RTOS Debugger for MQX

Size: px
Start display at page:

Download "RTOS Debugger for MQX"

Transcription

1 RTOS Debugger for MQX TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for MQX... 1 Overview... 3 Brief Overview of Documents for New Users... 4 Supported Versions... 4 Configuration... 5 Manual Configuration 5 Automatic Configuration 5 Quick Configuration Guide 6 Hooks & Internals in MQX 6 Features... 7 Display of Kernel Resources 7 Task Stack Coverage 7 Task Related Breakpoints 8 Task Context Display 9 Dynamic Task Performance Measurement 9 Task Runtime Statistics 10 Task State Analysis 10 Function Runtime Statistics 11 MQX specific Menu 13 MQX Commands TASK.EVent Display events 14 TASK.KLog Display kernel log 14 TASK.LWEvent Display light weight events 15 TASK.LWMEMPool Display light weight memory pools 16 TASK.LWMsgQ Display light weight message queues 16 TASK.LWSem Display light weight semaphores 16 TASK.MEMPool Display memory pools 17 TASK.MeSsaGe.POOL Display message pools 17 TASK.MeSsaGe.QUEUE Display message queues 18 TASK.MuteX Display mutexes 19 TASK.SEMaphore Display semaphores 19 RTOS Debugger for MQX 1

2 TASK.TASK Display tasks 20 TASK.TASKQueue Display task queues 20 TASK.TASKState Mark task state words 21 MQX PRACTICE Functions Frequently-Asked Questions RTOS Debugger for MQX 2

3 RTOS Debugger for MQX Version 06-Nov-2017 Overview The RTOS Debugger for MQX contains special extensions to the TRACE32 Debugger. This manual describes the additional features, such as additional commands and statistic evaluations. RTOS Debugger for MQX 3

4 Brief Overview of Documents for New Users Architecture-independent information: Debugger Basics - Training (training_debugger.pdf): Get familiar with the basic features of a TRACE32 debugger. T32Start (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances for different configurations of the debugger. T32Start is only available for Windows. General Commands (general_ref_<x>.pdf): Alphabetic list of debug commands. Architecture-specific information: Processor Architecture Manuals : These manuals describe commands that are specific for the processor architecture supported by your debug cable. To access the manual for your processor architecture, proceed as follows: - Choose Help menu > Processor Architecture Manual. RTOS Debuggers (rtos_<x>.pdf): TRACE32 PowerView can be extended for operating systemaware debugging. The appropriate RTOS manual informs you how to enable the OS-aware debugging. Supported Versions Currently MQX is supported for the following versions: MQX 2.x on 68k, ColdFire, ARM and PowerPC MQX 3.6 to MQX 4.0 on ARM, ColdFire and PowerPC. RTOS Debugger for MQX 4

5 Configuration The TASK.CONFIG command loads an extension definition file called mqx.t32 (directory ~~/demo/<processor>/kernel/mqx ). It contains all necessary extensions. Automatic configuration tries to locate the MQX internals automatically. For this purpose all symbol tables must be loaded and accessible at any time the RTOS debugger is used. If a system symbol is not available or if another address should be used for a specific system variable then the corresponding argument must be set manually with the appropriate address. In this case, use the manual configuration, which can require some additional arguments. If you want do use the display functions On The Fly, i.e. displaying the OS objects, while the target is running, you need to have access to memory while running. In case of a ICE or FIRE, you have to map emulation or shadow memory to the address space of all used system tables. In case of ICD, you have to enable SYStem.MemAccess or SYStem.CpuAccess (CPU dependent). Manual Configuration Manual configuration is not necessary for the MQX RTOS debugger. Automatic Configuration For system resource display and trace functionality, you can do an automatic configuration of the RTOS debugger. For this purpose it is necessary that all system internal symbols are loaded and accessible at any time, the RTOS debugger is used. Each of the task.config arguments can be substituted by '0', which means, that this argument will be searched and configured automatically. For a full automatic configuration omit all arguments: TASK.CONFIG mqx If a system symbol is not available, or if another address should be used for a specific system variable, then the corresponding argument must be set manually with the appropriate address. RTOS Debugger for MQX 5

6 Quick Configuration Guide To access all features of the RTOS debugger you should follow this roadmap: 1. Read carefully the demo startup script (~~/demo/<processor>/kernel/mqx/mqx.cmm). 2. Make a copy of the PRACTICE script file mqx.cmm. 3. Modify the file according to your application. 4. Run the modified version in your application. This should allow you to display the kernel resources and use the trace functions (if available). Hooks & Internals in MQX No hooks are used in the kernel. To retrieve all information, the pointers in the initialization structure are used. RTOS Debugger for MQX 6

7 Features The RTOS debugger for MQX supports the following features. Display of Kernel Resources The extension defines new PRACTICE commands to display various kernel resources. The following information can be displayed: TASK.TASK TASK.MEMPool TASK.MeSsaGe.QUEUE TASK.MeSsaGe.POOL TASK.SEMaphore TASK.EVent TASK.MuteX TASK.KLog TASK.LWSem TASK.LWEvent TASK.LWMsgQ TASK.LWMEMPool TASK.TASKQueue Tasks Memory pools Message queues Message pools Semaphores Events Mutexes Kernel log Light weight semaphores Light weight events Light weight message queues Light weight memory pools Task queues For a detailed description of each command refer to the chapter MQX Commands. If your hardware allows accessing the memory, while the target is running, these resources can be displayed On The Fly, i.e. while the application is running, without any intrusion to the application. Without this capability, the information will only be displayed, if the target application is stopped. Task Stack Coverage For stack usage coverage of the tasks, you can use the TASK.STacK command. Without any parameter, this command will set up a window with all active tasks. If you specify only a magic number as parameter, the stack area of this task will be automatically calculated. To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas, when working with the emulation memory. When working with the target memory, a stack pattern must be defined with the command TASK.STacK.PATtern (default value is zero). RTOS Debugger for MQX 7

8 To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD rsp. TASK.STacK.ReMove commands with the task magic number as parameter, or omit the parameter and select from the task list window. It is recommended, to display only the tasks, that you are interested in, because the evaluation of the used stack space is very time consuming and slows down the debugger display. Task Related Breakpoints Any breakpoint set in the debugger can be restricted to fire only, if a specific task hits that breakpoint. This is especially useful, when debugging code which is shared between several tasks. To set a task related breakpoint, use the command: Break.Set <address> <range> [/<option>] /TASK <task> Set task related breakpoint. Use a magic number, task ID, or task name for <task>. For information about the parameters, see What to know about Magic Numbers, Task IDs and Task Names (general_ref_t.pdf). By default, the task related breakpoint will be implemented by a conditional breakpoint inside the debugger. I.e., the target will always halt at that breakpoint, but the debugger immediately resumes execution, if the current running task is not equal to the specified task. NOTE: Task related breakpoints impact the real-time behavior of the application On some architectures it is possible to set a task related breakpoint with on-chip debug logic that is less intrusive. Specify additionally the option /Onchip to use this. The debugger then uses the on-chip resources to reduce the number of breaks to the minimum, by pre-filtering the tasks. E.g. on ARM architectures, if the RTOS serves the ContextID register at task switches, and if the debug logic provides the ContextID comparison, you may use this register for less intrusive task related breakpoints: TrOnchip.ContextID ON will enable the comparison to the whole ContextID register. TrOnchip.ASID ON will enable the comparison to the ASID part only. If TASK.List.tasks provides a trace ID (traceid column), the debugger will use this ID for comparison. Without the trace ID, it uses the magic number (magic column) for comparison. For a general description of the Break.Set command, please see its documentation. When single stepping, the debugger halts on the next instruction, regardless which task hits this breakpoint. When debugging shared code, stepping over an OS function may lead to a task switch and coming back to the same place - but with a different task. If you want to stick the debugging within the current task you can set up the debugger with SETUP.StepWithinTask ON to use task related breakpoints for single stepping. In this case, single stepping will always stay within the current task. Other tasks using the same code will not be halted on these events. RTOS Debugger for MQX 8

9 If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use the Break.SetTask command. Task Context Display You are able to switch the whole viewing context to a currently not executing task. This means, that all register and stack related information (such as Register, Data.List, Frame etc.) will be shown according to this task. Be aware that this is only for displaying information. When continuing debugging the application (Step or Go), the debugger will switch back to the current context. For displaying a specific task context, use the command: Frame.TASK [<task>] Display task context. Use a magic number, task ID, or task name for <task>. For information about the parameters, see What to know about Magic Numbers, Task IDs and Task Names (general_ref_t.pdf). To switch back to the current context, omit all parameters. For displaying the call stack of a specific task, you can use the following command: Frame /Task <task> Display call stack of a task. If you d like to see the application code, where the task was preempted, execute the command Frame /Caller /Task <task> to open a window of the same name. Double click on the line showing the OS service call. Dynamic Task Performance Measurement The debugger may execute a dynamic performance measurement by evaluating the current running task in changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm, and view the contents with PERF.ListTASK. The evaluation is done by reading the magic location (= current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the PERF.METHOD used. If PERF collects the PC for function profiling of processes in MMU based operating systems (SYStem.Option MMUSPACES ON), then you need to set PERF.MMUSPACES, too. For a general description of the PERF command, refer to General Commands Reference Guide P (general_ref_p.pdf). RTOS Debugger for MQX 9

10 Task Runtime Statistics Out of the recordings done by the Trace (if available), the debugger is able to evaluate the time spent in a task and display it statistically and graphically. Using this feature requires that the on-chip trace generation logic can generated task information. For details refer to OS-aware Tracing (glossary.pdf). To evaluate the contents of the trace buffer, use these commands: Trace.List List.TASK DEFault Trace.STATistic.TASK Trace.Chart.TASK Trace.PROfileSTATistic.TASK Trace.PROfileChart.TASK Trace.FindAll Address task.config(magic) Trace.FindAll CYcle owner OR CYcle context Display trace buffer and task switches Display task runtime statistic evaluation Display task runtime timechart Display task runtime within fixed time intervals statistically Display task runtime within fixed time intervals as colored graph Display all data access records to the magic location Display all context ID records The start of the recording time, when the calculation doesn t know, which task is running, is calculated as (unknown). TRACE32-ICE and TRACE32-FIRE use a completely different mechanism to record task information. See the trigger program below: ; Mark the magic location with an Alpha breakpoint Break.Set TASK.CONFIG(magic)++(TASK.CONFIG(magicsize)-1) /Alpha ; Program the Analyzer to record only task switches Analyzer.ReProgram ( Sample.Enable if AlphaBreak&&Write ) Task State Analysis NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses (program flow trace is not sufficient). The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated statistically or displayed graphically. RTOS Debugger for MQX 10

11 This feature needs recording of all accesses to the status words of all tasks. Additionally, the accesses to the current task pointer (=magic) are needed. Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs are located (plus the current task pointer). To do a selective recording on task states with state analyzers (ICE or FIRE), use TASK.TASKState, if available, to mark the status words with Alpha breakpoints. Run the following PRACTICE script: ; Mark the magic location with an Alpha breakpoint Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha ; Mark all task state words with Alpha breakpoints TASK.TASKState ; Program the Analyzer to record task state transitions Analyzer.ReProgram ( Sample.Enable if AlphaBreak&&Write ) To do a selective recording on task states with flow traces (ICD, e.g. ETM and NEXUS trace), just enable the recording of all data write cycles. To evaluate the contents of the trace buffer, use these commands: Trace.STATistic.TASKState Trace.Chart.TASKState Display task state statistic Display task state timechart The start of the recording time, when the calculation doesn t know, which task is running, is calculated as (unknown). Function Runtime Statistics NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses (program flow trace is not sufficient). All function related statistic and timechart evaluations can be used with task specific information. The function timings will be calculated dependent on the task, that called this function. To do this, additionally to the function entries and exits, the task switches must be recorded. To do a selective recording on task related function runtimes with state analyzers (ICE and FIRE), use the following PRACTICE commands: RTOS Debugger for MQX 11

12 ; Mark the magic location with an Alpha breakpoint Break.Set TASK.CONFIG(magic)++(TASK.CONFIG(magicsize)-1) /Alpha ; Mark the function entries/exits with Alpha/Beta breakpoints Break.SetFunc ; Program the Analyzer to record function entries/exits and task switches Analyzer.ReProgram ( Sample.Enable if AlphaBreak BetaBreak Mark.A if AlphaBreak Mark.B if BetaBreak ) To do a selective recording on task related function runtimes with flow traces (ICD, e.g. ETM and NEXUS trace), based on the data accesses, use the following PRACTICE command: ; Enable flow trace an accesses to the magic location Break.Set TASK.CONFIG(magic) /TraceData To do a selective recording on task related function runtimes with flow traces, based on the context ID, user the following PRACTICE command: ; Enable flow trace with context ID (e.g. 32bit) ETM.ContextID 32 To evaluate the contents of the trace buffer, use these commands: Trace.ListNesting Trace.STATistic.Func Trace.STATistic.TREE Trace.STATistic.sYmbol /SplitTASK Trace.Chart.Func Trace.Chart.sYmbol /SplitTASK Display function nesting Display function runtime statistic Display functions as call tree Display flat runtime analysis Display function timechart Display flat runtime timechart The start of the recording time, when the calculation doesn t know, which task is running, is calculated as (unknown). RTOS Debugger for MQX 12

13 MQX specific Menu The file mqx.men contains an alternate menu with MQX specific topics. Load this menu with the MENU.ReProgram command. You will find a new menu called MQX. The Display menu options launch the kernel resource display windows. The Stack Coverage submenu starts and resets the MQX specific stack coverage, and provide an easy way to add or remove tasks from the stack coverage window. The Trace menu is extended. In the List submenu, you can choose for a trace list window showing only task switches (if any) or task switches together with default display. The Perf menu contains additional submenus for task runtime statistics and statistics on task states. RTOS Debugger for MQX 13

14 MQX Commands TASK.EVent Display events TASK.EVent <event> Displays a table with the MQX events. Specifying an event magic number will show you the waiting tasks of that event. E::w.task.ev magic bitmask waiting valid name yes demo waiting tasks: magic name B0 Responder TASK.KLog Display kernel log TASK.KLog Displays a table with the MQX kernel log. Each log entry contains a sequence number, a time stamp and information about one of the following entry types: Function entry (with up to 4 parameters) Function exit (with return value) Interrupt (with interrupt number) Interrupt end Context switch (with name of new task). The task name field for the context switch is mouse sensitive. Double clicking on it will show the corresponding TASK.TASK <name> window. RTOS Debugger for MQX 14

15 The log entries are displayed in chronological order, with the oldest entry first. If the first entry is not sequence number 1, the oldest entries are being overwritten. The time stamp is obtained from the kernel time when the entry is logged. B::TASK.KL Klog enabled overwrite? current/max size yes no / Entries seq no time stamp(us) description _msg_alloc (00202DE4, , , ) interrupt _task_ready ( , , , _task_ready returns , , , _task_ready (002002B0, , , _task_ready returns , , , _task_ready (002004B0, , , _task_ready returns , , , _task_ready (002006B0, , , _task_ready returns , , , _task_ready ( , , , _task_ready returns , , , interrupt 5 end context switch to BTimeSliceTask _time_delay returns , , , interrupt interrupt 5 end _time_delay ( F, , , _task_execute_scheduler ( , , context switch to ATimeSliceTask TASK.LWEvent Display light weight events TASK.LWEvent <lwevent> Displays a table with the MQX light weight events. Specifying a light weight event magic number will show you detailed information about the waiting tasks. RTOS Debugger for MQX 15

16 TASK.LWMEMPool Display light weight memory pools TASK.LWMEMPool <lwmempool> Displays a table with the MQX light weight memory pools. Specifying a light weight memory pool magic number will show you detailed information about the blocks in the memory pool. TASK.LWMsgQ Display light weight message queues TASK.LWMsgQ <lwmsgq> Displays a table with the MQX light weight message queues. Specifying a light weight msg queue magic number will show you detailed information about the waiting tasks. TASK.LWSem Display light weight semaphores TASK.LWSem <lwsem> Displays a table with the MQX light weight semaphores. Specifying a light weight semaphore magic number will show you detailed information about the waiting tasks. B::task.lws 200AA0 magic valid value waiting 00200AA0 yes waiting tasks: magic name RTOS Debugger for MQX 16

17 TASK.MEMPool Display memory pools TASK.MEMPool <mempool> Displays the task memory pool table of MQX or detailed information about one specific memory pool. Without any arguments, a table with all created memory pools will be shown. Specify a magic number to display detailed information on that memory pool. magic is a unique ID, used by the RTOS Debugger to identify a specific memory pool (address of the memory pool object). The field magic is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it will show a local menu. TASK.MeSsaGe.POOL Display message pools TASK.MeSsaGe.POOL <msg_p> Displays a table with the MQX message pools. Specifying a message pool magic number will show you the messages in that pool. E::w.task.msg.pool magic size total free grow limit type valid 00001CEB 003C named yes 00001D named yes E::w.task.msg.pool 1D08 magic size total free grow limit type valid 00001CEB 003C named yes messages in queue: magic status valid message size target p/q source p/q 00003E78 queued yes 00003E / / 0A 00003EB0 free yes 00003EC / / 00 The fields 'magic' and 'message' are mouse sensitive. Double-clicking on them will perform the appropriate action. RTOS Debugger for MQX 17

18 TASK.MeSsaGe.QUEUE Display message queues TASK.MeSsaGe.QUEUE <msg_q> Displays a table with the MQX message queues. Specifying a message queue magic number will show you the messages in that queue. E::w.task.msg.queue magic id entries max type owner/function 0001E5C 0001 none infinite normal _LTM 0001F5C 0009 none infinite normal Main 0001F7C 000A none infinite normal Responder C infinite normal Sender E::w.task.msg.queue 233C magic id entries max type owner/function C infinite normal Sender messages in queue: magic status valid message size target p/q source p/q 00003E78 queued yes 00003E / / 0A The fields 'magic' and 'message' are mouse sensitive. Double-clicking on them will perform the appropriate action. RTOS Debugger for MQX 18

19 TASK.MuteX Display mutexes TASK.MuteX <mutex> Displays a table with the MQX mutexes. Specifying a mutex magic number will show you detailed information about that mutex. E::w.task.mx magic locked wait status policy wait,spin policy priority locked spin only Inheritance valid desroy boost yes no 0. waiting tasks: magic name B0 Responder TASK.SEMaphore Display semaphores TASK.SEMaphore <sem> Displays a table with the MQX semaphores. Specifying a semaphore magic number will show you the owning and waiting tasks of that semaphore. E::w.task.sem magic owning waiting count max valid destroy policy name yes no queue demo owning tasks: magic name Sender waiting tasks: magic name B0 Responder RTOS Debugger for MQX 19

20 TASK.TASK Display tasks TASK.TASK <task> Displays the task table of MQX or detailed information about one specific task. Without any arguments, a table with all created tasks will be shown. Specify a task name, ID or magic number to display detailed information on that task. E::w.task.task magic name id state prio msgs B0 _LTM Rcv Any Blocked _Idle Ready B0 Main Rcv Any Blocked Sender Ready B0 Responder Active E::w.task.task magic name id state prio msgs B0 _LTM Rcv Any Blocked father SR disabled boost message timeout timeslice error E / 0032 OK Template: index entry parameter prio stksize timeslice C 0000E6D C 0000 Attributes: NO AUTO_START, NO FLOATING_POINT magic is a unique ID, used by the RTOS Debugger to identify a specific task (address of the task object). The fields magic, name and id are mouse sensitive, double clicking on them opens appropriate windows. Right clicking on them will show a local menu. TASK.TASKQueue Display task queues TASK.TASKQueue <task_queue> Displays a table with the task queues. Specifying a task queue magic number will show you detailed information about this queue. RTOS Debugger for MQX 20

21 TASK.TASKState Mark task state words TASK.TASKState This command sets Alpha breakpoints on all task status words. The statistic evaluation of task states (see Task State Analysis) requires recording of the accesses to the task state words. By setting Alpha breakpoints to this words, and selectively recording Alpha s, you can do a selective recording of task state transitions. Because setting the Alpha breakpoints by hand is very hard to do, this utility command sets automatically the Alpha s to the status words of all tasks currently created. It does NOT set breakpoints to tasks, that terminated or haven t yet been created. RTOS Debugger for MQX 21

22 MQX PRACTICE Functions There are special definitions for MQX specific PRACTICE functions. TASK.CONFIG(magic) Returns the address for the magic number TASK.CONFIG(magicsize) Returns the size of the magic number (1, 2 or 4) TASK.STRUCT(<item>) TASK.STRUCT(td) Reports the name of the according structure. Returns the name of the task descriptor structure Frequently-Asked Questions No information available RTOS Debugger for MQX 22

RTOS Debugger for RTX-ARM

RTOS Debugger for RTX-ARM RTOS Debugger for RTX-ARM TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for RTX-ARM... 1 Overview... 2 Brief Overview of Documents for New Users...

More information

RTOS Debugger for ChibiOS/RT

RTOS Debugger for ChibiOS/RT RTOS Debugger for ChibiOS/RT TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for ChibiOS/RT... 1 Overview... 3 Brief Overview of Documents for New

More information

RTOS Debugger for MicroC/OS-III

RTOS Debugger for MicroC/OS-III RTOS Debugger for MicroC/OS-III TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for MicroC/OS-III... 1 Overview... 2 Brief Overview of Documents

More information

RTOS Debugger for CMX

RTOS Debugger for CMX RTOS Debugger for CMX TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for CMX... 1 Overview... 2 Brief Overview of Documents for New Users... 3

More information

RTOS Debugger for ThreadX

RTOS Debugger for ThreadX RTOS Debugger for ThreadX TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for ThreadX... 1 Overview... 3 Brief Overview of Documents for New Users...

More information

RTOS Debugger for FreeRTOS

RTOS Debugger for FreeRTOS RTOS Debugger for FreeRTOS TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for FreeRTOS... 1 Overview... 2 Brief Overview of Documents for New Users...

More information

RTOS Debugger for MicroC/OS-II

RTOS Debugger for MicroC/OS-II RTOS Debugger for MicroC/OS-II TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for MicroC/OS-II... 1 Overview... 3 Brief Overview of Documents for

More information

OS Awareness Manual Sciopta

OS Awareness Manual Sciopta OS Awareness Manual Sciopta TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... OS Awareness Manuals... OS Awareness Manual Sciopta... 1 History... 2 Overview... 2 Brief Overview of

More information

RTOS Debugger for RTXC Quadros

RTOS Debugger for RTXC Quadros RTOS Debugger for RTXC Quadros TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for RTXC Quadros... 1 Overview... 3 Brief Overview of Documents for

More information

RTOS Debugger for RTXC Quadros

RTOS Debugger for RTXC Quadros RTOS Debugger for RTXC Quadros TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for RTXC Quadros... 1 Overview... 3 Brief Overview of Documents for

More information

OS Awareness Manual OSE Epsilon

OS Awareness Manual OSE Epsilon OS Awareness Manual OSE Epsilon TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... OS Awareness Manuals... OS Awareness Manual OSE Epsilon... 1 History... 2 Overview... 2 Brief Overview

More information

OS Awareness Manual OSEK/ORTI

OS Awareness Manual OSEK/ORTI OS Awareness Manual OSEK/ORTI TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... OS Awareness Manuals... OS Awareness for OSEK/ORTI... OS Awareness Manual OSEK/ORTI... 1 History...

More information

Hypervisor Awareness for Wind River Hypervisor

Hypervisor Awareness for Wind River Hypervisor Hypervisor Awareness for Wind River Hypervisor TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... Hypervisor Support... Hypervisor Awareness for Wind River Hypervisor... 1 Overview...

More information

OS Awareness Manual OSE Delta

OS Awareness Manual OSE Delta OS Awareness Manual OSE Delta TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... OS Awareness Manuals... OS Awareness Manual OSE Delta... 1 History... 3 Overview... 3 Brief Overview

More information

RTOS Debugger for Windows Standard

RTOS Debugger for Windows Standard RTOS Debugger for Windows Standard TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for Windows Standard... 1 Overview... 4 Brief Overview of Documents

More information

RTOS Debugger for LynxOS

RTOS Debugger for LynxOS RTOS Debugger for LynxOS TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for LynxOS... 1 Overview... 3 Brief Overview of Documents for New Users...

More information

OS Awareness Manual uclinux

OS Awareness Manual uclinux OS Awareness Manual uclinux TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... OS Awareness Manuals... OS Awareness Manual uclinux... 1 History... 4 Overview... 5 Brief Overview of

More information

RTOS Debugger for Windows CE6/EC7/EC2013

RTOS Debugger for Windows CE6/EC7/EC2013 RTOS Debugger for Windows CE6/EC7/EC2013 TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for Windows CE6/EC7/EC2013... 1 Overview... 4 Brief Overview

More information

RTOS Debugger for RTX51 tiny

RTOS Debugger for RTX51 tiny RTOS Debugger for RTX51 tiny TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for RTX51 tiny... 1 Overview... 3 Brief Overview of Documents for New

More information

RTOS Debugger for psos+

RTOS Debugger for psos+ RTOS Debugger for psos+ TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for psos+... 1 Overview... 3 Brief Overview of Documents for New Users...

More information

RTOS Debugger for OS-9

RTOS Debugger for OS-9 RTOS Debugger for OS-9 TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for OS-9... 1 Overview... 3 Brief Overview of Documents for New Users...

More information

TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... TriCore... TriCore Monitor... 1

TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... TriCore... TriCore Monitor... 1 TriCore Monitor TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... TriCore... TriCore Monitor... 1 Brief Overview of Documents

More information

Integration for CodeWright

Integration for CodeWright Integration for CodeWright TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... 3rd Party Tool Integrations... Integration for CodeWright... 1 Overview... 2 Brief Overview of Documents

More information

RTOS Debugger for QNX - Run Mode

RTOS Debugger for QNX - Run Mode RTOS Debugger for QNX - Run Mode TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for QNX - Run Mode... 1 Basic Concepts... 2 pdebug... 2 Switching

More information

TRACE32 Getting Started... ICD In-Circuit Debugger Getting Started... ICD Introduction... 1

TRACE32 Getting Started... ICD In-Circuit Debugger Getting Started... ICD Introduction... 1 ICD Introduction TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Getting Started... ICD In-Circuit Debugger Getting Started... ICD Introduction... 1 Introduction... 2 What is an In-Circuit

More information

Application Note for the SNOOPer Trace

Application Note for the SNOOPer Trace Application Note for the SNOOPer Trace TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... Trace Analysis... Trace Application Notes... Application Note for the SNOOPer Trace... 1

More information

TRACE32 Glossary Terms, Abbreviations, and Definitions... 2

TRACE32 Glossary Terms, Abbreviations, and Definitions... 2 TRACE32 Glossary TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Glossary... 1 Terms, Abbreviations, and Definitions... 2 Terms with Explanations and Examples... 4 Access Classes 4 Build Path

More information

RTOS Debugger for Linux - Run Mode

RTOS Debugger for Linux - Run Mode RTOS Debugger for Linux - Run Mode TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for Linux... RTOS Debugger for Linux - Run Mode... 1 Debugging

More information

Run Mode Debugging Manual Symbian

Run Mode Debugging Manual Symbian Run Mode Debugging Manual Symbian TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... OS Awareness Manuals... OS Awareness and Run Mode Debugging for Symbian... Run Mode Debugging

More information

embos Real-Time Operating System embos plug-in for IAR C-Spy Debugger Document: UM01025 Software Version: 3.0 Revision: 0 Date: September 18, 2017

embos Real-Time Operating System embos plug-in for IAR C-Spy Debugger Document: UM01025 Software Version: 3.0 Revision: 0 Date: September 18, 2017 embos Real-Time Operating System embos plug-in for IAR C-Spy Debugger Document: UM01025 Software Version: 3.0 Revision: 0 Date: September 18, 2017 A product of SEGGER Microcontroller GmbH & Co. KG www.segger.com

More information

embos Real-Time Operating System embos plug-in for IAR C-Spy Debugger Document: UM01025 Software Version: 3.1 Revision: 0 Date: May 3, 2018

embos Real-Time Operating System embos plug-in for IAR C-Spy Debugger Document: UM01025 Software Version: 3.1 Revision: 0 Date: May 3, 2018 embos Real-Time Operating System Document: UM01025 Software Version: 3.1 Revision: 0 Date: May 3, 2018 A product of SEGGER Microcontroller GmbH www.segger.com 2 Disclaimer Specifications written in this

More information

Freescale MQX Lite RTOS

Freescale MQX Lite RTOS Freescale MQX Lite RTOS Reference Manual Document Number: MQXLITERM Rev 1.3 2 Freescale Semiconductor, Inc. Contents Section number Title Page Chapter 1 Before You Begin 1.1 About MQX Lite...13 1.2 About

More information

Introduction to the ThreadX Debugger Plugin for the IAR Embedded Workbench C-SPYDebugger

Introduction to the ThreadX Debugger Plugin for the IAR Embedded Workbench C-SPYDebugger C-SPY plugin Introduction to the ThreadX Debugger Plugin for the IAR Embedded Workbench C-SPYDebugger This document describes the IAR C-SPY Debugger plugin for the ThreadX RTOS. The ThreadX RTOS awareness

More information

ARM Application Note for MXC Chips

ARM Application Note for MXC Chips ARM Application Note for MXC Chips TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... ARM/CORTEX/XSCALE... ARM Application

More information

Hands-on Workshop: Freescale MQX and Tower System RTOS Getting Started (Part 2)

Hands-on Workshop: Freescale MQX and Tower System RTOS Getting Started (Part 2) August, 2010 Hands-on Workshop: Freescale MQX and Tower System RTOS Getting Started (Part 2) ENT-F0720 Shen Li and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names

More information

The components in the middle are core and the components on the outside are optional.

The components in the middle are core and the components on the outside are optional. CHAPTER 2 ucosiii Page 1 ENGG4420 CHAPTER 3 LECTURE 8 October 31 12 9:43 AM MQX BASICS MQX Real Time Operating System has been designed for uni processor, multi processor, and distributedprocessor embedded

More information

TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... NS NS32000 Monitor... 1

TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... NS NS32000 Monitor... 1 NS32000 Monitor TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... NS32000... NS32000 Monitor... 1 Brief Overview of Documents

More information

Advanced Debugging using the Ashling MPC5500 tools

Advanced Debugging using the Ashling MPC5500 tools Ashling Product Brief APB200 Advanced Debugging using the Ashling MPC5500 tools 1. Contents 1. Contents 1 2. Introduction 1 3. Break on Data Access 1 4. Tracing Accesses to a Variable 3 4.1 Cycle accurate

More information

TRACE32 Debugger Getting Started... ICD Tutorial About the Tutorial... 2

TRACE32 Debugger Getting Started... ICD Tutorial About the Tutorial... 2 ICD Tutorial TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Debugger Getting Started... ICD Tutorial... 1 About the Tutorial... 2 Working with the Debugger... 3 Set up the Program Environment

More information

Outline. Process and Thread Management. Data Structures (2) Data Structures. Kernel Process Block (PCB)

Outline. Process and Thread Management. Data Structures (2) Data Structures. Kernel Process Block (PCB) Outline Process and Thread Management Ausgewählte Betriebssysteme Professur Betriebssysteme Fakultät Informatik Data Structures Process Creation Thread Creation Scheduling 2 Data Structures Data Structures

More information

Process and Thread Management

Process and Thread Management Process and Thread Management Ausgewählte Betriebssysteme Professur Betriebssysteme Fakultät Informatik Data Structures Process Creation Thread Creation Scheduling Outline 2 1 Data Structures Process represented

More information

Native Process Debugger

Native Process Debugger Native Process Debugger TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... Native Process Debugger... 1 Operation Theory... 3 Quick Start... 4 Starting a new process 4 Attach to a

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (3 rd Week) (Advanced) Operating Systems 3. Process Description and Control 3. Outline What Is a Process? Process

More information

General Commands Reference Guide O

General Commands Reference Guide O General Commands Reference Guide O TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... General Commands... General Commands Reference Guide O... 1 OCP... 4 OCP OpenCoreProtocol WatchPoint

More information

The ThreadX C-SPY plugin

The ThreadX C-SPY plugin The ThreadX C-SPY plugin Introduction to the ThreadX Debugger Plugin for the IAR Embedded Workbench C-SPY Debugger This document describes the IAR C-SPY Debugger plugin for the ThreadX RTOS. The ThreadX

More information

_ V Renesas R8C In-Circuit Emulation. Contents. Technical Notes

_ V Renesas R8C In-Circuit Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes Renesas R8C In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes knowledge

More information

Integration for CodeBlocks

Integration for CodeBlocks Integration for CodeBlocks TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... 3rd Party Tool Integrations... Integration for CodeBlocks... 1 Overview... 2 Supported Code::Blocks versions...

More information

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel Alexander Züpke, Marc Bommert, Daniel Lohmann alexander.zuepke@hs-rm.de, marc.bommert@hs-rm.de, lohmann@cs.fau.de Motivation Automotive and Avionic industry

More information

Integration for Rhapsody in C/C++

Integration for Rhapsody in C/C++ Integration for Rhapsody in C/C++ TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... 3rd Party Tool Integrations... Integration for Rhapsody in C/C++... 1 Overview... 2 Architecture

More information

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable What s An OS? Provides environment for executing programs Process abstraction for multitasking/concurrency scheduling Hardware abstraction layer (device drivers) File systems Communication Do we need an

More information

TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... MCS08... MCS08 Debugger... 1

TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... MCS08... MCS08 Debugger... 1 MCS08 Debugger TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... ICD In-Circuit Debugger... Processor Architecture Manuals... MCS08... MCS08 Debugger... 1 Brief Overview of Documents

More information

Tracking the Virtual World

Tracking the Virtual World Tracking the Virtual World Synopsys: For many years the JTAG interface has been used for ARM-based SoC debugging. With this JTAG style debugging, the developer has been granted the ability to debug software

More information

Operating Systems Design Fall 2010 Exam 1 Review. Paul Krzyzanowski

Operating Systems Design Fall 2010 Exam 1 Review. Paul Krzyzanowski Operating Systems Design Fall 2010 Exam 1 Review Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 To a programmer, a system call looks just like a function call. Explain the difference in the underlying

More information

Integration for Visual Basic Interface

Integration for Visual Basic Interface Integration for Visual Basic Interface TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... 3rd Party Tool Integrations... Integration for Visual Basic Interface... 1 Brief Overview

More information

Trace Getting Started V8.02

Trace Getting Started V8.02 Trace Getting Started V8.02 1. Introduction This paper helps the user to entirely exploit the trace and troubleshoot most often situations that the developer is confronted with while debugging the application.

More information

A brief intro to MQX Lite. Real work: hands-on labs. Overview, Main features and Code Size

A brief intro to MQX Lite. Real work: hands-on labs. Overview, Main features and Code Size October 2013 A brief intro to MQX Lite Overview, Main features and Code Size Real work: hands-on labs Create a new MQX-Lite project, add ConsoleIO and BitIO components Create tasks, watch the flashing

More information

TRACE32 Documents... TRACE32 Instruction Set Simulators... Simulator for ARC... 1

TRACE32 Documents... TRACE32 Instruction Set Simulators... Simulator for ARC... 1 Simulator for ARC TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... TRACE32 Instruction Set Simulators... Simulator for ARC... 1 Introduction... 3 Supported ARC Cores 3 Brief Overview

More information

Rudi Dienstbeck June 07, ARM TrustZone and Hypervisor Debugging

Rudi Dienstbeck June 07, ARM TrustZone and Hypervisor Debugging ARM TrustZone and Hypervisor Debugging Agenda 2 / 46 TrustZone And CPU Modes In TRACE32 Default Behavior Of The Debugger Special TrustZone Support Outlook To Multiple Guests Agenda TrustZone And CPU Modes

More information

Tasks. Task Implementation and management

Tasks. Task Implementation and management Tasks Task Implementation and management Tasks Vocab Absolute time - real world time Relative time - time referenced to some event Interval - any slice of time characterized by start & end times Duration

More information

Announcements. Reading. Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) CMSC 412 S14 (lect 5)

Announcements. Reading. Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) CMSC 412 S14 (lect 5) Announcements Reading Project #1 due in 1 week at 5:00 pm Scheduling Chapter 6 (6 th ed) or Chapter 5 (8 th ed) 1 Relationship between Kernel mod and User Mode User Process Kernel System Calls User Process

More information

Embedded Systems. 5. Operating Systems. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 5. Operating Systems. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 5. Operating Systems Lothar Thiele Computer Engineering and Networks Laboratory Embedded Operating Systems 5 2 Embedded Operating System (OS) Why an operating system (OS) at all? Same

More information

Chapter 12 Visual Program Debugger

Chapter 12 Visual Program Debugger Chapter 12 Visual Program Debugger In the previous chapter on programs a section titled Getting programs to do what you want discussed using the log to trace how programs execute. That is a useful technique

More information

Freescale MQX RTOS for Kinetis SDK Release Notes version beta

Freescale MQX RTOS for Kinetis SDK Release Notes version beta Freescale Semiconductor Document Number: MQXKSDKRN Release Notes Rev 1.0.0, 07/2014 Freescale MQX RTOS for Kinetis SDK Release Notes version 1.0.0 beta 1 Read Me This is the release notes for Freescale

More information

embos Real Time Operating System CPU & Compiler specifics for ARM core with ARM RealView Developer Suite 3.0 Document Rev. 1

embos Real Time Operating System CPU & Compiler specifics for ARM core with ARM RealView Developer Suite 3.0 Document Rev. 1 embos Real Time Operating System CPU & Compiler specifics for ARM core with ARM RealView Developer Suite 3.0 Document Rev. 1 A product of SEGGER Microcontroller GmbH & Co. KG www.segger.com 2/25 embos

More information

API for Auxiliary Processing Unit

API for Auxiliary Processing Unit API for Auxiliary Processing Unit TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... Misc... API for Auxiliary Processing Unit... 1 Introduction... 3 Release Information 3 Features

More information

Simulator for TriCore

Simulator for TriCore Simulator for TriCore TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... TRACE32 Instruction Set Simulators... Simulator for TriCore... 1 TRACE32 Simulator License... 4 Brief Overview

More information

RTOS Debugger for Windows CE4/CE5

RTOS Debugger for Windows CE4/CE5 RTOS Debugger for Windows CE4/CE5 TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... RTOS Debuggers... RTOS Debugger for Windows CE4/CE5... 1 Overview... 4 Brief Overview of Documents

More information

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine MPLAB SIM MPLAB IDE Software Simulation Engine 2004 Microchip Technology Incorporated MPLAB SIM Software Simulation Engine Slide 1 Welcome to this web seminar on MPLAB SIM, the software simulator that

More information

Preemptive Scheduling

Preemptive Scheduling Preemptive Scheduling Lecture 18 18-1 Big Picture Methods learned so far We ve been using a foreground/background system Interrupt service routines run in foreground Task code runs in background Limitations

More information

Real-time operating systems and scheduling

Real-time operating systems and scheduling Real-time operating systems and scheduling Problem 21 Consider a real-time operating system (OS) that has a built-in preemptive scheduler. Each task has a unique priority and the lower the priority id,

More information

Efficient and Large Scale Program Flow Tracing in Linux. Alexander Shishkin, Intel

Efficient and Large Scale Program Flow Tracing in Linux. Alexander Shishkin, Intel Efficient and Large Scale Program Flow Tracing in Linux Alexander Shishkin, Intel 16.09.2013 Overview Program flow tracing - What is it? - What is it good for? Intel Processor Trace - Features / capabilities

More information

Lab 3a: Scheduling Tasks with uvision and RTX

Lab 3a: Scheduling Tasks with uvision and RTX COE718: Embedded Systems Design Lab 3a: Scheduling Tasks with uvision and RTX 1. Objectives The purpose of this lab is to lab is to introduce students to uvision and ARM Cortex-M3's various RTX based Real-Time

More information

Converter from GEL to PRACTICE

Converter from GEL to PRACTICE Converter from GEL to PRACTICE TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... PRACTICE Script Language... Application Notes for PRACTICE... Converter from GEL to PRACTICE... 1

More information

XDS560 Trace. Technology Showcase. Daniel Rinkes Texas Instruments

XDS560 Trace. Technology Showcase. Daniel Rinkes Texas Instruments XDS560 Trace Technology Showcase Daniel Rinkes Texas Instruments Agenda AET / XDS560 Trace Overview Interrupt Profiling Statistical Profiling Thread Aware Profiling Thread Aware Dynamic Call Graph Agenda

More information

RTOS 101. Understand your real-time applications. with the help of Percepio Tracealyzer

RTOS 101. Understand your real-time applications. with the help of Percepio Tracealyzer RTOS 101 Understand your real-time applications with the help of Percepio Tracealyzer RTOS 101 Tasks, Priorities and Analysis Figure 1: Tracealyzer showing RTOS task scheduling and calls to RTOS services.

More information

RTX64 Features by Release IZ-DOC-X R3

RTX64 Features by Release IZ-DOC-X R3 RTX64 Features by Release IZ-DOC-X64-0089-R3 January 2014 Operating System and Visual Studio Support WINDOWS OPERATING SYSTEM RTX64 2013 Windows 8 No Windows 7 (SP1) (SP1) Windows Embedded Standard 8 No

More information

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document C28X CCS

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document C28X CCS CODE TIME TECHNOLOGIES Abassi RTOS Porting Document C28X CCS Copyright Information This document is copyright Code Time Technologies Inc. 2012-2013. All rights reserved. No part of this document may be

More information

NEW CEIBO DEBUGGER. Menus and Commands

NEW CEIBO DEBUGGER. Menus and Commands NEW CEIBO DEBUGGER Menus and Commands Ceibo Debugger Menus and Commands D.1. Introduction CEIBO DEBUGGER is the latest software available from Ceibo and can be used with most of Ceibo emulators. You will

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

Module 1. Introduction:

Module 1. Introduction: Module 1 Introduction: Operating system is the most fundamental of all the system programs. It is a layer of software on top of the hardware which constitutes the system and manages all parts of the system.

More information

Exam TI2720-C/TI2725-C Embedded Software

Exam TI2720-C/TI2725-C Embedded Software Exam TI2720-C/TI2725-C Embedded Software Wednesday April 16 2014 (18.30-21.30) Koen Langendoen In order to avoid misunderstanding on the syntactical correctness of code fragments in this examination, we

More information

Process Context & Interrupts. New process can mess up information in old process. (i.e. what if they both use the same register?)

Process Context & Interrupts. New process can mess up information in old process. (i.e. what if they both use the same register?) 1 Process Context 1.1 What is context? A process is sometimes called a task, subroutine or program. Process context is all the information that the process needs to keep track of its state. Registers Temporary

More information

Using ARM ETB with TI CCS. CCS 3.3 with SR9 on TMS320DM6446

Using ARM ETB with TI CCS. CCS 3.3 with SR9 on TMS320DM6446 Using ARM ETB with TI CCS CCS 3.3 with SR9 on TMS320DM6446 1 ETB Usage Brief Tutorial 1. Setup CCS setup configuration to include the ETB. 2. Connect to the target (including the ETB) 3. Select the ETB

More information

Putting it All Together

Putting it All Together EE445M/EE360L.12 Embedded and Real-Time Systems/ Real-Time Operating Systems : Commercial RTOS, Final Exam, Review 1 Putting it All Together Micrium μcos-ii Reference: www.micrium.com Application Note

More information

SMP/BIOS Overview. Nov 18, 2014

SMP/BIOS Overview. Nov 18, 2014 SMP/BIOS Overview Nov 18, 2014!!! SMP/BIOS is currently supported only on Cortex-M3/M4 (Ducati/Benelli) subsystems and Cortex-A15 (Vayu/K2/Omap5) subsystems!!! Agenda SMP/BIOS Overview What is SMP/BIOS?

More information

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document. ARM Cortex-M3 CCS

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document. ARM Cortex-M3 CCS CODE TIME TECHNOLOGIES Abassi RTOS Porting Document ARM Cortex-M3 CCS Copyright Information This document is copyright Code Time Technologies Inc. 2011,2012. All rights reserved. No part of this document

More information

2 Principal Architect EDU,QuEST Global, Thiruvananthapuram

2 Principal Architect EDU,QuEST Global, Thiruvananthapuram Analysis of porting Free RTOS on MSP430 architecture and study of performance parameters on small factor Embedded Systems Nandana V. 1, Jithendran A. 2, Shreelekshmi R. 3 1 M.Tech Scholar, LBSITW, Poojappura,

More information

Introduction. This tutorial introduces the following SingleStep features:

Introduction. This tutorial introduces the following SingleStep features: Introduction This tutorial introduces the following SingleStep features: Starting a debug session. Watching variables. Setting breakpoints. Modifying breakpoints. Stepping through a program. Changing variables

More information

file://c:\documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

file://c:\documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm Page 1 of 18 Trace Tutorial Overview The objective of this tutorial is to acquaint you with the basic use of the Trace System software. The Trace System software includes the following: The Trace Control

More information

Application Note for the Trace.Find Command

Application Note for the Trace.Find Command Application Note for the Trace.Find Command TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents... Trace Analysis... Trace Application Notes... Application Note for the Trace.Find Command...

More information

Lab 3-2: Exploring the Heap

Lab 3-2: Exploring the Heap Lab 3-2: Exploring the Heap Objectives Become familiar with the Windows Embedded CE 6.0 heap Prerequisites Completed Lab 2-1 Estimated time to complete this lab: 30 minutes Lab Setup To complete this lab,

More information

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document. ATmega128 GCC

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document. ATmega128 GCC CODE TIME TECHNOLOGIES Abassi RTOS Porting Document ATmega128 GCC Copyright Information This document is copyright Code Time Technologies Inc. 2011,2012. All rights reserved. No part of this document may

More information

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document. ARM Cortex-A9 CCS

CODE TIME TECHNOLOGIES. Abassi RTOS. Porting Document. ARM Cortex-A9 CCS CODE TIME TECHNOLOGIES Abassi RTOS Porting Document ARM Cortex-A9 CCS Copyright Information This document is copyright Code Time Technologies Inc. 2012. All rights reserved. No part of this document may

More information

embos Real-Time Operating System CPU & Compiler specifics for embos Visual Studio Simulation

embos Real-Time Operating System CPU & Compiler specifics for embos Visual Studio Simulation embos Real-Time Operating System CPU & Compiler specifics for Document: UM01060 Software Version: 5.02 Revision: 0 Date: July 25, 2018 A product of SEGGER Microcontroller GmbH www.segger.com 2 Disclaimer

More information

3.1 Introduction. Computers perform operations concurrently

3.1 Introduction. Computers perform operations concurrently PROCESS CONCEPTS 1 3.1 Introduction Computers perform operations concurrently For example, compiling a program, sending a file to a printer, rendering a Web page, playing music and receiving e-mail Processes

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L20 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time Page

More information

High Reliability Systems. Lloyd Moore, President

High Reliability Systems. Lloyd Moore, President High Reliability Systems Lloyd Moore, President Lloyd@CyberData-Robotics.com www.cyberdata-robotics.com Overview Appropriate Use of This Presentation Causes of Failures Watchdogs Memory Techniques Safer

More information

Getting Started with Red Trace

Getting Started with Red Trace Getting Started with Red Trace Getting Started with Red Trace Red Suite 5 Version 5.1.2 Getting Started with Red Trace 16 April, 2013 Copyright 2012-2013 Code Red Technologies, Inc All rights reserved.

More information

Renesas 78K/78K0R/RL78 Family In-Circuit Emulation

Renesas 78K/78K0R/RL78 Family In-Circuit Emulation _ Technical Notes V9.12.225 Renesas 78K/78K0R/RL78 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document

More information

Concurrency: Deadlock and Starvation

Concurrency: Deadlock and Starvation Concurrency: Deadlock and Starvation Chapter 6 E&CE 354: Processes 1 Deadlock Deadlock = situation in which every process from a set is permanently blocked, i.e. cannot proceed with execution Common cause:

More information