Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism

Size: px
Start display at page:

Download "Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism"

Transcription

1 Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism by Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, ACM Transactions on Computer Systems, 10(1):53--79, February Presented By John Chee For Jonathon Walpole's Concepts of Operating Systems (CS533) at Portland State University

2 The problem Kernel-level threads are the correct abstraction But the implementation is expensive: Entering and leaving the kernel on thread operations User-level threads are less expensive But they are oblivious to kernel-level information: Blocking a CPU on I/O or page faults

3 User-level threads Lightweight counterpart of kernel threads Implemented in FastThreads Require no kernel intervention Maps work from user-level threads to kernel-level threads with minimal information sharing FastThreads' thread operations cost one order of magnitude more than procedure calls Since they are implemented in a library they can be customized to the varying needs of developers Without need to modify the kernel

4 User-level threads But kernel interfaces prevent efficient implementations. The virtual processor model can be insufficient in the presence of 'Real world' OS activity such as: Multiprogramming I/O Page faults If you develop with kernel threads, the OS handles these situations intelligently. But they are too expensive.

5 The solution Provide the user-level with a virtual multiprocessor The kernel will communicate information to the application so that we can better handle I/O and page faults. The user-level thread system will provide a similar interface to a kernel-level interface and schedule threads intelligently. The scheduler can now be modified without having to modify the kernel.

6 Scheduler activations (SA) The medium through which the kernel communicates to the user-level, more or less, a kernel thread. Holds an execution context for the user-level like a kernel thread Can be suspended just like a thread Notifies the user-level of events

7 Communicating kernel information to the user-level When the kernel would need to make a scheduling decision, upcalls are used instead: Add processor Processor preempted SA blocked SA unblocked See Table II

8 Communicating user-level information to the kernel When the user-level system starts, enters a parallel section, or leaves a parallel section Add n more processors This processor is idle See Table III

9 Example (1), (2) each get a processor. (1) blocks on I/O then userlevel scheduler takes (3) off the ready and runs it. (1)'s I/O completes, (2)'s processor gets used to inform user-level and add (1) and (2) to the ready list. (1) is taken of the ready list and run.

10 A note on critical sections If a thread is executing in a critical section and it is preempted it continues executing until it's done executing the critical section. This is implemented with minimal overhead by copying critical section code and bracketing it with yields back to preemptor. Deadlock is avoided, but long critical sections are still a problem.

11 Implementation Where the kernel performed thread operations, upcalls (kernel to user-level) were used instead. Added processor affinity and maintained object code compatibility 1200 lines of code The user-level had to process upcalls and to provide the kernel with information about it's processor needs. Few hundred lines of code

12 Implementation notes A new processor allocation policy was used which evenly allocated processors to all the highest priority applications. Scheduler activations are cached and batched rather than being eagerly destroyed or processed one by one.

13 Performance Preserved order of magnitude decrease from processes to kernel threads to user-level threads. Perilously parallel application: N-Body Barnes- Hut algorithm Recursively dividing the problem creating trees, calculating the centroids, approximating the force.

14 Performance Almost linear speedup No I/O As good as original FastThreads

15 Performance With I/O As good as kernel threads

16 Performance Speedup in the presence of multiprogramming with 2 applications running and 6 processors: Kernel threads: 1.29 Original user-level threads: 1.26 User-level threads with scheduler activations: 2.45

17 Summary Scheduler activations allow us to achieve the combined wins of lightweight user-level threads and the intelligent handling of I/O and multiprogramming of kernel-level threads. With 2,4,8, and 16 core systems, parallel applications will be a standard development practice which cannot be bogged down by the inefficiencies of kernel-level threads or insufficient kernel interfaces.

18 Thanks Graphics copied from previous class presentation by Shiyan Tao.

Scheduler Activations. Including some slides modified from Raymond Namyst, U. Bordeaux

Scheduler Activations. Including some slides modified from Raymond Namyst, U. Bordeaux Scheduler Activations Including some slides modified from Raymond Namyst, U. Bordeaux Learning Outcomes An understanding of hybrid approaches to thread implementation A high-level understanding of scheduler

More information

Scheduler Activations. CS 5204 Operating Systems 1

Scheduler Activations. CS 5204 Operating Systems 1 Scheduler Activations CS 5204 Operating Systems 1 Concurrent Processing How can concurrent processing activity be structured on a single processor? How can application-level information and system-level

More information

Lightweight Remote Procedure Call. Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy Presented by Alana Sweat

Lightweight Remote Procedure Call. Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy Presented by Alana Sweat Lightweight Remote Procedure Call Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy Presented by Alana Sweat Outline Introduction RPC refresher Monolithic OS vs. micro-kernel

More information

Lightweight Remote Procedure Call

Lightweight Remote Procedure Call Lightweight Remote Procedure Call Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, Henry M. Levy ACM Transactions Vol. 8, No. 1, February 1990, pp. 37-55 presented by Ian Dees for PSU CS533, Jonathan

More information

What s in a process?

What s in a process? CSE 451: Operating Systems Winter 2015 Module 5 Threads Mark Zbikowski mzbik@cs.washington.edu Allen Center 476 2013 Gribble, Lazowska, Levy, Zahorjan What s in a process? A process consists of (at least):

More information

Operating System. Chapter 4. Threads. Lynn Choi School of Electrical Engineering

Operating System. Chapter 4. Threads. Lynn Choi School of Electrical Engineering Operating System Chapter 4. Threads Lynn Choi School of Electrical Engineering Process Characteristics Resource ownership Includes a virtual address space (process image) Ownership of resources including

More information

Threads. Raju Pandey Department of Computer Sciences University of California, Davis Spring 2011

Threads. Raju Pandey Department of Computer Sciences University of California, Davis Spring 2011 Threads Raju Pandey Department of Computer Sciences University of California, Davis Spring 2011 Threads Effectiveness of parallel computing depends on the performance of the primitives used to express

More information

Processes and Threads

Processes and Threads OPERATING SYSTEMS CS3502 Spring 2018 Processes and Threads (Chapter 2) Processes Two important types of dynamic entities in a computer system are processes and threads. Dynamic entities only exist at execution

More information

Scheduler Activations. Robert Grimm New York University

Scheduler Activations. Robert Grimm New York University Scheduler Activations Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? Threads Provide a "natural" abstraction

More information

Process Description and Control

Process Description and Control Process Description and Control 1 Process:the concept Process = a program in execution Example processes: OS kernel OS shell Program executing after compilation www-browser Process management by OS : Allocate

More information

Scheduler Activations: Effective Kernel Support. for the User-Level Management of Parallelism

Scheduler Activations: Effective Kernel Support. for the User-Level Management of Parallelism Scheduler Activations: Effective Kernel Support for the User-Level Management of Parallelism Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy Department of Computer Science and

More information

10/10/ Gribble, Lazowska, Levy, Zahorjan 2. 10/10/ Gribble, Lazowska, Levy, Zahorjan 4

10/10/ Gribble, Lazowska, Levy, Zahorjan 2. 10/10/ Gribble, Lazowska, Levy, Zahorjan 4 What s in a process? CSE 451: Operating Systems Autumn 2010 Module 5 Threads Ed Lazowska lazowska@cs.washington.edu Allen Center 570 A process consists of (at least): An, containing the code (instructions)

More information

What s in a traditional process? Concurrency/Parallelism. What s needed? CSE 451: Operating Systems Autumn 2012

What s in a traditional process? Concurrency/Parallelism. What s needed? CSE 451: Operating Systems Autumn 2012 What s in a traditional process? CSE 451: Operating Systems Autumn 2012 Ed Lazowska lazowska @cs.washi ngton.edu Allen Center 570 A process consists of (at least): An, containing the code (instructions)

More information

Notes. CS 537 Lecture 5 Threads and Cooperation. Questions answered in this lecture: What s in a process?

Notes. CS 537 Lecture 5 Threads and Cooperation. Questions answered in this lecture: What s in a process? Notes CS 537 Lecture 5 Threads and Cooperation Michael Swift OS news MS lost antitrust in EU: harder to integrate features Quiz tomorrow on material from chapters 2 and 3 in the book Hardware support for

More information

Comparing Gang Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT)

Comparing Gang Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT) Comparing Scheduling with Dynamic Space Sharing on Symmetric Multiprocessors Using Automatic Self-Allocating Threads (ASAT) Abstract Charles Severance Michigan State University East Lansing, Michigan,

More information

Figure 6.1 System layers

Figure 6.1 System layers Figure 6.1 System layers Applications, services Middleware OS: kernel, libraries & servers OS1 Processes, threads, communication,... OS2 Processes, threads, communication,... Platform Computer & network

More information

Announcements. Reading. Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) CMSC 412 S14 (lect 5)

Announcements. Reading. Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) CMSC 412 S14 (lect 5) Announcements Reading Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) 1 Relationship between Kernel mod and User Mode User Process Kernel System Calls User Process

More information

Lecture 5: Process Description and Control Multithreading Basics in Interprocess communication Introduction to multiprocessors

Lecture 5: Process Description and Control Multithreading Basics in Interprocess communication Introduction to multiprocessors Lecture 5: Process Description and Control Multithreading Basics in Interprocess communication Introduction to multiprocessors 1 Process:the concept Process = a program in execution Example processes:

More information

Applications, services. Middleware. OS2 Processes, threads, Processes, threads, communication,... communication,... Platform

Applications, services. Middleware. OS2 Processes, threads, Processes, threads, communication,... communication,... Platform Operating System Support Introduction Distributed systems act as resource managers for the underlying hardware, allowing users access to memory, storage, CPUs, peripheral devices, and the network Much

More information

OPERATING SYSTEMS. Systems with Multi-programming. CS 3502 Spring Chapter 4

OPERATING SYSTEMS. Systems with Multi-programming. CS 3502 Spring Chapter 4 OPERATING SYSTEMS CS 3502 Spring 2018 Systems with Multi-programming Chapter 4 Multiprogramming - Review An operating system can support several processes in memory. While one process receives service

More information

Process Description and Control. Chapter 3

Process Description and Control. Chapter 3 Process Description and Control 1 Chapter 3 2 Processes Working definition: An instance of a program Processes are among the most important abstractions in an OS all the running software on a computer,

More information

Operating System Design Issues. I/O Management

Operating System Design Issues. I/O Management I/O Management Chapter 5 Operating System Design Issues Efficiency Most I/O devices slow compared to main memory (and the CPU) Use of multiprogramming allows for some processes to be waiting on I/O while

More information

Advanced Operating Systems (CS 202) Scheduling (2)

Advanced Operating Systems (CS 202) Scheduling (2) Advanced Operating Systems (CS 202) Scheduling (2) Lottery Scheduling 2 2 2 Problems with Traditional schedulers Priority systems are ad hoc: highest priority always wins Try to support fair share by adjusting

More information

Work Stealing. in Multiprogrammed Environments. Brice Dobry Dept. of Computer & Information Sciences University of Delaware

Work Stealing. in Multiprogrammed Environments. Brice Dobry Dept. of Computer & Information Sciences University of Delaware Work Stealing in Multiprogrammed Environments Brice Dobry Dept. of Computer & Information Sciences University of Delaware Outline Motivate the issue Describe work-stealing in general Explain the new algorithm

More information

CS533 Concepts of Operating Systems. Jonathan Walpole

CS533 Concepts of Operating Systems. Jonathan Walpole CS533 Concepts of Operating Systems Jonathan Walpole Lightweight Remote Procedure Call (LRPC) Overview Observations Performance analysis of RPC Lightweight RPC for local communication Performance Remote

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Threads. Computer Systems. 5/12/2009 cse threads Perkins, DW Johnson and University of Washington 1

Threads. Computer Systems.   5/12/2009 cse threads Perkins, DW Johnson and University of Washington 1 Threads CSE 410, Spring 2009 Computer Systems http://www.cs.washington.edu/410 5/12/2009 cse410-20-threads 2006-09 Perkins, DW Johnson and University of Washington 1 Reading and References Reading» Read

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 9 Processor Management, part 1 Textbook: Operating Systems by William Stallings 1 1. Basic Concepts Processor is also called CPU (Central Processing Unit). Process an executable

More information

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4

Motivation. Threads. Multithreaded Server Architecture. Thread of execution. Chapter 4 Motivation Threads Chapter 4 Most modern applications are multithreaded Threads run within application Multiple tasks with the application can be implemented by separate Update display Fetch data Spell

More information

Operating System Support

Operating System Support Teaching material based on Distributed Systems: Concepts and Design, Edition 3, Addison-Wesley 2001. Copyright George Coulouris, Jean Dollimore, Tim Kindberg 2001 email: authors@cdk2.net This material

More information

Process Scheduling Queues

Process Scheduling Queues Process Control Process Scheduling Queues Job queue set of all processes in the system. Ready queue set of all processes residing in main memory, ready and waiting to execute. Device queues set of processes

More information

Multiprocessor and Real- Time Scheduling. Chapter 10

Multiprocessor and Real- Time Scheduling. Chapter 10 Multiprocessor and Real- Time Scheduling Chapter 10 Classifications of Multiprocessor Loosely coupled multiprocessor each processor has its own memory and I/O channels Functionally specialized processors

More information

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process

Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation. What s in a process? Organizing a Process Questions answered in this lecture: CS 537 Lecture 19 Threads and Cooperation Why are threads useful? How does one use POSIX pthreads? Michael Swift 1 2 What s in a process? Organizing a Process A process

More information

OS Assignment II. The process of executing multiple threads simultaneously is known as multithreading.

OS Assignment II. The process of executing multiple threads simultaneously is known as multithreading. OS Assignment II 1. A. Provide two programming examples of multithreading giving improved performance over a single-threaded solution. The process of executing multiple threads simultaneously is known

More information

Technical Report. Computer Science Department. Operating Systems IMMD IV. Friedrich-Alexander-University Erlangen-Nürnberg, Germany

Technical Report. Computer Science Department. Operating Systems IMMD IV. Friedrich-Alexander-University Erlangen-Nürnberg, Germany User-Level Scheduling with Kernel Threads Thomas Riechmann, Jürgen Kleinöder June 1996 TR-I4-96-05 Technical Report Computer Science Department Operating Systems IMMD IV Friedrich-Alexander-University

More information

Implementation of Processes

Implementation of Processes Implementation of Processes A processes information is stored in a process control block (PCB) The PCBs form a process table Sometimes the kernel stack for each process is in the PCB Sometimes some process

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 10 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Chapter 6: CPU Scheduling Basic Concepts

More information

Overview. Thread Packages. Threads The Thread Model (1) The Thread Model (2) The Thread Model (3) Thread Usage (1)

Overview. Thread Packages. Threads The Thread Model (1) The Thread Model (2) The Thread Model (3) Thread Usage (1) Overview Thread Packages Thomas Plagemann With slides from O. Anshus, C. Griwodz, M. van Steen, and A. Tanenbaum What are threads? Why threads? Example: Da CaPo 1.0 Thread implementation User level level

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 System I/O System I/O (Chap 13) Central

More information

NETW3005 Operating Systems Lecture 1: Introduction and history of O/Ss

NETW3005 Operating Systems Lecture 1: Introduction and history of O/Ss NETW3005 Operating Systems Lecture 1: Introduction and history of O/Ss General The Computer Architecture section SFDV2005 is now complete, and today we begin on NETW3005 Operating Systems. Lecturers: Give

More information

Lecture Topics. Announcements. Today: Advanced Scheduling (Stallings, chapter ) Next: Deadlock (Stallings, chapter

Lecture Topics. Announcements. Today: Advanced Scheduling (Stallings, chapter ) Next: Deadlock (Stallings, chapter Lecture Topics Today: Advanced Scheduling (Stallings, chapter 10.1-10.4) Next: Deadlock (Stallings, chapter 6.1-6.6) 1 Announcements Exam #2 returned today Self-Study Exercise #10 Project #8 (due 11/16)

More information

Device-Functionality Progression

Device-Functionality Progression Chapter 12: I/O Systems I/O Hardware I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations Incredible variety of I/O devices Common concepts Port

More information

Chapter 12: I/O Systems. I/O Hardware

Chapter 12: I/O Systems. I/O Hardware Chapter 12: I/O Systems I/O Hardware Application I/O Interface Kernel I/O Subsystem Transforming I/O Requests to Hardware Operations I/O Hardware Incredible variety of I/O devices Common concepts Port

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Outline o Process concept o Process creation o Process states and scheduling o Preemption and context switch o Inter-process communication

More information

SNS COLLEGE OF ENGINEERING

SNS COLLEGE OF ENGINEERING SNS COLLEGE OF ENGINEERING Coimbatore. Department of Computer Science and Engineering Question Bank- Even Semester 2015-2016 CS6401 OPERATING SYSTEMS Unit-I OPERATING SYSTEMS OVERVIEW 1. Differentiate

More information

Kernel Support for Paravirtualized Guest OS

Kernel Support for Paravirtualized Guest OS Kernel Support for Paravirtualized Guest OS Shibin(Jack) Xu University of Washington shibix@cs.washington.edu ABSTRACT Flexibility at the Operating System level is one of the most important factors for

More information

CS 333 Introduction to Operating Systems. Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University Virtual addresses Virtual memory addresses (what the process uses) Page

More information

Threads. CS3026 Operating Systems Lecture 06

Threads. CS3026 Operating Systems Lecture 06 Threads CS3026 Operating Systems Lecture 06 Multithreading Multithreading is the ability of an operating system to support multiple threads of execution within a single process Processes have at least

More information

Module 20: Multi-core Computing Multi-processor Scheduling Lecture 39: Multi-processor Scheduling. The Lecture Contains: User Control.

Module 20: Multi-core Computing Multi-processor Scheduling Lecture 39: Multi-processor Scheduling. The Lecture Contains: User Control. The Lecture Contains: User Control Reliability Requirements of RT Multi-processor Scheduling Introduction Issues With Multi-processor Computations Granularity Fine Grain Parallelism Design Issues A Possible

More information

Threads. CSE 410, Spring 2004 Computer Systems.

Threads. CSE 410, Spring 2004 Computer Systems. Threads CSE 410, Spring 2004 Computer Systems http://www.cs.washington.edu/education/courses/410/04sp/ 12-May-2004 cse410-20-threads 2004 University of Washington 1 Reading Reading and References» Chapter

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information

Processes and Non-Preemptive Scheduling. Otto J. Anshus

Processes and Non-Preemptive Scheduling. Otto J. Anshus Processes and Non-Preemptive Scheduling Otto J. Anshus Threads Processes Processes Kernel An aside on concurrency Timing and sequence of events are key concurrency issues We will study classical OS concurrency

More information

Threads, SMP, and Microkernels. Chapter 4

Threads, SMP, and Microkernels. Chapter 4 Threads, SMP, and Microkernels Chapter 4 Processes Resource ownership - process is allocated a virtual address space to hold the process image Dispatched - process is an execution path through one or more

More information

LECTURE 3:CPU SCHEDULING

LECTURE 3:CPU SCHEDULING LECTURE 3:CPU SCHEDULING 1 Outline Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time CPU Scheduling Operating Systems Examples Algorithm Evaluation 2 Objectives

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

Announcements. Program #1. Reading. Due 2/15 at 5:00 pm. Finish scheduling Process Synchronization: Chapter 6 (8 th Ed) or Chapter 7 (6 th Ed)

Announcements. Program #1. Reading. Due 2/15 at 5:00 pm. Finish scheduling Process Synchronization: Chapter 6 (8 th Ed) or Chapter 7 (6 th Ed) Announcements Program #1 Due 2/15 at 5:00 pm Reading Finish scheduling Process Synchronization: Chapter 6 (8 th Ed) or Chapter 7 (6 th Ed) 1 Scheduling criteria Per processor, or system oriented CPU utilization

More information

Announcements/Reminders

Announcements/Reminders Announcements/Reminders Class news group: rcfnews.cs.umass.edu::cmpsci.edlab.cs377 CMPSCI 377: Operating Systems Lecture 5, Page 1 Last Class: Processes A process is the unit of execution. Processes are

More information

Operating System Support

Operating System Support Operating System Support Objectives and Functions Convenience Making the computer easier to use Efficiency Allowing better use of computer resources Layers and Views of a Computer System Operating System

More information

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7

THE PROCESS ABSTRACTION. CS124 Operating Systems Winter , Lecture 7 THE PROCESS ABSTRACTION CS124 Operating Systems Winter 2015-2016, Lecture 7 2 The Process Abstraction Most modern OSes include the notion of a process Term is short for a sequential process Frequently

More information

CPU Scheduling: Objectives

CPU Scheduling: Objectives CPU Scheduling: Objectives CPU scheduling, the basis for multiprogrammed operating systems CPU-scheduling algorithms Evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

More information

References. T. LeBlanc, Memory management for large-scale numa multiprocessors, Department of Computer Science: Technical report*311

References. T. LeBlanc, Memory management for large-scale numa multiprocessors, Department of Computer Science: Technical report*311 References [Ande 89] [Ande 92] [Ghos 93] [LeBl 89] [Rüde92] T. Anderson, E. Lazowska, H. Levy, The Performance Implication of Thread Management Alternatives for Shared-Memory Multiprocessors, ACM Trans.

More information

Fine-Grain and Multiprogramming-Conscious Nanothreading with the Solaris Operating System

Fine-Grain and Multiprogramming-Conscious Nanothreading with the Solaris Operating System Fine-Grain and Multiprogramming-Conscious Nanothreading with the Solaris Operating System Dimitrios S. Nikolopoulos Eleftherios D. Polychronopoulos Theodore S. Papatheodorou High Performance Information

More information

Computer Systems II. First Two Major Computer System Evolution Steps

Computer Systems II. First Two Major Computer System Evolution Steps Computer Systems II Introduction to Processes 1 First Two Major Computer System Evolution Steps Led to the idea of multiprogramming (multiple concurrent processes) 2 1 At First (1945 1955) In the beginning,

More information

QUESTION BANK UNIT I

QUESTION BANK UNIT I QUESTION BANK Subject Name: Operating Systems UNIT I 1) Differentiate between tightly coupled systems and loosely coupled systems. 2) Define OS 3) What are the differences between Batch OS and Multiprogramming?

More information

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009 CS211: Programming and Operating Systems Lecture 17: Threads and Scheduling Thursday, 05 Nov 2009 CS211 Lecture 17: Threads and Scheduling 1/22 Today 1 Introduction to threads Advantages of threads 2 User

More information

Arachne. Core Aware Thread Management Henry Qin Jacqueline Speiser John Ousterhout

Arachne. Core Aware Thread Management Henry Qin Jacqueline Speiser John Ousterhout Arachne Core Aware Thread Management Henry Qin Jacqueline Speiser John Ousterhout Granular Computing Platform Zaharia Winstein Levis Applications Kozyrakis Cluster Scheduling Ousterhout Low-Latency RPC

More information

COSC243 Part 2: Operating Systems

COSC243 Part 2: Operating Systems COSC243 Part 2: Operating Systems Lecture 14: Introduction, and history of operating systems Zhiyi Huang Dept. of Computer Science, University of Otago Zhiyi Huang (Otago) COSC243 Lecture 14 1 / 27 General

More information

Informing Algorithms for Efficient Scheduling of Synchronizing Threads on Multiprogrammed SMPs

Informing Algorithms for Efficient Scheduling of Synchronizing Threads on Multiprogrammed SMPs Informing Algorithms for Efficient Scheduling of Synchronizing Threads on Multiprogrammed SMPs Antonopoulos, C. D., Nikolopoulos, D., & Papatheodorou, T. S. (2001). Informing Algorithms for Efficient Scheduling

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 What is an Operating System? What is

More information

CSE325 Principles of Operating Systems. Processes. David P. Duggan February 1, 2011

CSE325 Principles of Operating Systems. Processes. David P. Duggan February 1, 2011 CSE325 Principles of Operating Systems Processes David P. Duggan dduggan@sandia.gov February 1, 2011 Today s Goal: 1. Process Concept 2. Process Manager Responsibilities 3. Process Scheduling 4. Operations

More information

Course Syllabus. Operating Systems

Course Syllabus. Operating Systems Course Syllabus. Introduction - History; Views; Concepts; Structure 2. Process Management - Processes; State + Resources; Threads; Unix implementation of Processes 3. Scheduling Paradigms; Unix; Modeling

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [MEMORY MANAGEMENT] Matrices in Banker s algorithm Max, need, allocated Shrideep Pallickara Computer Science Colorado

More information

Native POSIX Thread Library (NPTL) CSE 506 Don Porter

Native POSIX Thread Library (NPTL) CSE 506 Don Porter Native POSIX Thread Library (NPTL) CSE 506 Don Porter Logical Diagram Binary Memory Threads Formats Allocators Today s Lecture Scheduling System Calls threads RCU File System Networking Sync User Kernel

More information

CSCE Operating Systems Scheduling. Qiang Zeng, Ph.D. Fall 2018

CSCE Operating Systems Scheduling. Qiang Zeng, Ph.D. Fall 2018 CSCE 311 - Operating Systems Scheduling Qiang Zeng, Ph.D. Fall 2018 Resource Allocation Graph describing the traffic jam CSCE 311 - Operating Systems 2 Conditions for Deadlock Mutual Exclusion Hold-and-Wait

More information

MultiThreading. Object Orientated Programming in Java. Benjamin Kenwright

MultiThreading. Object Orientated Programming in Java. Benjamin Kenwright MultiThreading Object Orientated Programming in Java Benjamin Kenwright Outline Review Essential Java Multithreading Examples Today s Practical Review/Discussion Question Does the following code compile?

More information

King Fahd University of Petroleum and Minerals. Write clearly, precisely, and briefly!!

King Fahd University of Petroleum and Minerals. Write clearly, precisely, and briefly!! 1 King Fahd University of Petroleum and Minerals Information and Computer Science Department ICS 431: Operating System FINAL EXAM DO NOT OPEN UNTIL INSTRUCTED TO DO SO!!!! Write clearly, precisely, and

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2019 Lecture 8 Scheduling Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ POSIX: Portable Operating

More information

Operating System Support

Operating System Support Operating System Support Dr. Xiaobo Zhou Adopted from Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 1 Learning Objectives Know what a modern

More information

For use by students enrolled in #71251 CSE430 Fall 2012 at Arizona State University. Do not use if not enrolled.

For use by students enrolled in #71251 CSE430 Fall 2012 at Arizona State University. Do not use if not enrolled. Operating Systems: Internals and Design Principles Chapter 4 Threads Seventh Edition By William Stallings Operating Systems: Internals and Design Principles The basic idea is that the several components

More information

1 Multiprocessors. 1.1 Kinds of Processes. COMP 242 Class Notes Section 9: Multiprocessor Operating Systems

1 Multiprocessors. 1.1 Kinds of Processes. COMP 242 Class Notes Section 9: Multiprocessor Operating Systems COMP 242 Class Notes Section 9: Multiprocessor Operating Systems 1 Multiprocessors As we saw earlier, a multiprocessor consists of several processors sharing a common memory. The memory is typically divided

More information

Frequently asked questions from the previous class survey

Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [CPU SCHEDULING] Shrideep Pallickara Computer Science Colorado State University L14.1 Frequently asked questions from the previous class survey Turnstiles: Queue for threads blocked

More information

Multiprocessor scheduling

Multiprocessor scheduling Chapter 10 Multiprocessor scheduling When a computer system contains multiple processors, a few new issues arise. Multiprocessor systems can be categorized into the following: Loosely coupled or distributed.

More information

PROCESS SCHEDULING II. CS124 Operating Systems Fall , Lecture 13

PROCESS SCHEDULING II. CS124 Operating Systems Fall , Lecture 13 PROCESS SCHEDULING II CS124 Operating Systems Fall 2017-2018, Lecture 13 2 Real-Time Systems Increasingly common to have systems with real-time scheduling requirements Real-time systems are driven by specific

More information

With regard to operating systems the kernel consists of the most frequently used functions in the operating system and it kept in main memory.

With regard to operating systems the kernel consists of the most frequently used functions in the operating system and it kept in main memory. CS 320 Ch 8 Operating Systems An operating system controls execution of applications and acts as an interface between the user and the computer. A typical OS provides the following services: Program Creation

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples Java Thread Scheduling

More information

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8.

Multiprocessor System. Multiprocessor Systems. Bus Based UMA. Types of Multiprocessors (MPs) Cache Consistency. Bus Based UMA. Chapter 8, 8. Multiprocessor System Multiprocessor Systems Chapter 8, 8.1 We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than

More information

User Level IPC and Device Management in the Raven Kernel. D. Stuart Ritchie and Gerald W. Neufeld.

User Level IPC and Device Management in the Raven Kernel. D. Stuart Ritchie and Gerald W. Neufeld. User Level IPC and Device Management in the Raven Kernel D. Stuart Ritchie and Gerald W. Neufeld fsritchie,neufeldg@cs.ubc.ca Department of Computer Science University of British Columbia Vancouver, B.C.

More information

Announcements. Program #1. Program #0. Reading. Is due at 9:00 AM on Thursday. Re-grade requests are due by Monday at 11:59:59 PM.

Announcements. Program #1. Program #0. Reading. Is due at 9:00 AM on Thursday. Re-grade requests are due by Monday at 11:59:59 PM. Program #1 Announcements Is due at 9:00 AM on Thursday Program #0 Re-grade requests are due by Monday at 11:59:59 PM Reading Chapter 6 1 CPU Scheduling Manage CPU to achieve several objectives: maximize

More information

Operating System - Overview

Operating System - Overview Unit 37. Operating System Operating System - Overview An Operating System (OS) is an interface between a computer user and computer hardware. An operating system is a software which performs all the basic

More information

Example: CPU-bound process that would run for 100 quanta continuously 1, 2, 4, 8, 16, 32, 64 (only 37 required for last run) Needs only 7 swaps

Example: CPU-bound process that would run for 100 quanta continuously 1, 2, 4, 8, 16, 32, 64 (only 37 required for last run) Needs only 7 swaps Interactive Scheduling Algorithms Continued o Priority Scheduling Introduction Round-robin assumes all processes are equal often not the case Assign a priority to each process, and always choose the process

More information

Multiprocessor Systems. COMP s1

Multiprocessor Systems. COMP s1 Multiprocessor Systems 1 Multiprocessor System We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than one CPU to improve

More information

Some popular Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400, AIX, z/os, etc.

Some popular Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400, AIX, z/os, etc. Operating System Quick Guide https://www.tutorialspoint.com/operating_system/os_quick_guide.htm Copyright tutorialspoint.com Operating System Overview An Operating System OS is an interface between a computer

More information

Processes and Threads Implementation

Processes and Threads Implementation Processes and Threads Implementation 1 Learning Outcomes An understanding of the typical implementation strategies of processes and threads Including an appreciation of the trade-offs between the implementation

More information

SMD149 - Operating Systems

SMD149 - Operating Systems SMD149 - Operating Systems Roland Parviainen November 3, 2005 1 / 45 Outline Overview 2 / 45 Process (tasks) are necessary for concurrency Instance of a program in execution Next invocation of the program

More information

Multiple Processor Systems. Lecture 15 Multiple Processor Systems. Multiprocessor Hardware (1) Multiprocessors. Multiprocessor Hardware (2)

Multiple Processor Systems. Lecture 15 Multiple Processor Systems. Multiprocessor Hardware (1) Multiprocessors. Multiprocessor Hardware (2) Lecture 15 Multiple Processor Systems Multiple Processor Systems Multiprocessors Multicomputers Continuous need for faster computers shared memory model message passing multiprocessor wide area distributed

More information

Operating System Review Part

Operating System Review Part Operating System Review Part CMSC 602 Operating Systems Ju Wang, 2003 Fall Virginia Commonwealth University Review Outline Definition Memory Management Objective Paging Scheme Virtual Memory System and

More information

instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes

instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes Allocation of Frames How should the OS distribute the frames among the various processes? Each process needs minimum number of pages - at least the minimum number of pages required for a single assembly

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

Process Description and Control. Chapter 3

Process Description and Control. Chapter 3 Process Description and Control Chapter 3 Contents Process states Process description Process control Unix process management Process From processor s point of view execute instruction dictated by program

More information