An Introduction to Visit Window Challenges and Solutions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "An Introduction to Visit Window Challenges and Solutions"

Transcription

1 ABSTRACT Paper An Introduction to Visit Window Challenges and Solutions Mai Ngo, SynteractHCR In clinical trial studies, statistical programmers often face the challenge of subjects visits not occurring on the exact scheduled visit dates. As a result, visit windowing is often needed for analysis purposes. This paper aims to provide a general introduction to visit window programming. I present some different scenarios where visit windowing is needed and sample SAS codes for each of these cases. I also discuss strategies for applying the visit window rules to multiple programs with different visit frequencies and window lengths and cover validation strategies in these cases. INTRODUCTION A large amount of clinical trial data to evaluate the safety and efficacy of new drugs is by-visit assessments that were designed to follow a schedule of assessment specified in the trial protocol. The typical schedule of assessment lists target visit days and associated tests to be conducted on these visits; some also specify associated visit windows for these visits. However, it is often difficult to schedule visits and keep patients on schedule. Mistakes may also be made at clinics when calculating the proper day to set the next appointment or when entering visit labels into the database. Because of this, statistical programmers of clinical data often work with data where the visit labels in the raw data do not match with the intended visit numbering in the schedule of assessment. While presenting summaries of data by visit, one can choose to summarize either by the visit labels in the raw data or by analysis visits. Analysis visits are selected from the application of an algorithm to identify visits that are closest to the intended visit in the schedule of assessment. This practice is called visit windowing. It has the advantage of allowing for more comparable comparison of test results temporally and correcting for mistakes that may have occurred when visit label information is entered at the sites. Another scenario where visit windows can be used is to identify missed visits, or visits that are out-ofwindow, and determine how severe these issues are. This information could be useful in reviewing protocol deviations. The visit window rule ultimately depends on the specific study and the analysis goal. In this paper, I will present an introduction of the most common rules that I have encountered in my work and some example SAS codes for programming visit window corresponding to these rules. While these are simple codes, my goal is to highlight some common threads in the visit window algorithms often used in analyzing clinical trial data. VISIT WINDOW RULE OVERVIEW OF A TYPICAL CLINICAL TRIAL VISIT WINDOW ALGORITHM Below is a snapshot example of the Schedule of Assessment in a clinical protocol. A visit s target study day is based on the Schedule of Assessment in the clinical protocol. In other words, the day in this schedule is the Study Day (days since the treatment first started), not a calendar day. Visit window range used in programming could follow what is specified in the protocol or follow different ranges as defined in the Statistical Analysis Plan (SAP). The visit-window ranges cannot overlap but they may either cover the entire study period or there may be gaps between them. Follow-up visits are typically not included in visit windows, or assigned to Follow-up visit regardless of the nominal visits. Baseline visits or the visits when the treatment first starts (Day 0 or Day 1) can either be windowed or not. A visit window algorithm consists of the following 2 components: 1. Specification of a visit window range (earliest and latest study day) for each visit in the period that the visits need to be windowed ; 2. Specification of a rule that enables the selection of a unique visit for all visits that fall within a visit window range. This selected visit is the analysis visit that will be used in by-visit summaries. 1

2 IMPLEMENTATION OF THE VISIT WINDOW RULE SAS PROGRAMMING EXAMPLES IN THE CLINICAL TRIAL CONTEXT Writing the programming specifications The visit window rule specified in the Statistical Analysis Plan (SAP) is translated into the programming specifications for Analysis Data Model, hereafter called ADaM specs. I have seen visit window rules specified both as a separate tab in the ADaM specs Excel spreadsheet, or as a part of the specs for each corresponding ADaM dataset. Table 1 shows an example of the ADaM specs for visit window programming presented in a separate tab in the ADaM specs spreadsheet. ADY, study day, is the day from the date where the treatment first started (TRTSDT) for a subject and is calculated as ADY= visit date (ADT) TRTSDT + (ADT ge TRTSDT) if the treatment start date is counted as Day 1, or ADY=ADT TRTSDT if the treatment start date is counted as Day 0. AWTARGET is the target study day for a visit, often specified in the Schedule of Assessment in the protocol. AWLO and AWHI are lower limit and upper limit (study day) of the visit window, respectively. AWTDIFF is the difference between the visit s actual study day and the target study day for that visit, AWTDIFF could be actual or absolute value of this difference. AVISIT is the label of the selected analysis visit after applying the visit window range and tie-breaker rule and AVISITN is its corresponding numeric variable. Variable Label Define Comments USUBJID Unique Subject ID TRTSDT Treatment Start Date Date of first dose of study drug VISITNUM Visit (Numeric) Visit (from Raw Data) VISIT Visit Visit (from Raw Data). One-to-one map to VISITNUM AVISITN Analysis Visit (Numeric) The numeric code for AVISIT. One-to-one map to AVISIT. AVISIT Analysis Visit Derived using visit windowing per SAP Appendix A ADT Analysis Date Visit date ADY Analysis Relative Day (Study Day) If ADT>=TRTSDT then (ADT-TRTSDT) +1; else (ADT- TRTSDT). AWTARGET Analysis Window Target The targeted day for the analysis visit (per SAP Appendix A and B). AWTDIFF Analysis Window Diff from Target Absolute value of ADY - AWTARGET. AWLO AWHI AWU Analysis Window Beginning Time Point Analysis Window Ending Time Point Analysis Window Unit The beginning time point (day) for the analysis visit. Visit windows are defined in SAP Appendix A. The ending time point (day) for the analysis visit. Visit windows are defined in SAP Appendix A. For all records that have a non-missing AWTDIFF, set to 'Days'. Table 1. Programming specifications for Analysis Data Model (ADaM specs). Programming visit window in SAS A. The Basics In this section, I give an example of SAS codes to derive the analysis visits (AVISITN) following a visit window rule. Here is the example dataset I will use to illustrate the visit window programming steps: data allrec; infile datalines dlm=','; length visit $12; input usubjid visit $ visitnum ady vistyp aval; datalines; 2

3 1, Month3, 3, 100, 1, 78 1, Unscheduled, 99, 100, 4, 76 1, Month6, 6, 227, 1, 60 1, Unscheduled, 99, 182, 4, 90 1, Unscheduled, 99, 178, 4, 120 1, Unscheduled, 99, 250, 4, 75 1, Unscheduled, 102, 250, 4, 80 ; The first step is to identify all visits that fall in the visit window. This step can be broken down into 2 substeps: (1a) Set up visit window ranges: The visit window ranges for the planned 3-month interval visits are: Visit Target Study Day (AWTARGET) Analysis Window Study Day Low (AWLO) High (AWHI) Month Month Month Table 2. Visit window ranges. In the code below, I set up a shell visit window data set based on the ranges specified above: data awindow; input avisitn awtarget awlo awhi; datalines; ; (1b) Choose all visits where study day (ADY) is between AWLO and AWHI; hence after, these visits are called windowed visits: proc sql; create table windowed as select a.*, b.* from allrec a left join awindow b on awlo <= ady <= awhi; quit; The second step is to select the analysis visit (one per visit window range) following the tie-breaker rule in the SAP. Below are some of the common rules that I have encountered in my work. (2a) Tie-Breaker Rule Example 1 - Selecting the closest visit to the planned target visit study day To do this, we first need to calculate the distance (number of days), AWTDIFF, between a visit and a target study day: data windowed; if ady ne. and awtarget ne. then AWTDIFF=abs(ady-awtarget); 3

4 Depending on idiosyncrasies in the data, such as whether there are multiple visits on the same date, etc., the tie-breaker rule for selecting the closest visit can be simple or more complex. For some data, (A1) and (A2) would be sufficient for selecting unique analysis visits for each target visit. For other data, additional tie-breaker rules need to be specified and programmed for, such as (B1) and (B2). In the example code below, USUBJID is a patient s unique ID number. A1. Select the visit with closest to the target study day, i.e. the one with the smallest AWTDIFF A2. If 2 assessments are the same distance from the target day for a particular analysis window, the later assessment is chosen: proc sort data = windowed; by usubjid avisitn descending awtdiff ady; data allrec2; by usubjid avisitn descending awtdiff ady; if last.avisitn then anl01fl= Y ; B. If there are two or more assessments taken on the same date or same date and time, the rules for choosing the assessment are: (B1) First take the assessment from the scheduled visit, then take the assessment from the retest visit (applicable to laboratory tests), then take the assessment from the discontinuation visit, then take the assessment from the unscheduled visit. (B2) Take the assessment associated with the smallest (raw) visit number. In the example code below, variable VISTYP has been programmed to take the value of 1 to 4 corresponding to assessment from the scheduled visit, from the re-test visit, from the discontinuation visit, and from an unscheduled visit, respectively: proc sort data = windowed; by usubjid avisitn descending awtdiff ady descending vistyp descending visitnum; data final; by usubjid avisitn descending awtdiff ady descending vistyp descending visitnum; if last.avisitn then anl01fl= Y ; (2b) Tie Breaker Rule Example 2 - Selecting the visit with the worst test result (most abnormal value) In the example code below, variable AVALAB has been programmed such that abnormal value is in increasing order of AVALAB: proc sort data=windowed; by usubjid avisitn avalab; data final; by usubjid avisitn avalab; 4

5 if last.avisitn then anl01fl= Y ; The third step is to set a value for AVISIT and AVISITN for records that are not windowed. For example, a visit window rule can specify to display raw visit labels for pre-treatment and follow-up visits; otherwise, display Not Windowed for visits where the visit dates are missing or partial. Finally, for records that are considered for visit windowing, we tidy up the visit window variables (AVISIT, AVISITN, ANL01FL (optional), AWTARGET, AWTDIFF, AWLO, AWHI). There are two approaches to do this. In the first approach, we display values of these variables for all visits that fall in a visit window. An analysis flag, e.g. ANL01FL, is created that takes the value of Y for only the selected analysis visit. For other visits, the value of this flag is set to missing. We can then create by-visit summary in tables by selecting only records where ANL01FL equals Y. An In the second approach, all the visit-window variables above are set to missing for a visit record that is not the selected analysis visit even if this visit falls in the visit window range. As a result, by-visit summaries can be created by selecting records with non-missing values of AVISIT. To follow this approach, the data set FINAL can be merged back to the raw data set. Then for visits that are not selected by the tie-breaker rule, all the visit window variables can be set to missing. B. Additional Levels of Complexity B1. What about the last on-study visit? There are two approaches for programming visit window for the last on-study visit or end-of-study visit. The first approach is simply to use the end-of-study visit as labeled in the raw data. The second approach is to either specify an upper limit study day for the window of the last visit or leave that range to be infinite (i.e. AWHI is blank). The third approach requires applying a check to ensure that the analysis visit is selected among only visits that did not occur after the last day the subject is on the study. In essence, this means that AWHI for the last visit is the last day the subject is on the study. Below is one example of this rule: (a) Get the last value of SVSTDTC (start date of an activity in a visit) for each subject, compare it with the last dose date and take the later of these 2 dates. (b) Ensure that the dates for all visits are prior to/on the date from Part (a). B2. Visit window rules vary across different protocol versions While this requires more lengthy set up of the visit window range depending on the protocol version the subject is enrolled under, this could be done relatively easily in terms of programming once the visit window rule is specified B3. Distinguishing Out-of-Window visits from Missed visits Here is an example of the rule for programming protocol deviation categories for MRI testing that I encountered in a study: if an assessment was performed at an assigned visit but during an out of a defined window period, label it as an out of window assessment. Otherwise, if there is no visit that falls in the defined visit window for Visit X, Visit X is flagged as missed visit. Each assessment should be counted once. While this requires more complicated coding, the principle for programming visit windows is still the same. C. Writing visit window codes more efficiently user-defined macros for visit window programming A user-defined SAS macro would be useful when the visit windowing needs to be applied for many datasets; especially when the visit window ranges, i.e. the difference between AWLO and AWHI for each planned visit, and the selection rule for analysis visits are similar across different analysis datasets. Below is an example of a user-defined macro that I wrote. In the case where the visit window ranges are very similar across datasets, the macro can also be tweaked to include the steps of generating the visit 5

6 window shell (the AWINDOW dataset) instead of having this dataset generated outside the macro in each individual analysis dataset program. However, if the visit window ranges vary widely across different datasets, setting up the visit window shell independently in each program allows for the needed flexibility. For validation purpose, the validation programmer can independently write a validation visit window macro to be called in the validation programs: %macro wind(indat=,windat=,param=,crit=,out=,anlfl=); proc sql; create table temp1 as select a.*, b.* from &indat a left join &windat b on awlo <= ady <= awhi; quit; data temp1; set temp1; awtdiff=abs(ady-awtarget); proc sort data=temp1; by usubjid avisitn &crit ; data &out; set temp1; by &param usubjid avisitn &crit ; %if &anlfl ^= %then %do; if last.avisitn then &anlfl='y'; %end; %else %do; if last.avisitn; %end; %mend; For example, this macro call replicates the steps illustrated in (B2): %wind(indat=allrec, windat=awindow, param=, crit= descending awtdiff ady descending vistyp descending visitnum, out=final, anlfl=y); CONCLUSION Programming visit windows is a common task for analyses of clinical trial data. While the specific visit window rule varies across studies, I describe in this paper common building blocks for programming visit windows. At the same time, note that many levels of complexity could be added to these building blocks. Also, programmers should examine the data to ensure that (1) the visit window algorithm makes sense, (2) the selection of the analysis visit is unique for the dataset, and (3) the program is dynamic so that it still works as more data come in. CONTACT INFORMATION Your comments and questions are valued and encouraged. Contact the author at: Mai Ngo SynteractHCR 430 Davis Dr, Morrisville, NC Work Phone: LinkedIn: 6

An Efficient Solution to Efficacy ADaM Design and Implementation

An Efficient Solution to Efficacy ADaM Design and Implementation PharmaSUG 2017 - Paper AD05 An Efficient Solution to Efficacy ADaM Design and Implementation Chengxin Li, Pfizer Consumer Healthcare, Madison, NJ, USA Zhongwei Zhou, Pfizer Consumer Healthcare, Madison,

More information

PharmaSUG DS05

PharmaSUG DS05 PharmaSUG 2013 - DS05 Building Traceability for End Points in Datasets Using SRCDOM, SRCVAR, and SRCSEQ Triplet Xiangchen Cui, Vertex Pharmaceuticals Incorporated Tathabbai Pakalapati, Cytel Inc. Qunming

More information

Deriving Rows in CDISC ADaM BDS Datasets

Deriving Rows in CDISC ADaM BDS Datasets ABSTRACT PharmaSUG 2017 Paper DS22 Deriving Rows in CDISC ADaM BDS Datasets Sandra Minjoe, Accenture Accelerated R&D Services The ADaM Basic Data Structure (BDS) can be used for many analysis needs, including

More information

Validating Analysis Data Set without Double Programming - An Alternative Way to Validate the Analysis Data Set

Validating Analysis Data Set without Double Programming - An Alternative Way to Validate the Analysis Data Set PharmaSUG 2014 Paper AD26 Validating Analysis Data Set without Double Programming - An Alternative Way to Validate the Analysis Data Set Linfeng Xu, Novartis, East Hanover, NJ Christina Scienski, Novartis,

More information

PharmaSUG Paper DS24

PharmaSUG Paper DS24 PharmaSUG 2017 - Paper DS24 ADQRS: Basic Principles for Building Questionnaire, Rating and Scale Datasets Nancy Brucken, inventiv Health, Ann Arbor, MI Karin LaPann, Shire, Lexington, MA ABSTRACT Questionnaires,

More information

PharmaSUG Paper DS06 Designing and Tuning ADaM Datasets. Songhui ZHU, K&L Consulting Services, Fort Washington, PA

PharmaSUG Paper DS06 Designing and Tuning ADaM Datasets. Songhui ZHU, K&L Consulting Services, Fort Washington, PA PharmaSUG 2013 - Paper DS06 Designing and Tuning ADaM Datasets Songhui ZHU, K&L Consulting Services, Fort Washington, PA ABSTRACT The developers/authors of CDISC ADaM Model and ADaM IG made enormous effort

More information

Using PROC SQL to Generate Shift Tables More Efficiently

Using PROC SQL to Generate Shift Tables More Efficiently ABSTRACT SESUG Paper 218-2018 Using PROC SQL to Generate Shift Tables More Efficiently Jenna Cody, IQVIA Shift tables display the change in the frequency of subjects across specified categories from baseline

More information

Creating an ADaM Data Set for Correlation Analyses

Creating an ADaM Data Set for Correlation Analyses PharmaSUG 2018 - Paper DS-17 ABSTRACT Creating an ADaM Data Set for Correlation Analyses Chad Melson, Experis Clinical, Cincinnati, OH The purpose of a correlation analysis is to evaluate relationships

More information

THE DATA DETECTIVE HINTS AND TIPS FOR INDEPENDENT PROGRAMMING QC. PhUSE Bethan Thomas DATE PRESENTED BY

THE DATA DETECTIVE HINTS AND TIPS FOR INDEPENDENT PROGRAMMING QC. PhUSE Bethan Thomas DATE PRESENTED BY THE DATA DETECTIVE HINTS AND TIPS FOR INDEPENDENT PROGRAMMING QC DATE PhUSE 2016 PRESENTED BY Bethan Thomas What this presentation will cover And what this presentation will not cover What is a data detective?

More information

Introduction to ADaM standards

Introduction to ADaM standards Introduction to ADaM standards Elke Sennewald, Director Biostatistics EU/AP, 06 March 2009 1 Outline ADaM Version 2.0 / 2.1 General Considerations ADaM draft Version 2.1 ADaMIG draft Version 1.0 ADaM Variables

More information

How to write ADaM specifications like a ninja.

How to write ADaM specifications like a ninja. Poster PP06 How to write ADaM specifications like a ninja. Caroline Francis, Independent SAS & Standards Consultant, Torrevieja, Spain ABSTRACT To produce analysis datasets from CDISC Study Data Tabulation

More information

Applying ADaM Principles in Developing a Response Analysis Dataset

Applying ADaM Principles in Developing a Response Analysis Dataset PharmaSUG2010 Paper CD03 Applying ADaM Principles in Developing a Response Analysis Dataset Mei Dey, Merck & Co., Inc Lisa Pyle, Merck & Co., Inc ABSTRACT The Clinical Data Interchange Standards Consortium

More information

Data Edit-checks Integration using ODS Tagset Niraj J. Pandya, Element Technologies Inc., NJ Vinodh Paida, Impressive Systems Inc.

Data Edit-checks Integration using ODS Tagset Niraj J. Pandya, Element Technologies Inc., NJ Vinodh Paida, Impressive Systems Inc. PharmaSUG2011 - Paper DM03 Data Edit-checks Integration using ODS Tagset Niraj J. Pandya, Element Technologies Inc., NJ Vinodh Paida, Impressive Systems Inc., TX ABSTRACT In the Clinical trials data analysis

More information

From SAP to BDS: The Nuts and Bolts Nancy Brucken, i3 Statprobe, Ann Arbor, MI Paul Slagle, United BioSource Corp., Ann Arbor, MI

From SAP to BDS: The Nuts and Bolts Nancy Brucken, i3 Statprobe, Ann Arbor, MI Paul Slagle, United BioSource Corp., Ann Arbor, MI PharmaSUG2011 - Paper HW05 From SAP to BDS: The Nuts and Bolts Nancy Brucken, i3 Statprobe, Ann Arbor, MI Paul Slagle, United BioSource Corp., Ann Arbor, MI ABSTRACT You've just read through the protocol,

More information

Sorting big datasets. Do we really need it? Daniil Shliakhov, Experis Clinical, Kharkiv, Ukraine

Sorting big datasets. Do we really need it? Daniil Shliakhov, Experis Clinical, Kharkiv, Ukraine PharmaSUG 2015 - Paper QT21 Sorting big datasets. Do we really need it? Daniil Shliakhov, Experis Clinical, Kharkiv, Ukraine ABSTRACT Very often working with big data causes difficulties for SAS programmers.

More information

Interactive Programming Using Task in SAS Studio

Interactive Programming Using Task in SAS Studio ABSTRACT PharmaSUG 2018 - Paper QT-10 Interactive Programming Using Task in SAS Studio Suwen Li, Hoffmann-La Roche Ltd., Mississauga, ON SAS Studio is a web browser-based application with visual point-and-click

More information

Reproducibly Random Values William Garner, Gilead Sciences, Inc., Foster City, CA Ting Bai, Gilead Sciences, Inc., Foster City, CA

Reproducibly Random Values William Garner, Gilead Sciences, Inc., Foster City, CA Ting Bai, Gilead Sciences, Inc., Foster City, CA ABSTRACT PharmaSUG 2015 - Paper QT24 Reproducibly Random Values William Garner, Gilead Sciences, Inc., Foster City, CA Ting Bai, Gilead Sciences, Inc., Foster City, CA For questionnaire data, multiple

More information

Automate Clinical Trial Data Issue Checking and Tracking

Automate Clinical Trial Data Issue Checking and Tracking PharmaSUG 2018 - Paper AD-31 ABSTRACT Automate Clinical Trial Data Issue Checking and Tracking Dale LeSueur and Krishna Avula, Regeneron Pharmaceuticals Inc. Well organized and properly cleaned data are

More information

Xiangchen (Bob) Cui, Tathabbai Pakalapati, Qunming Dong Vertex Pharmaceuticals, Cambridge, MA

Xiangchen (Bob) Cui, Tathabbai Pakalapati, Qunming Dong Vertex Pharmaceuticals, Cambridge, MA Building Traceability for End Points in Analysis Datasets Using SRCDOM, SRCVAR, and SRCSEQ Triplet Xiangchen (Bob) Cui, Tathabbai Pakalapati, Qunming Dong Vertex Pharmaceuticals, Cambridge, MA 2010 Vertex

More information

An Efficient Tool for Clinical Data Check

An Efficient Tool for Clinical Data Check PharmaSUG 2018 - Paper AD-16 An Efficient Tool for Clinical Data Check Chao Su, Merck & Co., Inc., Rahway, NJ Shunbing Zhao, Merck & Co., Inc., Rahway, NJ Cynthia He, Merck & Co., Inc., Rahway, NJ ABSTRACT

More information

Let Hash SUMINC Count For You Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA

Let Hash SUMINC Count For You Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA ABSTRACT PharmaSUG 2014 - Paper CC02 Let Hash SUMINC Count For You Joseph Hinson, Accenture Life Sciences, Berwyn, PA, USA Counting of events is inevitable in clinical programming and is easily accomplished

More information

CFB: A Programming Pattern for Creating Change from Baseline Datasets Lei Zhang, Celgene Corporation, Summit, NJ

CFB: A Programming Pattern for Creating Change from Baseline Datasets Lei Zhang, Celgene Corporation, Summit, NJ Paper TT13 CFB: A Programming Pattern for Creating Change from Baseline Datasets Lei Zhang, Celgene Corporation, Summit, NJ ABSTRACT In many clinical studies, Change from Baseline analysis is frequently

More information

Traceability in the ADaM Standard Ed Lombardi, SynteractHCR, Inc., Carlsbad, CA

Traceability in the ADaM Standard Ed Lombardi, SynteractHCR, Inc., Carlsbad, CA ABSTRACT PharmaSUG 2013 - Paper PO13 Traceability in the ADaM Standard Ed Lombardi, SynteractHCR, Inc., Carlsbad, CA Traceability is one of the fundamentals of the ADaM Standard. However, there is not

More information

Metadata and ADaM.

Metadata and ADaM. Metadata and ADaM 1 Disclaimer Any views or opinions presented in this presentation are solely those of the author and do not necessarily represent those of the company. 2 Agenda Introduction of ADaM Metadata

More information

Statistics and Data Analysis. Common Pitfalls in SAS Statistical Analysis Macros in a Mass Production Environment

Statistics and Data Analysis. Common Pitfalls in SAS Statistical Analysis Macros in a Mass Production Environment Common Pitfalls in SAS Statistical Analysis Macros in a Mass Production Environment Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ Aiming Yang, Merck & Co., Inc., Rahway, NJ ABSTRACT Four pitfalls are commonly

More information

PharmaSUG 2013 CC26 Automating the Labeling of X- Axis Sanjiv Ramalingam, Vertex Pharmaceuticals, Inc., Cambridge, MA

PharmaSUG 2013 CC26 Automating the Labeling of X- Axis Sanjiv Ramalingam, Vertex Pharmaceuticals, Inc., Cambridge, MA PharmaSUG 2013 CC26 Automating the Labeling of X- Axis Sanjiv Ramalingam, Vertex Pharmaceuticals, Inc., Cambridge, MA ABSTRACT Labeling of the X-axis usually involves a tedious axis statement specifying

More information

Keeping Track of Database Changes During Database Lock

Keeping Track of Database Changes During Database Lock Paper CC10 Keeping Track of Database Changes During Database Lock Sanjiv Ramalingam, Biogen Inc., Cambridge, USA ABSTRACT Higher frequency of data transfers combined with greater likelihood of changes

More information

Working with Composite Endpoints: Constructing Analysis Data Pushpa Saranadasa, Merck & Co., Inc., Upper Gwynedd, PA

Working with Composite Endpoints: Constructing Analysis Data Pushpa Saranadasa, Merck & Co., Inc., Upper Gwynedd, PA PharmaSug2016- Paper HA03 Working with Composite Endpoints: Constructing Analysis Data Pushpa Saranadasa, Merck & Co., Inc., Upper Gwynedd, PA ABSTRACT A composite endpoint in a Randomized Clinical Trial

More information

Clinical Data Visualization using TIBCO Spotfire and SAS

Clinical Data Visualization using TIBCO Spotfire and SAS ABSTRACT SESUG Paper RIV107-2017 Clinical Data Visualization using TIBCO Spotfire and SAS Ajay Gupta, PPD, Morrisville, USA In Pharmaceuticals/CRO industries, you may receive requests from stakeholders

More information

Chaining Logic in One Data Step Libing Shi, Ginny Rego Blue Cross Blue Shield of Massachusetts, Boston, MA

Chaining Logic in One Data Step Libing Shi, Ginny Rego Blue Cross Blue Shield of Massachusetts, Boston, MA Chaining Logic in One Data Step Libing Shi, Ginny Rego Blue Cross Blue Shield of Massachusetts, Boston, MA ABSTRACT Event dates stored in multiple rows pose many challenges that have typically been resolved

More information

A Taste of SDTM in Real Time

A Taste of SDTM in Real Time A Taste of SDTM in Real Time Changhong Shi, Merck & Co., Inc., Rahway, NJ Beilei Xu, Merck & Co., Inc., Rahway, NJ ABSTRACT The Study Data Tabulation Model (SDTM) is a Clinical Data Interchange Standards

More information

A Practical and Efficient Approach in Generating AE (Adverse Events) Tables within a Clinical Study Environment

A Practical and Efficient Approach in Generating AE (Adverse Events) Tables within a Clinical Study Environment A Practical and Efficient Approach in Generating AE (Adverse Events) Tables within a Clinical Study Environment Abstract Jiannan Hu Vertex Pharmaceuticals, Inc. When a clinical trial is at the stage of

More information

Making a List, Checking it Twice (Part 1): Techniques for Specifying and Validating Analysis Datasets

Making a List, Checking it Twice (Part 1): Techniques for Specifying and Validating Analysis Datasets PharmaSUG2011 Paper CD17 Making a List, Checking it Twice (Part 1): Techniques for Specifying and Validating Analysis Datasets Elizabeth Li, PharmaStat LLC, Newark, California Linda Collins, PharmaStat

More information

Automation of SDTM Programming in Oncology Disease Response Domain Yiwen Wang, Yu Cheng, Ju Chen Eli Lilly and Company, China

Automation of SDTM Programming in Oncology Disease Response Domain Yiwen Wang, Yu Cheng, Ju Chen Eli Lilly and Company, China ABSTRACT Study Data Tabulation Model (SDTM) is an evolving global standard which is widely used for regulatory submissions. The automation of SDTM programming is essential to maximize the programming efficiency

More information

Preparing the Office of Scientific Investigations (OSI) Requests for Submissions to FDA

Preparing the Office of Scientific Investigations (OSI) Requests for Submissions to FDA PharmaSUG 2018 - Paper EP15 Preparing the Office of Scientific Investigations (OSI) Requests for Submissions to FDA Ellen Lin, Wei Cui, Ran Li, and Yaling Teng Amgen Inc, Thousand Oaks, CA ABSTRACT The

More information

PharmaSUG2014 Paper DS09

PharmaSUG2014 Paper DS09 PharmaSUG2014 Paper DS09 An ADaM Interim Dataset for Time-to-Event Analysis Needs Tom Santopoli, Accenture, Berwyn, PA Kim Minkalis, Accenture, Berwyn, PA Sandra Minjoe, Accenture, Berwyn, PA ABSTRACT

More information

Advanced Visualization using TIBCO Spotfire and SAS

Advanced Visualization using TIBCO Spotfire and SAS PharmaSUG 2018 - Paper DV-04 ABSTRACT Advanced Visualization using TIBCO Spotfire and SAS Ajay Gupta, PPD, Morrisville, USA In Pharmaceuticals/CRO industries, you may receive requests from stakeholders

More information

Are you Still Afraid of Using Arrays? Let s Explore their Advantages

Are you Still Afraid of Using Arrays? Let s Explore their Advantages Paper CT07 Are you Still Afraid of Using Arrays? Let s Explore their Advantages Vladyslav Khudov, Experis Clinical, Kharkiv, Ukraine ABSTRACT At first glance, arrays in SAS seem to be a complicated and

More information

ADaM Implementation Guide Prepared by the CDISC ADaM Team

ADaM Implementation Guide Prepared by the CDISC ADaM Team 1 2 3 ADaM Implementation Guide Prepared by the CDISC ADaM Team 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Revision History Notes to Readers Date Version Summary of Changes May 30, 2008 1.0 Draft

More information

Want to Do a Better Job? - Select Appropriate Statistical Analysis in Healthcare Research

Want to Do a Better Job? - Select Appropriate Statistical Analysis in Healthcare Research Want to Do a Better Job? - Select Appropriate Statistical Analysis in Healthcare Research Liping Huang, Center for Home Care Policy and Research, Visiting Nurse Service of New York, NY, NY ABSTRACT The

More information

To conceptualize the process, the table below shows the highly correlated covariates in descending order of their R statistic.

To conceptualize the process, the table below shows the highly correlated covariates in descending order of their R statistic. Automating the process of choosing among highly correlated covariates for multivariable logistic regression Michael C. Doherty, i3drugsafety, Waltham, MA ABSTRACT In observational studies, there can be

More information

ADaM for Medical Devices: Extending the Current ADaM Structures

ADaM for Medical Devices: Extending the Current ADaM Structures PharmaSUG 2018 - Paper MD-02 ADaM for Medical s: Extending the Current ADaM Structures Sandra Minjoe, PRA Health Sciences; Julia Yang, Medtronic PLC; Priya Gopal, TESARO, Inc. ABSTRACT The current ADaM

More information

STAT 7000: Experimental Statistics I

STAT 7000: Experimental Statistics I STAT 7000: Experimental Statistics I 2. A Short SAS Tutorial Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2009 Peng Zeng (Auburn University) STAT 7000 Lecture Notes Fall 2009

More information

PharmaSUG Paper PO12

PharmaSUG Paper PO12 PharmaSUG 2015 - Paper PO12 ABSTRACT Utilizing SAS for Cross-Report Verification in a Clinical Trials Setting Daniel Szydlo, Fred Hutchinson Cancer Research Center, Seattle, WA Iraj Mohebalian, Fred Hutchinson

More information

Some Considerations When Designing ADaM Datasets

Some Considerations When Designing ADaM Datasets Some Considerations When Designing ADaM Datasets Italian CDISC UN Day - Milan 27 th October 2017 Antonio Valenti Principal Statistical Programmer CROS NT - Verona Content Disclaimer All content included

More information

Conversion of CDISC specifications to CDISC data specifications driven SAS programming for CDISC data mapping

Conversion of CDISC specifications to CDISC data specifications driven SAS programming for CDISC data mapping PharmaSUG 2017 - Paper DA03 Conversion of CDISC specifications to CDISC data specifications driven SAS programming for CDISC data mapping Yurong Dai, Jiangang Jameson Cai, Eli Lilly and Company ABSTRACT

More information

From Manual to Automatic with Overdrive - Using SAS to Automate Report Generation Faron Kincheloe, Baylor University, Waco, TX

From Manual to Automatic with Overdrive - Using SAS to Automate Report Generation Faron Kincheloe, Baylor University, Waco, TX Paper 152-27 From Manual to Automatic with Overdrive - Using SAS to Automate Report Generation Faron Kincheloe, Baylor University, Waco, TX ABSTRACT This paper is a case study of how SAS products were

More information

The Power of Combining Data with the PROC SQL

The Power of Combining Data with the PROC SQL ABSTRACT Paper CC-09 The Power of Combining Data with the PROC SQL Stacey Slone, University of Kentucky Markey Cancer Center Combining two data sets which contain a common identifier with a MERGE statement

More information

SAS (Statistical Analysis Software/System)

SAS (Statistical Analysis Software/System) SAS (Statistical Analysis Software/System) Clinical SAS:- Class Room: Training Fee & Duration : 23K & 3 Months Online: Training Fee & Duration : 25K & 3 Months Learning SAS: Getting Started with SAS Basic

More information

Implementing CDISC Using SAS. Full book available for purchase here.

Implementing CDISC Using SAS. Full book available for purchase here. Implementing CDISC Using SAS. Full book available for purchase here. Contents About the Book... ix About the Authors... xv Chapter 1: Implementation Strategies... 1 The Case for Standards... 1 Which Models

More information

186 Statistics, Data Analysis and Modeling. Proceedings of MWSUG '95

186 Statistics, Data Analysis and Modeling. Proceedings of MWSUG '95 A Statistical Analysis Macro Library in SAS Carl R. Haske, Ph.D., STATPROBE, nc., Ann Arbor, M Vivienne Ward, M.S., STATPROBE, nc., Ann Arbor, M ABSTRACT Statistical analysis plays a major role in pharmaceutical

More information

INTRODUCTION TO SAS HOW SAS WORKS READING RAW DATA INTO SAS

INTRODUCTION TO SAS HOW SAS WORKS READING RAW DATA INTO SAS TO SAS NEED FOR SAS WHO USES SAS WHAT IS SAS? OVERVIEW OF BASE SAS SOFTWARE DATA MANAGEMENT FACILITY STRUCTURE OF SAS DATASET SAS PROGRAM PROGRAMMING LANGUAGE ELEMENTS OF THE SAS LANGUAGE RULES FOR SAS

More information

Hands-On ADaM ADAE Development Sandra Minjoe, Accenture Life Sciences, Wayne, Pennsylvania Kim Minkalis, Accenture Life Sciences, Wayne, Pennsylvania

Hands-On ADaM ADAE Development Sandra Minjoe, Accenture Life Sciences, Wayne, Pennsylvania Kim Minkalis, Accenture Life Sciences, Wayne, Pennsylvania PharmaSUG 2014 - Paper HT03 Hands-On ADaM ADAE Development Sandra Minjoe, Accenture Life Sciences, Wayne, Pennsylvania Kim Minkalis, Accenture Life Sciences, Wayne, Pennsylvania ABSTRACT The Analysis Data

More information

Reducing SAS Dataset Merges with Data Driven Formats

Reducing SAS Dataset Merges with Data Driven Formats Paper CT01 Reducing SAS Dataset Merges with Data Driven Formats Paul Grimsey, Roche Products Ltd, Welwyn Garden City, UK ABSTRACT Merging different data sources is necessary in the creation of analysis

More information

Automate Analysis Results Metadata in the Define-XML v2.0. Hong Qi, Majdoub Haloui, Larry Wu, Gregory T Golm Merck & Co., Inc.

Automate Analysis Results Metadata in the Define-XML v2.0. Hong Qi, Majdoub Haloui, Larry Wu, Gregory T Golm Merck & Co., Inc. Automate Analysis Results Metadata in the Define-XML v2.0 Hong Qi, Majdoub Haloui, Larry Wu, Gregory T Golm Merck & Co., Inc., USA 1 Topics Introduction Analysis Results Metadata (ARM) Version 1.0 o o

More information

It s All About Getting the Source and Codelist Implementation Right for ADaM Define.xml v2.0

It s All About Getting the Source and Codelist Implementation Right for ADaM Define.xml v2.0 PharmaSUG 2018 - Paper SS-15 It s All About Getting the Source and Codelist Implementation Right for ADaM Define.xml v2.0 ABSTRACT Supriya Davuluri, PPD, LLC, Morrisville, NC There are some obvious challenges

More information

What's the Difference? Using the PROC COMPARE to find out.

What's the Difference? Using the PROC COMPARE to find out. MWSUG 2018 - Paper SP-069 What's the Difference? Using the PROC COMPARE to find out. Larry Riggen, Indiana University, Indianapolis, IN ABSTRACT We are often asked to determine what has changed in a database.

More information

Hands-On ADaM ADAE Development Sandra Minjoe, Accenture Life Sciences, Wayne, Pennsylvania

Hands-On ADaM ADAE Development Sandra Minjoe, Accenture Life Sciences, Wayne, Pennsylvania PharmaSUG 2013 - Paper HT03 Hands-On ADaM ADAE Development Sandra Minjoe, Accenture Life Sciences, Wayne, Pennsylvania ABSTRACT The Analysis Data Model (ADaM) Data Structure for Adverse Event Analysis

More information

ADaM and traceability: Chiesi experience

ADaM and traceability: Chiesi experience ADaM and traceability: Chiesi experience BIAS Seminar «Data handling and reporting in clinical trials with SAS» Glauco Cappellini 22-Feb-2013 Agenda Chiesi Model for Biometrics Regulatory Background ADaM:

More information

PharmaSUG Paper CC11

PharmaSUG Paper CC11 PharmaSUG 2014 - Paper CC11 Streamline the Dual Antiplatelet Therapy Record Processing in SAS by Using Concept of Queue and Run-Length Encoding Kai Koo, Abbott Vascular, Santa Clara, CA ABSTRACT Dual antiplatelet

More information

Programming checks: Reviewing the overall quality of the deliverables without parallel programming

Programming checks: Reviewing the overall quality of the deliverables without parallel programming PharmaSUG 2016 Paper IB04 Programming checks: Reviewing the overall quality of the deliverables without parallel programming Shailendra Phadke, Baxalta US Inc., Cambridge MA Veronika Csom, Baxalta US Inc.,

More information

SAS CLINICAL SYLLABUS. DURATION: - 60 Hours

SAS CLINICAL SYLLABUS. DURATION: - 60 Hours SAS CLINICAL SYLLABUS DURATION: - 60 Hours BASE SAS PART - I Introduction To Sas System & Architecture History And Various Modules Features Variables & Sas Syntax Rules Sas Data Sets Data Set Options Operators

More information

Application of Modular Programming in Clinical Trial Environment Mirjana Stojanovic, CALGB - Statistical Center, DUMC, Durham, NC

Application of Modular Programming in Clinical Trial Environment Mirjana Stojanovic, CALGB - Statistical Center, DUMC, Durham, NC PharmaSUG2010 - Paper PO08 Application of Modular Programming in Clinical Trial Environment Mirjana Stojanovic, CALGB - Statistical Center, DUMC, Durham, NC ABSTRACT This paper describes a modular approach

More information

How Macro Design and Program Structure Impacts GPP (Good Programming Practice) in TLF Coding

How Macro Design and Program Structure Impacts GPP (Good Programming Practice) in TLF Coding How Macro Design and Program Structure Impacts GPP (Good Programming Practice) in TLF Coding Galyna Repetatska, Kyiv, Ukraine PhUSE 2016, Barcelona Agenda Number of operations for SAS processor: between

More information

One Project, Two Teams: The Unblind Leading the Blind

One Project, Two Teams: The Unblind Leading the Blind ABSTRACT PharmaSUG 2017 - Paper BB01 One Project, Two Teams: The Unblind Leading the Blind Kristen Reece Harrington, Rho, Inc. In the pharmaceutical world, there are instances where multiple independent

More information

From Implementing CDISC Using SAS. Full book available for purchase here. About This Book... xi About The Authors... xvii Acknowledgments...

From Implementing CDISC Using SAS. Full book available for purchase here. About This Book... xi About The Authors... xvii Acknowledgments... From Implementing CDISC Using SAS. Full book available for purchase here. Contents About This Book... xi About The Authors... xvii Acknowledgments... xix Chapter 1: Implementation Strategies... 1 Why CDISC

More information

Matt Downs and Heidi Christ-Schmidt Statistics Collaborative, Inc., Washington, D.C.

Matt Downs and Heidi Christ-Schmidt Statistics Collaborative, Inc., Washington, D.C. Paper 82-25 Dynamic data set selection and project management using SAS 6.12 and the Windows NT 4.0 file system Matt Downs and Heidi Christ-Schmidt Statistics Collaborative, Inc., Washington, D.C. ABSTRACT

More information

PharmaSUG China Paper 70

PharmaSUG China Paper 70 ABSTRACT PharmaSUG China 2015 - Paper 70 SAS Longitudinal Data Techniques - From Change from Baseline to Change from Previous Visits Chao Wang, Fountain Medical Development, Inc., Nanjing, China Longitudinal

More information

Upholding Ethics and Integrity: A macro-based approach to detect plagiarism in programming

Upholding Ethics and Integrity: A macro-based approach to detect plagiarism in programming CT13 Upholding Ethics and Integrity: A macro-based approach to detect plagiarism in programming Praveen Kumar, Ephicacy, Bangalore, India Sridhar Vijendra, Ephicacy, Bangalore, India ABSTRACT Good Clinical

More information

Base and Advance SAS

Base and Advance SAS Base and Advance SAS BASE SAS INTRODUCTION An Overview of the SAS System SAS Tasks Output produced by the SAS System SAS Tools (SAS Program - Data step and Proc step) A sample SAS program Exploring SAS

More information

Utilizing SAS for Cross- Report Verification in a Clinical Trials Setting

Utilizing SAS for Cross- Report Verification in a Clinical Trials Setting Utilizing SAS for Cross- Report Verification in a Clinical Trials Setting Daniel Szydlo, SCHARP/Fred Hutch, Seattle, WA Iraj Mohebalian, SCHARP/Fred Hutch, Seattle, WA Marla Husnik, SCHARP/Fred Hutch,

More information

ABC Macro and Performance Chart with Benchmarks Annotation

ABC Macro and Performance Chart with Benchmarks Annotation Paper CC09 ABC Macro and Performance Chart with Benchmarks Annotation Jing Li, AQAF, Birmingham, AL ABSTRACT The achievable benchmark of care (ABC TM ) approach identifies the performance of the top 10%

More information

PharmaSUG Paper PO10

PharmaSUG Paper PO10 PharmaSUG 2013 - Paper PO10 How to make SAS Drug Development more efficient Xiaopeng Li, Celerion Inc., Lincoln, NE Chun Feng, Celerion Inc., Lincoln, NE Peng Chai, Celerion Inc., Lincoln, NE ABSTRACT

More information

PharmaSUG Paper DS-24. Family of PARAM***: PARAM, PARAMCD, PARAMN, PARCATy(N), PARAMTYP

PharmaSUG Paper DS-24. Family of PARAM***: PARAM, PARAMCD, PARAMN, PARCATy(N), PARAMTYP PharmaSUG 2018 - Paper DS-24 Family of PARAM***: PARAM, PARAMCD, PARAMN, PARCATy(N), PARAMTYP Kamlesh Patel, Rang Technologies Inc, New Jersey Jigar Patel, Rang Technologies Inc, New Jersey Dilip Patel,

More information

CC13 An Automatic Process to Compare Files. Simon Lin, Merck & Co., Inc., Rahway, NJ Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ

CC13 An Automatic Process to Compare Files. Simon Lin, Merck & Co., Inc., Rahway, NJ Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ CC13 An Automatic Process to Compare Files Simon Lin, Merck & Co., Inc., Rahway, NJ Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ ABSTRACT Comparing different versions of output files is often performed

More information

One-Step Change from Baseline Calculations

One-Step Change from Baseline Calculations Paper CC08 One-Step Change from Baseline Calculations Nancy Brucken, i3 Statprobe, Ann Arbor, MI ABSTRACT Change from baseline is a common measure of safety and/or efficacy in clinical trials. The traditional

More information

Global Checklist to QC SDTM Lab Data Murali Marneni, PPD, LLC, Morrisville, NC Sekhar Badam, PPD, LLC, Morrisville, NC

Global Checklist to QC SDTM Lab Data Murali Marneni, PPD, LLC, Morrisville, NC Sekhar Badam, PPD, LLC, Morrisville, NC PharmaSUG 2018 Paper DS-13 Global Checklist to QC SDTM Lab Data Murali Marneni, PPD, LLC, Morrisville, NC Sekhar Badam, PPD, LLC, Morrisville, NC ABSTRACT Laboratory data is one of the primary datasets

More information

Use That SAP to Write Your Code Sandra Minjoe, Genentech, Inc., South San Francisco, CA

Use That SAP to Write Your Code Sandra Minjoe, Genentech, Inc., South San Francisco, CA Paper DM09 Use That SAP to Write Your Code Sandra Minjoe, Genentech, Inc., South San Francisco, CA ABSTRACT In this electronic age we live in, we usually receive the detailed specifications from our biostatistician

More information

PharmaSUG Paper SP08

PharmaSUG Paper SP08 PharmaSUG 2012 - Paper SP08 USING SAS TO CALCULATE NONCOMPARTMENTAL URINE PARAMETERS Vanessa Rubano, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT Modesta Wiersema, Boehringer Ingelheim Pharma

More information

Creating output datasets using SQL (Structured Query Language) only Andrii Stakhniv, Experis Clinical, Ukraine

Creating output datasets using SQL (Structured Query Language) only Andrii Stakhniv, Experis Clinical, Ukraine ABSTRACT PharmaSUG 2015 Paper QT22 Andrii Stakhniv, Experis Clinical, Ukraine PROC SQL is one of the most powerful procedures in SAS. With this tool we can easily manipulate data and create a large number

More information

JMP Clinical. Release Notes. Version 5.0

JMP Clinical. Release Notes. Version 5.0 JMP Clinical Version 5.0 Release Notes Creativity involves breaking out of established patterns in order to look at things in a different way. Edward de Bono JMP, A Business Unit of SAS SAS Campus Drive

More information

SAS Application to Automate a Comprehensive Review of DEFINE and All of its Components

SAS Application to Automate a Comprehensive Review of DEFINE and All of its Components PharmaSUG 2017 - Paper AD19 SAS Application to Automate a Comprehensive Review of DEFINE and All of its Components Walter Hufford, Vincent Guo, and Mijun Hu, Novartis Pharmaceuticals Corporation ABSTRACT

More information

Indenting with Style

Indenting with Style ABSTRACT Indenting with Style Bill Coar, Axio Research, Seattle, WA Within the pharmaceutical industry, many SAS programmers rely heavily on Proc Report. While it is used extensively for summary tables

More information

PharmaSUG Paper TT11

PharmaSUG Paper TT11 PharmaSUG 2014 - Paper TT11 What is the Definition of Global On-Demand Reporting within the Pharmaceutical Industry? Eric Kammer, Novartis Pharmaceuticals Corporation, East Hanover, NJ ABSTRACT It is not

More information

A SAS Macro Utility to Modify and Validate RTF Outputs for Regional Analyses Jagan Mohan Achi, PPD, Austin, TX Joshua N. Winters, PPD, Rochester, NY

A SAS Macro Utility to Modify and Validate RTF Outputs for Regional Analyses Jagan Mohan Achi, PPD, Austin, TX Joshua N. Winters, PPD, Rochester, NY PharmaSUG 2014 - Paper BB14 A SAS Macro Utility to Modify and Validate RTF Outputs for Regional Analyses Jagan Mohan Achi, PPD, Austin, TX Joshua N. Winters, PPD, Rochester, NY ABSTRACT Clinical Study

More information

Leveraging ADaM Principles to Make Analysis Database and Table Programming More Efficient Andrew L Hulme, PPD, Kansas City, MO

Leveraging ADaM Principles to Make Analysis Database and Table Programming More Efficient Andrew L Hulme, PPD, Kansas City, MO PharmaSUG 2015 - Paper PO13 Leveraging ADaM Principles to Make Analysis Database and Table Programming More Efficient Andrew L Hulme, PPD, Kansas City, MO ABSTRACT The purpose of the CDISC Analysis Data

More information

PharmaSUG Paper TT10 Creating a Customized Graph for Adverse Event Incidence and Duration Sanjiv Ramalingam, Octagon Research Solutions Inc.

PharmaSUG Paper TT10 Creating a Customized Graph for Adverse Event Incidence and Duration Sanjiv Ramalingam, Octagon Research Solutions Inc. Abstract PharmaSUG 2011 - Paper TT10 Creating a Customized Graph for Adverse Event Incidence and Duration Sanjiv Ramalingam, Octagon Research Solutions Inc. Adverse event (AE) analysis is a critical part

More information

PharmaSUG Paper AD15

PharmaSUG Paper AD15 PharmaSUG 2012 - Paper AD15 Database Tectonics: Assessing Drift in Analysis Data Brian Fairfield-Carter, ICON Clinical Research, Redwood City, CA Jasmin Fredette, ICON Clinical Research, Redwood City,

More information

50 WAYS TO MERGE YOUR DATA INSTALLMENT 1 Kristie Schuster, LabOne, Inc., Lenexa, Kansas Lori Sipe, LabOne, Inc., Lenexa, Kansas

50 WAYS TO MERGE YOUR DATA INSTALLMENT 1 Kristie Schuster, LabOne, Inc., Lenexa, Kansas Lori Sipe, LabOne, Inc., Lenexa, Kansas Paper 103-26 50 WAYS TO MERGE YOUR DATA INSTALLMENT 1 Kristie Schuster, LabOne, Inc., Lenexa, Kansas Lori Sipe, LabOne, Inc., Lenexa, Kansas ABSTRACT When you need to join together two datasets, how do

More information

Pooling Clinical Data: Key points and Pitfalls. October 16, 2012 Phuse 2012 conference, Budapest Florence Buchheit

Pooling Clinical Data: Key points and Pitfalls. October 16, 2012 Phuse 2012 conference, Budapest Florence Buchheit Pooling Clinical Data: Key points and Pitfalls October 16, 2012 Phuse 2012 conference, Budapest Florence Buchheit Introduction Are there any pre-defined rules to pool clinical data? Are there any pre-defined

More information

PharmaSUG Paper SP04

PharmaSUG Paper SP04 PharmaSUG 2015 - Paper SP04 Means Comparisons and No Hard Coding of Your Coefficient Vector It Really Is Possible! Frank Tedesco, United Biosource Corporation, Blue Bell, Pennsylvania ABSTRACT When doing

More information

USING HASH TABLES FOR AE SEARCH STRATEGIES Vinodita Bongarala, Liz Thomas Seattle Genetics, Inc., Bothell, WA

USING HASH TABLES FOR AE SEARCH STRATEGIES Vinodita Bongarala, Liz Thomas Seattle Genetics, Inc., Bothell, WA harmasug 2017 - Paper BB08 USING HASH TABLES FOR AE SEARCH STRATEGIES Vinodita Bongarala, Liz Thomas Seattle Genetics, Inc., Bothell, WA ABSTRACT As part of adverse event safety analysis, adverse events

More information

Detecting Treatment Emergent Adverse Events (TEAEs)

Detecting Treatment Emergent Adverse Events (TEAEs) Paper DH10 Detecting Treatment Emergent Adverse Events (TEAEs) Matthias Lehrkamp, Bayer AG, Berlin, Germany ABSTRACT Treatment emergent adverse event (TEAE) tables are mandatory in each clinical trial

More information

Introduction to using the CALERIE Public Use Database

Introduction to using the CALERIE Public Use Database Introduction to using the CALERIE Public Use Database Outline Where to find information Data download instructions Database installation Raw and Analysis datasets Important Data usage notes Major data

More information

Data Quality Review for Missing Values and Outliers

Data Quality Review for Missing Values and Outliers Paper number: PH03 Data Quality Review for Missing Values and Outliers Ying Guo, i3, Indianapolis, IN Bradford J. Danner, i3, Lincoln, NE ABSTRACT Before performing any analysis on a dataset, it is often

More information

Unit-of-Analysis Programming Vanessa Hayden, Fidelity Investments, Boston, MA

Unit-of-Analysis Programming Vanessa Hayden, Fidelity Investments, Boston, MA Unit-of-Analysis Programming Vanessa Hayden, Fidelity Investments, Boston, MA ABSTRACT There are many possible ways to organize your data, but some ways are more amenable to end-reporting and analysis

More information

How to Keep Multiple Formats in One Variable after Transpose Mindy Wang

How to Keep Multiple Formats in One Variable after Transpose Mindy Wang How to Keep Multiple Formats in One Variable after Transpose Mindy Wang Abstract In clinical trials and many other research fields, proc transpose are used very often. When many variables with their individual

More information

DCDISC Users Group. Nate Freimark Omnicare Clinical Research Presented on

DCDISC Users Group. Nate Freimark Omnicare Clinical Research Presented on DCDISC Users Group Nate Freimark Omnicare Clinical Research Presented on 2011-05-12 1 Disclaimer The opinions provided are solely those of the author and not those of the ADaM team or Omnicare Clinical

More information

Real Time Clinical Trial Oversight with SAS

Real Time Clinical Trial Oversight with SAS PharmaSUG 2017 - Paper DA01 Real Time Clinical Trial Oversight with SAS Ashok Gunuganti, Trevena ABSTRACT A clinical trial is an expensive and complex undertaking with multiple teams working together to

More information

SAS Online Training: Course contents: Agenda:

SAS Online Training: Course contents: Agenda: SAS Online Training: Course contents: Agenda: (1) Base SAS (6) Clinical SAS Online Training with Real time Projects (2) Advance SAS (7) Financial SAS Training Real time Projects (3) SQL (8) CV preparation

More information