Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Size: px
Start display at page:

Download "Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved."

Transcription

1 Implementing Threads Operating Systems In Depth II 1 Copyright 2018 Thomas W Doeppner All rights reserved

2 The Unix Address Space stack dynamic bss data text Operating Systems In Depth II 2 Copyright 2018 Thomas W Doeppner All rights reserved

3 Adding More Stuff stack 1 stack 2 stack 3 mapped file 1 mapped file 2 mapped file 3 mapped file 117 bss & dynamic data text Operating Systems In Depth II 3 Copyright 2018 Thomas W Doeppner All rights reserved

4 Subroutines int main( ) { int i; int a; } i = sub(a, 1); return(0); int sub(int x, int y) { int i; int result = 1; for (i=0; i<y; i++) result *= x; return(result); } Operating Systems In Depth II 4 Copyright 2018 Thomas W Doeppner All rights reserved

5 Intel x86 (32-Bit): Subroutine Linkage args eip ebp saved registers local variables args eip ebp saved registers local variables stack frame ebp esp Operating Systems In Depth II 5 Copyright 2018 Thomas W Doeppner All rights reserved

6 Intel x86: Subroutine Code (1) main: pushl %ebp movl %esp, %ebp pushl %esi pushl %edi subl $8, %esp pushl $1 movl -12(%ebp), %eax pushl %eax call sub addl $8, %esp movl %eax, -16(%ebp) set up stack frame push args pop args; get result movl popl popl movl popl ret $0, %eax %edi %esi %ebp, %esp %ebp set return value and restore frame Operating Systems In Depth II 6 Copyright 2018 Thomas W Doeppner All rights reserved

7 Intel x86: Subroutine Code (2) sub: pushl %ebp movl %esp, %ebp subl $8, %esp movl $1, -4(%ebp) movl $0, -8(%ebp) movl -4(%ebp), %ecx movl -8(%ebp), %eax beginloop: cmpl 12(%ebp), %eax jge endloop imull 8(%ebp), %ecx addl $1, %eax jmp beginloop init locals get args endloop: movl %ecx, -4(%ebp) movl -4(%ebp), %eax movl %ebp, %esp popl %ebp ret Operating Systems In Depth II 7 Copyright 2018 Thomas W Doeppner All rights reserved

8 x86-64 Twice as many registers Arguments may be passed in registers, rather than on stack No special-purpose frame pointer use stack pointer instead Operating Systems In Depth II 8 Copyright 2018 Thomas W Doeppner All rights reserved

9 Intel x86-64: Subroutine Code (1) main: subq $24, %rsp movl 12(%rsp), %edi movl $1, %esi call sub addl $24, %rsp movl $0, %eax ret # reserve space on stack for locals # set first argument # set second argument # set return value Operating Systems In Depth II 9 Copyright 2018 Thomas W Doeppner All rights reserved

10 Intel x86-64: Subroutine Code (2) sub: testl %esi, %esi jle skiploop movl $1, %eax movl $0, %edx loop: imull %edi, %eax addl $1, %edx cmpl %esi, %edx jne loop ret skiploop: movl $1, %eax ret # leaf function: no stack setup Operating Systems In Depth II 10 Copyright 2018 Thomas W Doeppner All rights reserved

11 SPARC Architecture return address i7 r31 frame pointer i6 r30 i5 r29 i4 r28 i3 r27 i2 r26 i1 r25 i0 r24 Input Registers o7 r15 stack pointer o6 r14 o5 r13 o4 r12 o3 r11 o2 r10 o1 r9 o0 r8 Output Registers Local Registers l7 l6 l5 l4 l3 l2 l1 l0 r23 r22 r21 r20 r19 r18 r17 r16 g7 g6 g5 g4 g3 g2 g1 r7 r6 r5 r4 r3 r2 r1 0 g0 r0 Global Registers Operating Systems In Depth II 11 Copyright 2018 Thomas W Doeppner All rights reserved

12 SPARC Architecture: Register Windows input window 1 local output input local window 2 input output window 3 local output Operating Systems In Depth II 12 Copyright 2018 Thomas W Doeppner All rights reserved

13 SPARC Architecture: storage for local variables FP, old SP dynamically allocated stack space space for compiler temporaries and saved floating point registers outgoing parameters beyond 6th save area for callee to store register arguments one-word hidden parameter 16 words to save in and local regs SP Operating Systems In Depth II 13 Copyright 2018 Thomas W Doeppner All rights reserved

14 SPARC Architecture: Subroutine Code ld [%fp-8], %o0! put local var (a)! into out register mov 1, %o1! deal with 2nd! parameter call sub nop st %o0, [%fp-4]! store result into! local var (i) sub: save %sp, -64, %sp! push a new! stack frame add %i0, %i1, %i0! compute sum ret! return to caller restore! pop frame off! stack (in delay slot) Operating Systems In Depth II 14 Copyright 2018 Thomas W Doeppner All rights reserved

15 Representing Threads Thread A Control Block Thread B Control Block sp sp Operating Systems In Depth II 15 Copyright 2018 Thomas W Doeppner All rights reserved

16 Switching Between Threads thread_switch() thread_switch() Coroutine linkage thread_switch() thread_switch() thread_switch() Operating Systems In Depth II 16 Copyright 2018 Thomas W Doeppner All rights reserved

17 Switching Between Threads 1 void thread_switch(thread_t *next_thread) { 2 SaveContext(&CurrentThread->ctx); 3 CurrentThread = next_thread; 4 GetContext(&CurrentThread->ctx); 5 return; 6 } Operating Systems In Depth II 17 Copyright 2018 Thomas W Doeppner All rights reserved

18 Switching Between Threads, Take 2 1 void thread_switch(thread_t *next_thread) { 2 SwapContext(&CurrentThread->ctx, 3 &next_thread->ctx); 4 CurrentThread = next_thread; 5 return; 6 } Operating Systems In Depth II 18 Copyright 2018 Thomas W Doeppner All rights reserved

19 Quiz 1 Does this implementation of thread_switch work? a) yes: in all cases b) yes, except for a few edge cases c) no Operating Systems In Depth II 19 Copyright 2018 Thomas W Doeppner All rights reserved

20 Switching Between Threads, Take 3 1 void thread_switch(thread_t *next_thread) { 2 thread_t *oldcurrentthread = CurrentThread; 3 CurrentThread = next_thread; 4 SwapContext(&oldCurrentThread->ctx, 5 &CurrentThread->ctx); 6 return; 7 } Operating Systems In Depth II 20 Copyright 2018 Thomas W Doeppner All rights reserved

21 A Simple Threads Implementation Basis for user-level threads package Straight-threads implementation no interrupts everything in thread contexts one processor Operating Systems In Depth II 21 Copyright 2018 Thomas W Doeppner All rights reserved

22 Basic Representation Thread object Operating Systems In Depth II 22 Copyright 2018 Thomas W Doeppner All rights reserved

23 Current Thread A Collection of Threads Run Queue Mutex Queue Thread Object Thread Object Thread Object Thread Object Thread Object Thread Object Thread Object Operating Systems In Depth II 23 Copyright 2018 Thomas W Doeppner All rights reserved

24 Thread Switch (in C) void thread_switch( ) { thread_t *NextThread, *OldCurrent; NextThread = dequeue(runqueue); OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext(&oldcurrent->context, &NextThread->context); // We re now in the new thread s context } Operating Systems In Depth II 24 Copyright 2018 Thomas W Doeppner All rights reserved

25 Thread-Switch Exchange void thread_switch( ) { thread_t NextThread, OldCurrent; SP NextThread = dequeue(runqueue); OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext( &OldCurrent->context, thread_switch(); IP } &NextThread->context); Operating Systems In Depth II 25 Copyright 2018 Thomas W Doeppner All rights reserved

26 Thread-Switch Exchange void thread_switch( ) { thread_t NextThread, OldCurrent; NextThread = Return address NextThread OldCurrent SP dequeue(runqueue); OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext( &OldCurrent->context, thread_switch(); IP } &NextThread->context); Operating Systems In Depth II 26 Copyright 2018 Thomas W Doeppner All rights reserved

27 Thread-Switch Exchange void thread_switch( ) { thread_t NextThread, OldCurrent; Return address NextThread OldCurrent SP NextThread = dequeue(runqueue); OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext( &OldCurrent->context, IP Return address NextThread OldCurrent thread_switch(); } &NextThread->context); thread_switch(); Operating Systems In Depth II 27 Copyright 2018 Thomas W Doeppner All rights reserved

28 Thread-Switch Exchange void thread_switch( ) { thread_t NextThread, OldCurrent; NextThread = Return address NextThread OldCurrent SP dequeue(runqueue); OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext( &OldCurrent->context, IP Return address NextThread OldCurrent thread_switch(); } &NextThread->context); thread_switch(); Operating Systems In Depth II 28 Copyright 2018 Thomas W Doeppner All rights reserved

29 Thread-Switch Exchange void thread_switch( ) { thread_t NextThread, OldCurrent; NextThread = Return address NextThread OldCurrent dequeue(runqueue); OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext( SP Return address NextThread OldCurrent &OldCurrent->context, thread_switch(); } &NextThread->context); IP thread_switch(); Operating Systems In Depth II 29 Copyright 2018 Thomas W Doeppner All rights reserved

30 Thread-Switch Exchange void thread_switch( ) { thread_t NextThread, OldCurrent; NextThread = dequeue(runqueue); SP OldCurrent = CurrentThread; CurrentThread = NextThread; swapcontext( &OldCurrent->context, } &NextThread->context); IP thread_switch(); Operating Systems In Depth II 30 Copyright 2018 Thomas W Doeppner All rights reserved

31 Mutexes mutex_t mut; mutex_lock(&mut); x = x+1; mutex_unlock(&mut); Operating Systems In Depth II 31 Copyright 2018 Thomas W Doeppner All rights reserved

32 Implementing Mutexes void mutex_lock(mutex_t *m) { if (m->locked) { } } enqueue(m->wait_queue, CurrentThread); thread_switch(); m->locked = 1; void mutex_unlock(mutex_t *m) { m->locked = 0; } if (!queue_empty(m->wait_queue)) enqueue(runqueue, dequeue(m->wait_queue)); Operating Systems In Depth II 32 Copyright 2018 Thomas W Doeppner All rights reserved

33 Quiz 2 a) It works b) It works as long as there are just two threads c) It doesn t work Period Operating Systems In Depth II 33 Copyright 2018 Thomas W Doeppner All rights reserved

34 Implementing Mutexes, Take 2 void mutex_lock(mutex_t *m) { if (m->locked) { } enqueue(m->queue, CurrentThread); thread_switch(); } else m->locked = 1; void mutex_unlock(mutex_t *m) { if (queue_empty(m->queue)) } m->locked = 0; else enqueue(runqueue, dequeue(m->queue)); Operating Systems In Depth II 34 Copyright 2018 Thomas W Doeppner All rights reserved

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

A Unix process s address space appears to be three regions of memory: a read-only text region (containing executable code); a read-write region

A Unix process s address space appears to be three regions of memory: a read-only text region (containing executable code); a read-write region A Unix process s address space appears to be three regions of memory: a read-only text region (containing executable code); a read-write region consisting of initialized data (simply called data), uninitialized

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

X86 Stack Calling Function POV

X86 Stack Calling Function POV X86 Stack Calling Function POV Computer Systems Section 3.7 Stack Frame Reg Value ebp xffff FFF0 esp xffff FFE0 eax x0000 000E Memory Address Value xffff FFF8 xffff FFF4 x0000 0004 xffff FFF4 x0000 0003

More information

Machine-level Programming (3)

Machine-level Programming (3) Machine-level Programming (3) Procedures A: call A call A return Two issues How to return to the correct position? How to pass arguments and return values between callee to caller? 2 Procedure Control

More information

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang Project 3 Questions CMSC 313 Lecture 12 How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP

More information

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions?

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? exam on Wednesday today s material not on the exam 1 Assembly Assembly is programming

More information

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G CS 33: Week 3 Discussion x86 Assembly (v1.0) Section 1G Announcements - HW2 due Sunday - MT1 this Thursday! - Lab2 out Info Name: Eric Kim (Section 1G, 2-4 PM, BH 5419) Office Hours (Boelter 2432) - Wed

More information

CPS104 Recitation: Assembly Programming

CPS104 Recitation: Assembly Programming CPS104 Recitation: Assembly Programming Alexandru Duțu 1 Facts OS kernel and embedded software engineers use assembly for some parts of their code some OSes had their entire GUIs written in assembly in

More information

CPEG421/621 Tutorial

CPEG421/621 Tutorial CPEG421/621 Tutorial Compiler data representation system call interface calling convention Assembler object file format object code model Linker program initialization exception handling relocation model

More information

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016 CS 31: Intro to Systems Functions and the Stack Martin Gagne Swarthmore College February 23, 2016 Reminders Late policy: you do not have to send me an email to inform me of a late submission before the

More information

Process Layout and Function Calls

Process Layout and Function Calls Process Layout and Function Calls CS 6 Spring 07 / 8 Process Layout in Memory Stack grows towards decreasing addresses. is initialized at run-time. Heap grow towards increasing addresses. is initialized

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant adapted by Jason Fritts http://csapp.cs.cmu.edu CS:APP2e Hardware Architecture - using Y86 ISA For learning aspects

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

CPSC W Term 2 Problem Set #3 - Solution

CPSC W Term 2 Problem Set #3 - Solution 1. (a) int gcd(int a, int b) { if (a == b) urn a; else if (a > b) urn gcd(a - b, b); else urn gcd(a, b - a); CPSC 313 06W Term 2 Problem Set #3 - Solution.file "gcdrec.c".globl gcd.type gcd, @function

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

You may work with a partner on this quiz; both of you must submit your answers.

You may work with a partner on this quiz; both of you must submit your answers. Instructions: Choose the best answer for each of the following questions. It is possible that several answers are partially correct, but one answer is best. It is also possible that several answers are

More information

CS213. Machine-Level Programming III: Procedures

CS213. Machine-Level Programming III: Procedures CS213 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows toward

More information

Register Allocation, iii. Bringing in functions & using spilling & coalescing

Register Allocation, iii. Bringing in functions & using spilling & coalescing Register Allocation, iii Bringing in functions & using spilling & coalescing 1 Function Calls ;; f(x) = let y = g(x) ;; in h(y+x) + y*5 (:f (x

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 (1) Characteristics Region of memory managed with stack discipline

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures IA32 Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address address of top element Bottom Increasing

More information

AS08-C++ and Assembly Calling and Returning. CS220 Logic Design AS08-C++ and Assembly. AS08-C++ and Assembly Calling Conventions

AS08-C++ and Assembly Calling and Returning. CS220 Logic Design AS08-C++ and Assembly. AS08-C++ and Assembly Calling Conventions CS220 Logic Design Outline Calling Conventions Multi-module Programs 1 Calling and Returning We have already seen how the call instruction is used to execute a subprogram. call pushes the address of the

More information

COMP 210 Example Question Exam 2 (Solutions at the bottom)

COMP 210 Example Question Exam 2 (Solutions at the bottom) _ Problem 1. COMP 210 Example Question Exam 2 (Solutions at the bottom) This question will test your ability to reconstruct C code from the assembled output. On the opposing page, there is asm code for

More information

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables class07.ppt

More information

ICS143A: Principles of Operating Systems. Midterm recap, sample questions. Anton Burtsev February, 2017

ICS143A: Principles of Operating Systems. Midterm recap, sample questions. Anton Burtsev February, 2017 ICS143A: Principles of Operating Systems Midterm recap, sample questions Anton Burtsev February, 2017 Describe the x86 address translation pipeline (draw figure), explain stages. Address translation What

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

ECE 391 Exam 1 Review Session - Spring Brought to you by HKN

ECE 391 Exam 1 Review Session - Spring Brought to you by HKN ECE 391 Exam 1 Review Session - Spring 2018 Brought to you by HKN DISCLAIMER There is A LOT (like a LOT) of information that can be tested for on the exam, and by the nature of the course you never really

More information

x86 assembly CS449 Fall 2017

x86 assembly CS449 Fall 2017 x86 assembly CS449 Fall 2017 x86 is a CISC CISC (Complex Instruction Set Computer) e.g. x86 Hundreds of (complex) instructions Only a handful of registers RISC (Reduced Instruction Set Computer) e.g. MIPS

More information

Second Part of the Course

Second Part of the Course CSC 2400: Computer Systems Towards the Hardware 1 Second Part of the Course Toward the hardware High-level language (C) assembly language machine language (IA-32) 2 High-Level Language g Make programming

More information

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only Instructions: The following questions use the AT&T (GNU) syntax for x86-32 assembly code, as in the course notes. Submit your answers to these questions to the Curator as OQ05 by the posted due date and

More information

Machine Programming 3: Procedures

Machine Programming 3: Procedures Machine Programming 3: Procedures CS61, Lecture 5 Prof. Stephen Chong September 15, 2011 Announcements Assignment 2 (Binary bomb) due next week If you haven t yet please create a VM to make sure the infrastructure

More information

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call Call without Parameter Value Transfer What are involved? ESP Stack Pointer Register Grows by 4 for EIP (return address) storage Stack -- Memory which holds register contents Will keep the EIP of the next

More information

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element Machine Representa/on of Programs: Procedures Instructors: Sanjeev Se(a 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoGom Increasing Addresses Register

More information

System Programming and Computer Architecture (Fall 2009)

System Programming and Computer Architecture (Fall 2009) System Programming and Computer Architecture (Fall 2009) Recitation 2 October 8 th, 2009 Zaheer Chothia Email: zchothia@student.ethz.ch Web: http://n.ethz.ch/~zchothia/ Topics for Today Classroom Exercise

More information

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View Computer Architecture I Instruction Set Architecture Assembly Language View Processor state Registers, memory, Instructions addl, movl, andl, How instructions are encoded as bytes Layer of Abstraction

More information

Program Exploitation Intro

Program Exploitation Intro Program Exploitation Intro x86 Assembly 04//2018 Security 1 Univeristà Ca Foscari, Venezia What is Program Exploitation "Making a program do something unexpected and not planned" The right bugs can be

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View! Processor

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View Processor

More information

Sungkyunkwan University

Sungkyunkwan University Switch statements IA 32 Procedures Stack Structure Calling Conventions Illustrations of Recursion & Pointers long switch_eg (long x, long y, long z) { long w = 1; switch(x) { case 1: w = y*z; break; case

More information

CSE 351: Week 4. Tom Bergan, TA

CSE 351: Week 4. Tom Bergan, TA CSE 35 Week 4 Tom Bergan, TA Does this code look okay? int binarysearch(int a[], int length, int key) { int low = 0; int high = length - ; while (low

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Warren Hunt, Jr. and Bill Young Department of Computer Sciences University of Texas at Austin Last updated: October 1, 2014 at 12:03 CS429 Slideset 6: 1 Topics

More information

Homework. In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, Practice Exam 1

Homework. In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, Practice Exam 1 Homework In-line Assembly Code Machine Language Program Efficiency Tricks Reading PAL, pp 3-6, 361-367 Practice Exam 1 1 In-line Assembly Code The gcc compiler allows you to put assembly instructions in-line

More information

Machine Program: Procedure. Zhaoguo Wang

Machine Program: Procedure. Zhaoguo Wang Machine Program: Procedure Zhaoguo Wang Requirements of procedure calls? P() { y = Q(x); y++; 1. Passing control int Q(int i) { int t, z; return z; Requirements of procedure calls? P() { y = Q(x); y++;

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College February 9, 2016 Reading Quiz Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between

More information

CMSC 313 Lecture 12 [draft] How C functions pass parameters

CMSC 313 Lecture 12 [draft] How C functions pass parameters CMSC 313 Lecture 12 [draft] How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP removes an

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls 1 Lecture Goals Challenges of supporting functions Providing information for the called function Function arguments and local variables Allowing the

More information

X86 Assembly -Procedure II:1

X86 Assembly -Procedure II:1 X86 Assembly -Procedure II:1 IA32 Object Code Setup Label.L61 becomes address 0x8048630 Label.L62 becomes address 0x80488dc Assembly Code switch_eg:... ja.l61 # if > goto default jmp *.L62(,%edx,4) # goto

More information

Systems I. Machine-Level Programming V: Procedures

Systems I. Machine-Level Programming V: Procedures Systems I Machine-Level Programming V: Procedures Topics abstraction and implementation IA32 stack discipline Procedural Memory Usage void swap(int *xp, int *yp) int t0 = *xp; int t1 = *yp; *xp = t1; *yp

More information

Chapter 4! Processor Architecture!

Chapter 4! Processor Architecture! Chapter 4! Processor Architecture!! Y86 Instruction Set Architecture! Instructor: Dr. Hyunyoung Lee! Texas A&M University! Based on slides provided by Randal E. Bryant, CMU Why Learn Processor Design?!

More information

Instruction Set Architecture

Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

CISC 360 Instruction Set Architecture

CISC 360 Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

Lab 10: Introduction to x86 Assembly

Lab 10: Introduction to x86 Assembly CS342 Computer Security Handout # 8 Prof. Lyn Turbak Wednesday, Nov. 07, 2012 Wellesley College Revised Nov. 09, 2012 Lab 10: Introduction to x86 Assembly Revisions: Nov. 9 The sos O3.s file on p. 10 was

More information

Process Layout, Function Calls, and the Heap

Process Layout, Function Calls, and the Heap Process Layout, Function Calls, and the Heap CS 6 Spring 20 Prof. Vern Paxson TAs: Devdatta Akhawe, Mobin Javed, Matthias Vallentin January 9, 20 / 5 2 / 5 Outline Process Layout Function Calls The Heap

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College September 25, 2018 Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between programmer

More information

CSC 8400: Computer Systems. Using the Stack for Function Calls

CSC 8400: Computer Systems. Using the Stack for Function Calls CSC 84: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address IA32 Procedures 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoDom Increasing Addresses Register contains lowest stack address address of top element Stack

More information

cmovxx ra, rb 2 fn ra rb irmovl V, rb rb V rmmovl ra, D(rB) 4 0 ra rb D mrmovl D(rB), ra 5 0 ra rb D OPl ra, rb 6 fn ra rb jxx Dest 7 fn Dest

cmovxx ra, rb 2 fn ra rb irmovl V, rb rb V rmmovl ra, D(rB) 4 0 ra rb D mrmovl D(rB), ra 5 0 ra rb D OPl ra, rb 6 fn ra rb jxx Dest 7 fn Dest Instruction Set Architecture Instruction Set Architecture CSci 2021: Machine Architecture and Organization Lecture #16, February 25th, 2015 Your instructor: Stephen McCamant Based on slides originally

More information

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping Lecture 5 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows

More information

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017

CS 31: Intro to Systems ISAs and Assembly. Martin Gagné Swarthmore College February 7, 2017 CS 31: Intro to Systems ISAs and Assembly Martin Gagné Swarthmore College February 7, 2017 ANNOUNCEMENT All labs will meet in SCI 252 (the robot lab) tomorrow. Overview How to directly interact with hardware

More information

University of Washington

University of Washington Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq %rbp movq %rsp, %rbp... popq %rbp

More information

Compiler Construction D7011E

Compiler Construction D7011E Compiler Construction D7011E Lecture 8: Introduction to code generation Viktor Leijon Slides largely by Johan Nordlander with material generously provided by Mark P. Jones. 1 What is a Compiler? Compilers

More information

Stacks and Frames Demystified. CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han

Stacks and Frames Demystified. CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han s and Frames Demystified CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han Announcements Homework Set #2 due Friday at 11 am - extension Program Assignment #1 due Tuesday Feb. 15 at 11 am - note extension

More information

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region

More information

W4118: PC Hardware and x86. Junfeng Yang

W4118: PC Hardware and x86. Junfeng Yang W4118: PC Hardware and x86 Junfeng Yang A PC How to make it do something useful? 2 Outline PC organization x86 instruction set gcc calling conventions PC emulation 3 PC board 4 PC organization One or more

More information

CS61 Section Solutions 3

CS61 Section Solutions 3 CS61 Section Solutions 3 (Week of 10/1-10/5) 1. Assembly Operand Specifiers 2. Condition Codes 3. Jumps 4. Control Flow Loops 5. Procedure Calls 1. Assembly Operand Specifiers Q1 Operand Value %eax 0x104

More information

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature CSE2421 FINAL EXAM SPRING 2013 Name KEY Instructions: This is a closed-book, closed-notes, closed-neighbor exam. Only a writing utensil is needed for this exam. No calculators allowed. If you need to go

More information

Page 1. IA32 Stack CISC 360. Machine-Level Programming III: Procedures Sept. 22, IA32 Stack Popping Stack Bottom. IA32 Stack Pushing

Page 1. IA32 Stack CISC 360. Machine-Level Programming III: Procedures Sept. 22, IA32 Stack Popping Stack Bottom. IA32 Stack Pushing CISC 36 Machine-Level Programming III: Procedures Sept. 22, 2 IA32 Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address address of top element

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming III: Procedures Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

Processes (Intro) Yannis Smaragdakis, U. Athens

Processes (Intro) Yannis Smaragdakis, U. Athens Processes (Intro) Yannis Smaragdakis, U. Athens Process: CPU Virtualization Process = Program, instantiated has memory, code, current state What kind of memory do we have? registers + address space Let's

More information

The Hardware/Software Interface CSE351 Spring 2013

The Hardware/Software Interface CSE351 Spring 2013 The Hardware/Software Interface CSE351 Spring 2013 x86 Programming II 2 Today s Topics: control flow Condition codes Conditional and unconditional branches Loops 3 Conditionals and Control Flow A conditional

More information

Machine-Level Programming II: Control and Arithmetic

Machine-Level Programming II: Control and Arithmetic Machine-Level Programming II: Control and Arithmetic CSCI 2400: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides 1 Today Complete addressing mode, address

More information

Instructor: Alvin R. Lebeck

Instructor: Alvin R. Lebeck X86 Assembly Programming with GNU assembler Lecture 7 Instructor: Alvin R. Lebeck Some Slides based on those from Randy Bryant and Dave O Hallaron Admin Reading: Chapter 3 Note about pointers: You must

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Assignment 11: functions, calling conventions, and the stack

Assignment 11: functions, calling conventions, and the stack Assignment 11: functions, calling conventions, and the stack ECEN 4553 & 5013, CSCI 4555 & 5525 Prof. Jeremy G. Siek December 5, 2008 The goal of this week s assignment is to remove function definitions

More information

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1 Lecture #16: Introduction to Runtime Organization Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 1 Status Lexical analysis Produces tokens Detects & eliminates illegal tokens Parsing Produces

More information

Data Representa/ons: IA32 + x86-64

Data Representa/ons: IA32 + x86-64 X86-64 Instruc/on Set Architecture Instructor: Sanjeev Se(a 1 Data Representa/ons: IA32 + x86-64 Sizes of C Objects (in Bytes) C Data Type Typical 32- bit Intel IA32 x86-64 unsigned 4 4 4 int 4 4 4 long

More information

An Elegant Weapon for a More Civilized Age

An Elegant Weapon for a More Civilized Age An Elegant Weapon for a More Civilized Age Solving an Easy Problem What are the input types? What is the output type? Give example input/output pairs Which input represents the domain of the recursion,

More information

Assembly Language: IA-32 Instructions

Assembly Language: IA-32 Instructions Assembly Language: IA-32 Instructions 1 Goals of this Lecture Help you learn how to: Manipulate data of various sizes Leverage more sophisticated addressing modes Use condition codes and jumps to change

More information

(2) Accidentally using the wrong instance of a variable (sometimes very hard one to find).

(2) Accidentally using the wrong instance of a variable (sometimes very hard one to find). Scope and storage class of variables The scope of a variable refers to those portions of a program wherein it may be accessed. Failure to understand scoping rules can lead to two problems: (1) Syntax errors

More information

Function Call Convention

Function Call Convention Function Call Convention Compass Security Schweiz AG Werkstrasse 20 Postfach 2038 CH-8645 Jona Tel +41 55 214 41 60 Fax +41 55 214 41 61 team@csnc.ch www.csnc.ch Content Intel Architecture Memory Layout

More information

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction E I P CPU isters Condition Codes Addresses Data Instructions Memory Object Code Program Data OS Data Topics Assembly Programmer

More information

Sistemi Operativi. Lez. 16 Elementi del linguaggio Assembler AT&T

Sistemi Operativi. Lez. 16 Elementi del linguaggio Assembler AT&T Sistemi Operativi Lez. 16 Elementi del linguaggio Assembler AT&T Data Sizes Three main data sizes Byte (b): 1 byte Word (w): 2 bytes Long (l): 4 bytes Separate assembly-language instructions E.g., addb,

More information

CS642: Computer Security

CS642: Computer Security X86 Review Process Layout, ISA, etc. CS642: Computer Security Drew Davidson davidson@cs.wisc.edu From Last Week ACL- based permissions (UNIX style) Read, Write, execute can be restricted on users and groups

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures! ISAs! Brief history of processors and architectures! C, assembly, machine code! Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface

More information

What is a Compiler? Compiler Construction SMD163. Why Translation is Needed: Know your Target: Lecture 8: Introduction to code generation

What is a Compiler? Compiler Construction SMD163. Why Translation is Needed: Know your Target: Lecture 8: Introduction to code generation Compiler Construction SMD163 Lecture 8: Introduction to code generation Viktor Leijon & Peter Jonsson with slides by Johan Nordlander Contains material generously provided by Mark P. Jones What is a Compiler?

More information

X86 Review Process Layout, ISA, etc. CS642: Computer Security. Drew Davidson

X86 Review Process Layout, ISA, etc. CS642: Computer Security. Drew Davidson X86 Review Process Layout, ISA, etc. CS642: Computer Security Drew Davidson davidson@cs.wisc.edu From Last Time ACL-based permissions (UNIX style) Read, Write, execute can be restricted on users and groups

More information

Machine Level Programming II: Arithmetic &Control

Machine Level Programming II: Arithmetic &Control Machine Level Programming II: Arithmetic &Control Arithmetic operations Control: Condition codes Conditional branches Loops Switch Kai Shen 1 2 Some Arithmetic Operations Two Operand Instructions: Format

More information

CSCI 2021: x86-64 Control Flow

CSCI 2021: x86-64 Control Flow CSCI 2021: x86-64 Control Flow Chris Kauffman Last Updated: Mon Mar 11 11:54:06 CDT 2019 1 Logistics Reading Bryant/O Hallaron Ch 3.6: Control Flow Ch 3.7: Procedure calls Goals Jumps and Control flow

More information

1 /* file cpuid2.s */ 4.asciz "The processor Vendor ID is %s \n" 5.section.bss. 6.lcomm buffer, section.text. 8.globl _start.

1 /* file cpuid2.s */ 4.asciz The processor Vendor ID is %s \n 5.section.bss. 6.lcomm buffer, section.text. 8.globl _start. 1 /* file cpuid2.s */ 2.section.data 3 output: 4.asciz "The processor Vendor ID is %s \n" 5.section.bss 6.lcomm buffer, 12 7.section.text 8.globl _start 9 _start: 10 movl $0, %eax 11 cpuid 12 movl $buffer,

More information

Section 4: Threads CS162. September 15, Warmup Hello World Vocabulary 2

Section 4: Threads CS162. September 15, Warmup Hello World Vocabulary 2 CS162 September 15, 2016 Contents 1 Warmup 2 1.1 Hello World............................................ 2 2 Vocabulary 2 3 Problems 3 3.1 Join................................................ 3 3.2 Stack

More information

Meet & Greet! Come hang out with your TAs and Fellow Students (& eat free insomnia cookies) When : TODAY!! 5-6 pm Where : 3rd Floor Atrium, CIT

Meet & Greet! Come hang out with your TAs and Fellow Students (& eat free insomnia cookies) When : TODAY!! 5-6 pm Where : 3rd Floor Atrium, CIT Meet & Greet! Come hang out with your TAs and Fellow Students (& eat free insomnia cookies) When : TODAY!! 5-6 pm Where : 3rd Floor Atrium, CIT CS33 Intro to Computer Systems XI 1 Copyright 2017 Thomas

More information