations

More information

Power 7. Dan Christiani Kyle Wieschowski

Power 7. Dan Christiani Kyle Wieschowski Power 7 Dan Christiani Kyle Wieschowski History 1980-2000 1980 RISC Prototype 1990 POWER1 (Performance Optimization With Enhanced RISC) (1 um) 1993 IBM launches 66MHz POWER2 (.35 um) 1997 POWER2 Super

More information

Philippe Thierry Sr Staff Engineer Intel Corp.

Philippe Thierry Sr Staff Engineer Intel Corp. HPC@Intel Philippe Thierry Sr Staff Engineer Intel Corp. IBM, April 8, 2009 1 Agenda CPU update: roadmap, micro-μ and performance Solid State Disk Impact What s next Q & A Tick Tock Model Perenity market

More information

ADVANCED COMPUTER ARCHITECTURES

ADVANCED COMPUTER ARCHITECTURES 088949 ADVANCED COMPUTER ARCHITECTURES AA 2014/2015 Second Semester http://home.deib.polimi.it/silvano/aca-milano.htm Prof. Cristina Silvano email: cristina.silvano@polimi.it Dipartimento di Elettronica,

More information

CPE/EE 421 Microcomputers

CPE/EE 421 Microcomputers CPE/EE 421 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Notes S01 *Material used is in part developed by Dr. D. Raskovic and Dr. E. Jovanov CPE/EE 421/521 Microcomputers 1 CPE/EE 421 Microcomputers

More information

CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology. Moore s Law: 2X transistors / year

CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology. Moore s Law: 2X transistors / year CMSC 411 Computer Systems Architecture Lecture 2 Trends in Technology Moore s Law: 2X transistors / year Cramming More Components onto Integrated Circuits Gordon Moore, Electronics, 1965 # on transistors

More information

Computer Architecture Computer Architecture. Computer Architecture. What is Computer Architecture? Grading

Computer Architecture Computer Architecture. Computer Architecture. What is Computer Architecture? Grading 178 322 Computer Architecture Lecturer: Watis Leelapatra Office: 4301D Email: watis@kku.ac.th Course Webpage: http://gear.kku.ac.th/~watis/courses/178322/178322.html Computer Architecture Grading Midterm

More information

Homework. Reading. Machine Projects. Labs. Exam Next Class. None (Finish all previous reading assignments) Continue with MP5

Homework. Reading. Machine Projects. Labs. Exam Next Class. None (Finish all previous reading assignments) Continue with MP5 Homework Reading None (Finish all previous reading assignments) Machine Projects Continue with MP5 Labs Finish lab reports by deadline posted in lab Exam Next Class Open book / open notes 1 Hierarchy for

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 15 1.5 Historical Development 16 1.5.1 Generation

More information

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010

Introduction to Multicore architecture. Tao Zhang Oct. 21, 2010 Introduction to Multicore architecture Tao Zhang Oct. 21, 2010 Overview Part1: General multicore architecture Part2: GPU architecture Part1: General Multicore architecture Uniprocessor Performance (ECint)

More information

Computer Architecture

Computer Architecture 188 322 Computer Architecture Lecturer: Watis Leelapatra Office: 4301D Email: watis@kku.ac.th Course Webpage http://gear.kku.ac.th/~watis/courses/188322/188322.html 188 322 Computer Architecture Grading

More information

CMPEN 411. Spring Lecture 01: Introduction

CMPEN 411. Spring Lecture 01: Introduction Kyusun Choi CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 01: Introduction Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/09s/index.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

COSC 6385 Computer Architecture - Thread Level Parallelism (I)

COSC 6385 Computer Architecture - Thread Level Parallelism (I) COSC 6385 Computer Architecture - Thread Level Parallelism (I) Edgar Gabriel Spring 2014 Long-term trend on the number of transistor per integrated circuit Number of transistors double every ~18 month

More information

Alex Milenkovich 1. CPE/EE 421 Microcomputers. CPE/EE 421 Microcomputers U A H U A H U A H. Instructor: Dr Aleksandar Milenkovic Lecture Notes S01

Alex Milenkovich 1. CPE/EE 421 Microcomputers. CPE/EE 421 Microcomputers U A H U A H U A H. Instructor: Dr Aleksandar Milenkovic Lecture Notes S01 CPE/EE 42 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Notes S0 *Material used is in part developed by Dr. D. Raskovic and Dr. E. Jovanov CPE/EE 42/52 Microcomputers CPE/EE 42 Microcomputers

More information

Advanced Computer Architecture (CS620)

Advanced Computer Architecture (CS620) Advanced Computer Architecture (CS620) Background: Good understanding of computer organization (eg.cs220), basic computer architecture (eg.cs221) and knowledge of probability, statistics and modeling (eg.cs433).

More information

Exercise 1 Due 02.November 2010, 12:15pm

Exercise 1 Due 02.November 2010, 12:15pm Computer Architecture Exercise 1 Due 02.November 2010, 12:15pm Part 1. Case Study - Chip Fabrication Cost There are many factors involved in the price of a computer chip. New, smaller technologies give

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

CS Computer Architecture

CS Computer Architecture CS 35101 Computer Architecture Section 600 Dr. Angela Guercio Fall 2010 Structured Computer Organization A computer s native language, machine language, is difficult for human s to use to program the computer

More information

Systems Design and Programming. Instructor: Chintan Patel

Systems Design and Programming. Instructor: Chintan Patel Systems Design and Programming Instructor: Chintan Patel Text: Barry B. Brey, 'The Intel Microprocessors, 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor, Pentium II, Pentium

More information

Computer System architectures

Computer System architectures CSC 203 1.5 Computer System Architecture Budditha Hettige Department of Statistics and Computer Science University of Sri Jayewardenepura 1 Historical Developments 2 Computer Generation 1. Zeroth generation-

More information

ECE 475/CS 416 Computer Architecture - Introduction. Today s Agenda. Edward Suh Computer Systems Laboratory

ECE 475/CS 416 Computer Architecture - Introduction. Today s Agenda. Edward Suh Computer Systems Laboratory ECE 475/CS 416 Computer Architecture - Introduction Edward Suh Computer Systems Laboratory suh@csl.cornell.edu Today s Agenda Question 1: What is this course about? What will I learn from it? Question

More information

What is this class all about?

What is this class all about? EE141-Fall 2012 Digital Integrated Circuits Instructor: Elad Alon TuTh 11-12:30pm 247 Cory 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe models

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Boris Grot and Dr. Vijay Nagarajan!! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Chapter 2. OS Overview

Chapter 2. OS Overview Operating System Chapter 2. OS Overview Lynn Choi School of Electrical Engineering Class Information Lecturer Prof. Lynn Choi, School of Electrical Eng. Phone: 3290-3249, Kong-Hak-Kwan 411, lchoi@korea.ac.kr,

More information

ECE 588/688 Advanced Computer Architecture II

ECE 588/688 Advanced Computer Architecture II ECE 588/688 Advanced Computer Architecture II Instructor: Alaa Alameldeen alaa@ece.pdx.edu Fall 2009 Portland State University Copyright by Alaa Alameldeen and Haitham Akkary 2009 1 When and Where? When:

More information