CS 347 Parallel and Distributed Data Processing

Size: px
Start display at page:

Download "CS 347 Parallel and Distributed Data Processing"

Transcription

1 CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval

2 CS 347 Notes 12 2

3 CS 347 Notes 12 3

4 CS 347 Notes 12 4

5 CS 347 Notes 12 5

6 Web Search Engine Crawling Indexing Computing ranking features Serving queries CS 347 Notes 12 6

7 Crawling Fetch the content of web pages Initalize Seed URLs Web Get the next URL Fetch page URLs to visit Visited URLs Extract URLs Web pages CS 347 Notes 12 7

8 Crawling Issues Scope and freshness Not enough space/time to crawl all pages Page importance, quality, and update frequency Site mirrors and (near) duplicate pages Dynamic content and crawler traps Load at visited web sites Rules in robots.txt Limit number of visits per day Limit depth of crawl CS 347 Notes 12 8

9 Crawling Issues Load at crawler Variance of fetch latency/bandwidth Parallelization and scalability Multiple agents Partitioning URL lists Communication between agents Recovering from agent failure CS 347 Notes 12 9

10 Crawl Partitioning Requirements Each URL assigned to a single agent Locally computable URL-to-agent mapping Balanced distribution of URLs across agents Contravariance CS 347 Notes 12 10

11 Contravariance Agent A Agent B Agent A Agent B Agent C url 1 url 3 url 5 url 2 url 4 url 6 url 1 url 2 url 3 url 4 url 5 url 6 CS 347 Notes 12 11

12 Contravariance Agent A Agent B Agent A Agent B Agent C url 1 url 3 url 5 url 2 url 4 url 6 url 1 url 2 url 3 url 4 url 5 url 6 Agent A Agent B Agent C url 1 url 2 url 5 url 3 url 4 url 6 CS 347 Notes 12 12

13 URL Assignment Consistent hashing Hash function: URL agent Each agent replicated k times Each replica mapped randomly on unit circle Mapping persistent across agent restarts Lookup: map URL on unit circle; find closest live replica CS 347 Notes 12 13

14 URL Assignment A url 6 B B A CS 347 Notes 12 14

15 URL Assignment A url 6 A C url 6 B C B B A B A Balancing Contravariance CS 347 Notes 12 15

16 Crawl Partitioning Ideas URL normalization E.g., relative to absolute URL Host-based partitioning Reduces communication between agents Small vs. large hosts Geographic distribution CS 347 Notes 12 16

17 Fault Tolerance Repartitioning Permanent failures Recovering list of URLs to visit Checkpoints Communication logs Transient failures Avoiding re-visiting URLs E.g., before fetch, check with near neighbor agents CS 347 Notes 12 17

18 Web Search Engine Crawling Indexing Computing ranking features Serving queries CS 347 Notes 12 18

19 Indexing Build the term-document index Collection d 1 d 2 d 3 d 4 d 5 d 6 d n Lexicon t 1 t 2 t 3 t 4 t 5 t 6 Posting for t 1 t m CS 347 Notes 12 19

20 Architecture Reduce Web pages Inverted index files Intermediate runs Map Distributors Indexers Query servers CS 347 Notes 12 20

21 Indexing Issues Index partitioning Efficient query processing Query routing Result retrieval CS 347 Notes 12 21

22 Document Partitioning d 1 d 2 d 3 d 4 d 5 d 6 d n t 1 t 2 t 3 t 4 t 5 t 6 t m d 1 d 2 d 3 d 4 d 5 d 6 d n-2 d n-1 d n t 1 t 1 t 1 t 2 t 2 t 2 t 3 t 3 t 3 t 4 t 4 t 4 t 5 t 5 t 5 t 6 t 6 t 6 t m t m t m CS 347 Notes 12 22

23 Document Partitioning Split the collection of documents Advantages Easy to add new documents Load balanced High processing throughput Disadvantages Communication with all query servers CS 347 Notes 12 23

24 Term Partitioning d 1 d 2 d 3 d 4 d 5 d 6 d n t 1 t 2 d 1 d 2 d 3 d 4 d 5 d 6 d n t 3 t 1 t 2 d 1 d 2 d 3 d 4 d 5 d 6 d n t 3 t 4 t 5 t 4 t 5 t 6 t 6 t m d 1 d 2 d 3 d 4 d 5 d 6 d n t m-2 t m-1 t m CS 347 Notes 12 24

25 Term Partitioning Split the lexicon Advantages Reduced communication with query servers Disadvantages More processing before partitioning Adding new documents is hard Load balancing is hard Processing parallelism is limited by query length CS 347 Notes 12 25

26 Advanced Partitioning Topical partitioning using clustering Documents clustered by term-similarity Partitions made up of one or more clusters Usage-induced partitioning Queries extracted from logs Documents clustered by query-similarity Partitions made up of one or more clusters CS 347 Notes 12 26

27 Web Search Engine Crawling Indexing Computing ranking features Serving queries CS 347 Notes 12 27

28 Ranking Feature Computation Parallel/distributed computation tasks Text/language processing Document classification/clustering Web graph analysis CS 347 Notes 12 28

29 Example: PageRank Link-based global (query-independent) importance metric Random surfer model Start at a random page With probability d, visit a new page following a random link on the current page With probability (1 d), restart at a random page PageRank score ~ expected fraction of time spent at a page CS 347 Notes 12 29

30 PageRank Formula p ( x ) = d Σ p ( y ) / out ( y ) + ( 1 d ) / n y x CS 347 Notes 12 30

31 PageRank Formula Out-degree of page y Probability of random restart at x p ( x ) = d Σ p ( y ) / out ( y ) + ( 1 d ) / n y x PageRank of x PageRank of y, where y links to x CS 347 Notes 12 31

32 PageRank Algorithm i = 0 p [i] ( x ) = ( 1 d ) / n repeat i += 1 p [i] ( x ) = ( 1 d ) / n for all y x p [i] ( x ) += d p [i 1] ( y ) / out ( y ) until p [i] p [i 1] < ε CS 347 Notes 12 32

33 PageRank Implementation Two vectors, current and next Initialize vectors Iterate over all pages y, distribute PageRank from current( y ) to next ( x ) for all links y x current = next, re-initialize next Go back to iteration over pages or stop CS 347 Notes 12 33

34 PageRank Distribution MapReduce for each iteration i Map Take < y, ( current ( y ), edges ( y ) ) > For each y x in edges ( y ) emit < x, current ( y ) / edges ( y ) > Also emit < y, edges ( y ) > Reduce Take < x, val > and < x, edges ( x ) > Sum ( d val ) into next ( x ), add ( 1 d ) / n Emit < x, ( next ( x ), edges ( x ) ) > CS 347 Notes 12 34

35 PageRank Distribution < y, ( current ( y ), edges ( y ) ) > Map < x, val > < x, val > Reduce < x, ( next ( x ), edges ( x ) ) > CS 347 Notes 12 35

36 Web Search Engine Crawling Indexing Computing ranking features Serving queries CS 347 Notes 12 36

37 Query Processing Locate, retrieve, process, and serve query results Cache Inverted index files Query Results Query coordinator Query servers CS 347 Notes 12 37

38 Serving Architecture Multiple sites connected by WAN Site = coordinator + servers + cache Partitioning Parallel processing Distributed storage of data Based on index partitioning Replication Availability Throughput Response time CS 347 Notes 12 38

39 Serving Issues Routing the query To sites E.g., identical sites + routing by dynamic DNS lookup Within sites Merging the results Caching CS 347 Notes 12 39

40 Serving Issues Routing Merging Document partition All servers Results selected by servers; ranking by coordinator Term partition Servers containing query terms Selection and ranking by coordinator CS 347 Notes 12 40

41 Caching What to cache? Query answers Term postings CS 347 Notes 12 41

42 Caching Query terms repeated more frequently than whole queries What to cache? Query answers Faster response Term postings More hits CS 347 Notes 12 42

43 Caching Query terms repeated more frequently than whole queries What to cache? Query answers Faster response Term postings More hits Done as well in practice CS 347 Notes 12 43

44 Caching Policy Terms most frequent in queries High hit ratio Terms most frequent in documents Requires more cache space (longer postings) CS 347 Notes 12 44

45 Summary Crawling Partitioning: balancing and contravariance Consistent hashing Indexing Document, term, topical, and usage-induced partitioning Computing ranking features PageRank with MapReduce Serving queries Routing queries, merging results, and caching postings CS 347 Notes 12 45

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval CS 347 Notes 12 2 CS 347 Notes 12 3 CS 347 Notes 12 4 Web Search Engine Crawling Indexing Computing

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Distributed Systems. 05r. Case study: Google Cluster Architecture. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 05r. Case study: Google Cluster Architecture. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 05r. Case study: Google Cluster Architecture Paul Krzyzanowski Rutgers University Fall 2016 1 A note about relevancy This describes the Google search cluster architecture in the mid

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Administrative. Web crawlers. Web Crawlers and Link Analysis!

Administrative. Web crawlers. Web Crawlers and Link Analysis! Web Crawlers and Link Analysis! David Kauchak cs458 Fall 2011 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture15-linkanalysis.ppt http://webcourse.cs.technion.ac.il/236522/spring2007/ho/wcfiles/tutorial05.ppt

More information

Collection Building on the Web. Basic Algorithm

Collection Building on the Web. Basic Algorithm Collection Building on the Web CS 510 Spring 2010 1 Basic Algorithm Initialize URL queue While more If URL is not a duplicate Get document with URL [Add to database] Extract, add to queue CS 510 Spring

More information

Information Retrieval. Lecture 10 - Web crawling

Information Retrieval. Lecture 10 - Web crawling Information Retrieval Lecture 10 - Web crawling Seminar für Sprachwissenschaft International Studies in Computational Linguistics Wintersemester 2007 1/ 30 Introduction Crawling: gathering pages from the

More information

Crawling CE-324: Modern Information Retrieval Sharif University of Technology

Crawling CE-324: Modern Information Retrieval Sharif University of Technology Crawling CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford) Sec. 20.2 Basic

More information

Information Retrieval Spring Web retrieval

Information Retrieval Spring Web retrieval Information Retrieval Spring 2016 Web retrieval The Web Large Changing fast Public - No control over editing or contents Spam and Advertisement How big is the Web? Practically infinite due to the dynamic

More information

Administrivia. Crawlers: Nutch. Course Overview. Issues. Crawling Issues. Groups Formed Architecture Documents under Review Group Meetings CSE 454

Administrivia. Crawlers: Nutch. Course Overview. Issues. Crawling Issues. Groups Formed Architecture Documents under Review Group Meetings CSE 454 Administrivia Crawlers: Nutch Groups Formed Architecture Documents under Review Group Meetings CSE 454 4/14/2005 12:54 PM 1 4/14/2005 12:54 PM 2 Info Extraction Course Overview Ecommerce Standard Web Search

More information

Today s lecture. Information Retrieval. Basic crawler operation. Crawling picture. What any crawler must do. Simple picture complications

Today s lecture. Information Retrieval. Basic crawler operation. Crawling picture. What any crawler must do. Simple picture complications Today s lecture Introduction to Information Retrieval Web Crawling (Near) duplicate detection CS276 Information Retrieval and Web Search Chris Manning, Pandu Nayak and Prabhakar Raghavan Crawling and Duplicates

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Relevant?!? Algoritmi per IR. Goal of a Search Engine. Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Web Search

Relevant?!? Algoritmi per IR. Goal of a Search Engine. Prof. Paolo Ferragina, Algoritmi per Information Retrieval Web Search Algoritmi per IR Web Search Goal of a Search Engine Retrieve docs that are relevant for the user query Doc: file word or pdf, web page, email, blog, e-book,... Query: paradigm bag of words Relevant?!?

More information

The Anatomy of a Large-Scale Hypertextual Web Search Engine

The Anatomy of a Large-Scale Hypertextual Web Search Engine The Anatomy of a Large-Scale Hypertextual Web Search Engine Article by: Larry Page and Sergey Brin Computer Networks 30(1-7):107-117, 1998 1 1. Introduction The authors: Lawrence Page, Sergey Brin started

More information

Today s lecture. Basic crawler operation. Crawling picture. What any crawler must do. Simple picture complications

Today s lecture. Basic crawler operation. Crawling picture. What any crawler must do. Simple picture complications Today s lecture Introduction to Information Retrieval Web Crawling (Near) duplicate detection CS276 Information Retrieval and Web Search Chris Manning and Pandu Nayak Crawling and Duplicates 2 Sec. 20.2

More information

Data Center Performance

Data Center Performance Data Center Performance George Porter CSE 124 Feb 15, 2017 *Includes material taken from Barroso et al., 2013, UCSD 222a, and Cedric Lam and Hong Liu (Google) Part 1: Partitioning work across many servers

More information

Midterm Examination CSE 455 / CIS 555 Internet and Web Systems Spring 2009 Zachary Ives

Midterm Examination CSE 455 / CIS 555 Internet and Web Systems Spring 2009 Zachary Ives Midterm Examination CSE 455 / CIS 555 Internet and Web Systems Spring 2009 Zachary Ives Name: _Solution 6 questions, 100 pts, 80 minutes 1. (20 pts) Compare Hadoop (plus HDFS) to the Chord DHT. (a) What

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Naming Jia Rao http://ranger.uta.edu/~jrao/ 1 Naming Names play a critical role in all computer systems To access resources, uniquely identify entities, or refer to locations

More information

Web Crawling. Introduction to Information Retrieval CS 150 Donald J. Patterson

Web Crawling. Introduction to Information Retrieval CS 150 Donald J. Patterson Web Crawling Introduction to Information Retrieval CS 150 Donald J. Patterson Content adapted from Hinrich Schütze http://www.informationretrieval.org Robust Crawling A Robust Crawl Architecture DNS Doc.

More information

The MapReduce Abstraction

The MapReduce Abstraction The MapReduce Abstraction Parallel Computing at Google Leverages multiple technologies to simplify large-scale parallel computations Proprietary computing clusters Map/Reduce software library Lots of other

More information

CS6200 Information Retreival. Crawling. June 10, 2015

CS6200 Information Retreival. Crawling. June 10, 2015 CS6200 Information Retreival Crawling Crawling June 10, 2015 Crawling is one of the most important tasks of a search engine. The breadth, depth, and freshness of the search results depend crucially on

More information

Internet Services and Search Engines. Amin Vahdat CSE 123b May 2, 2006

Internet Services and Search Engines. Amin Vahdat CSE 123b May 2, 2006 Internet Services and Search Engines Amin Vahdat CSE 123b May 2, 2006 Midterm: May 9 Annoucements Second assignment due May 15 Lessons from Giant-Scale Services Service Replication Service Partitioning

More information

Searching the Web What is this Page Known for? Luis De Alba

Searching the Web What is this Page Known for? Luis De Alba Searching the Web What is this Page Known for? Luis De Alba ldealbar@cc.hut.fi Searching the Web Arasu, Cho, Garcia-Molina, Paepcke, Raghavan August, 2001. Stanford University Introduction People browse

More information

CSE 5306 Distributed Systems. Naming

CSE 5306 Distributed Systems. Naming CSE 5306 Distributed Systems Naming 1 Naming Names play a critical role in all computer systems To access resources, uniquely identify entities, or refer to locations To access an entity, you have resolve

More information

An Overview of Search Engine. Hai-Yang Xu Dev Lead of Search Technology Center Microsoft Research Asia

An Overview of Search Engine. Hai-Yang Xu Dev Lead of Search Technology Center Microsoft Research Asia An Overview of Search Engine Hai-Yang Xu Dev Lead of Search Technology Center Microsoft Research Asia haixu@microsoft.com July 24, 2007 1 Outline History of Search Engine Difference Between Software and

More information

Distributed Computations MapReduce. adapted from Jeff Dean s slides

Distributed Computations MapReduce. adapted from Jeff Dean s slides Distributed Computations MapReduce adapted from Jeff Dean s slides What we ve learnt so far Basic distributed systems concepts Consistency (sequential, eventual) Fault tolerance (recoverability, availability)

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Web Search Prof. Chris Clifton 18 October 2017 Some slides courtesy Croft et al. Web Crawler Finds and downloads web pages automatically provides the collection

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Web Crawler Finds and downloads web pages automatically provides the collection for searching Web is huge and constantly

More information

SOURCERER: MINING AND SEARCHING INTERNET- SCALE SOFTWARE REPOSITORIES

SOURCERER: MINING AND SEARCHING INTERNET- SCALE SOFTWARE REPOSITORIES SOURCERER: MINING AND SEARCHING INTERNET- SCALE SOFTWARE REPOSITORIES Introduction to Information Retrieval CS 150 Donald J. Patterson This content based on the paper located here: http://dx.doi.org/10.1007/s10618-008-0118-x

More information

Information Retrieval May 15. Web retrieval

Information Retrieval May 15. Web retrieval Information Retrieval May 15 Web retrieval What s so special about the Web? The Web Large Changing fast Public - No control over editing or contents Spam and Advertisement How big is the Web? Practically

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

CS377: Database Systems Text data and information. Li Xiong Department of Mathematics and Computer Science Emory University

CS377: Database Systems Text data and information. Li Xiong Department of Mathematics and Computer Science Emory University CS377: Database Systems Text data and information retrieval Li Xiong Department of Mathematics and Computer Science Emory University Outline Information Retrieval (IR) Concepts Text Preprocessing Inverted

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Web Search Prof. Chris Clifton 17 September 2018 Some slides courtesy Manning, Raghavan, and Schütze Other characteristics Significant duplication Syntactic

More information

Towards a Distributed Web Search Engine

Towards a Distributed Web Search Engine Towards a Distributed Web Search Engine Ricardo Baeza-Yates Yahoo! Labs Barcelona, Spain Joint work with many people, most at Yahoo! Labs, In particular Berkant Barla Cambazoglu A Research Story Architecture

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS3245 12 Lecture 12: Crawling and Link Analysis Information Retrieval Last Time Chapter 11 1. Probabilistic Approach to Retrieval / Basic Probability Theory 2. Probability

More information

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4 Xiaowei Yang xwy@cs.duke.edu Overview Problem Evolving solutions IP multicast Proxy caching Content distribution networks

More information

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space Today CSCI 5105 Coda GFS PAST Instructor: Abhishek Chandra 2 Coda Main Goals: Availability: Work in the presence of disconnection Scalability: Support large number of users Successor of Andrew File System

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p.

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. 6 What is Web Mining? p. 6 Summary of Chapters p. 8 How

More information

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Consistency and Replication Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Reasons for Replication Reliability/Availability : Mask failures Mask corrupted data Performance: Scalability

More information

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P?

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P? Peer-to-Peer Data Management - Part 1- Alex Coman acoman@cs.ualberta.ca Addressed Issue [1] Placement and retrieval of data [2] Server architectures for hybrid P2P [3] Improve search in pure P2P systems

More information

Parallel Computing: MapReduce Jin, Hai

Parallel Computing: MapReduce Jin, Hai Parallel Computing: MapReduce Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology ! MapReduce is a distributed/parallel computing framework introduced by Google

More information

Plan for today. CS276B Text Retrieval and Mining Winter Evolution of search engines. Connectivity analysis

Plan for today. CS276B Text Retrieval and Mining Winter Evolution of search engines. Connectivity analysis CS276B Text Retrieval and Mining Winter 2005 Lecture 7 Plan for today Review search engine history (slightly more technically than in the first lecture) Web crawling/corpus construction Distributed crawling

More information

Crawling the Web. Web Crawling. Main Issues I. Type of crawl

Crawling the Web. Web Crawling. Main Issues I. Type of crawl Web Crawling Crawling the Web v Retrieve (for indexing, storage, ) Web pages by using the links found on a page to locate more pages. Must have some starting point 1 2 Type of crawl Web crawl versus crawl

More information

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013

PNUTS: Yahoo! s Hosted Data Serving Platform. Reading Review by: Alex Degtiar (adegtiar) /30/2013 PNUTS: Yahoo! s Hosted Data Serving Platform Reading Review by: Alex Degtiar (adegtiar) 15-799 9/30/2013 What is PNUTS? Yahoo s NoSQL database Motivated by web applications Massively parallel Geographically

More information

A Survey on Web Information Retrieval Technologies

A Survey on Web Information Retrieval Technologies A Survey on Web Information Retrieval Technologies Lan Huang Computer Science Department State University of New York, Stony Brook Presented by Kajal Miyan Michigan State University Overview Web Information

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [MAPREDUCE] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Bit Torrent What is the right chunk/piece

More information

Crawler. Crawler. Crawler. Crawler. Anchors. URL Resolver Indexer. Barrels. Doc Index Sorter. Sorter. URL Server

Crawler. Crawler. Crawler. Crawler. Anchors. URL Resolver Indexer. Barrels. Doc Index Sorter. Sorter. URL Server Authors: Sergey Brin, Lawrence Page Google, word play on googol or 10 100 Centralized system, entire HTML text saved Focused on high precision, even at expense of high recall Relies heavily on document

More information

MapReduce & HyperDex. Kathleen Durant PhD Lecture 21 CS 3200 Northeastern University

MapReduce & HyperDex. Kathleen Durant PhD Lecture 21 CS 3200 Northeastern University MapReduce & HyperDex Kathleen Durant PhD Lecture 21 CS 3200 Northeastern University 1 Distributing Processing Mantra Scale out, not up. Assume failures are common. Move processing to the data. Process

More information

Lecture Map-Reduce. Algorithms. By Marina Barsky Winter 2017, University of Toronto

Lecture Map-Reduce. Algorithms. By Marina Barsky Winter 2017, University of Toronto Lecture 04.02 Map-Reduce Algorithms By Marina Barsky Winter 2017, University of Toronto Example 1: Language Model Statistical machine translation: Need to count number of times every 5-word sequence occurs

More information

US Patent 6,658,423. William Pugh

US Patent 6,658,423. William Pugh US Patent 6,658,423 William Pugh Detecting duplicate and near - duplicate files Worked on this problem at Google in summer of 2000 I have no information whether this is currently being used I know that

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

How to Crawl the Web. Hector Garcia-Molina Stanford University. Joint work with Junghoo Cho

How to Crawl the Web. Hector Garcia-Molina Stanford University. Joint work with Junghoo Cho How to Crawl the Web Hector Garcia-Molina Stanford University Joint work with Junghoo Cho Stanford InterLib Technologies Information Overload Service Heterogeneity Interoperability Economic Concerns Information

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 3: Programming Models Piccolo: Building Fast, Distributed Programs

More information

Lecture 9: I: Web Retrieval II: Webology. Johan Bollen Old Dominion University Department of Computer Science

Lecture 9: I: Web Retrieval II: Webology. Johan Bollen Old Dominion University Department of Computer Science Lecture 9: I: Web Retrieval II: Webology Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen April 10, 2003 Page 1 WWW retrieval Two approaches

More information

Distributed Systems. Fall 2017 Exam 3 Review. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. Fall 2017 Exam 3 Review. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems Fall 2017 Exam 3 Review Paul Krzyzanowski Rutgers University Fall 2017 December 11, 2017 CS 417 2017 Paul Krzyzanowski 1 Question 1 The core task of the user s map function within a

More information

416 Distributed Systems. March 23, 2018 CDNs

416 Distributed Systems. March 23, 2018 CDNs 416 Distributed Systems March 23, 2018 CDNs Outline DNS Design (317) Content Distribution Networks 2 Typical Workload (Web Pages) Multiple (typically small) objects per page File sizes are heavy-tailed

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 20: Crawling Hinrich Schütze Center for Information and Language Processing, University of Munich 2009.07.14 1/36 Outline 1 Recap

More information

CS 61C: Great Ideas in Computer Architecture. MapReduce

CS 61C: Great Ideas in Computer Architecture. MapReduce CS 61C: Great Ideas in Computer Architecture MapReduce Guest Lecturer: Justin Hsia 3/06/2013 Spring 2013 Lecture #18 1 Review of Last Lecture Performance latency and throughput Warehouse Scale Computing

More information

Information Networks. Hacettepe University Department of Information Management DOK 422: Information Networks

Information Networks. Hacettepe University Department of Information Management DOK 422: Information Networks Information Networks Hacettepe University Department of Information Management DOK 422: Information Networks Search engines Some Slides taken from: Ray Larson Search engines Web Crawling Web Search Engines

More information

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

More information

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University

CS6200 Information Retrieval. David Smith College of Computer and Information Science Northeastern University CS6200 Information Retrieval David Smith College of Computer and Information Science Northeastern University Indexing Process!2 Indexes Storing document information for faster queries Indexes Index Compression

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Web Crawling Acknowledgements Some slides in this lecture are adapted from Chris Manning (Stanford) and Soumen Chakrabarti (IIT Bombay) Status Project 1 results sent Final

More information

Index Construction. Dictionary, postings, scalable indexing, dynamic indexing. Web Search

Index Construction. Dictionary, postings, scalable indexing, dynamic indexing. Web Search Index Construction Dictionary, postings, scalable indexing, dynamic indexing Web Search 1 Overview Indexes Query Indexing Ranking Results Application Documents User Information analysis Query processing

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 12 Google Bigtable

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Winter 2009 Lecture 12 Google Bigtable CSE 544 Principles of Database Management Systems Magdalena Balazinska Winter 2009 Lecture 12 Google Bigtable References Bigtable: A Distributed Storage System for Structured Data. Fay Chang et. al. OSDI

More information

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013

Lecture 24: Image Retrieval: Part II. Visual Computing Systems CMU , Fall 2013 Lecture 24: Image Retrieval: Part II Visual Computing Systems Review: K-D tree Spatial partitioning hierarchy K = dimensionality of space (below: K = 2) 3 2 1 3 3 4 2 Counts of points in leaf nodes Nearest

More information

Crawling. CS6200: Information Retrieval. Slides by: Jesse Anderton

Crawling. CS6200: Information Retrieval. Slides by: Jesse Anderton Crawling CS6200: Information Retrieval Slides by: Jesse Anderton Motivating Problem Internet crawling is discovering web content and downloading it to add to your index. This is a technically complex,

More information

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. Springer

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. Springer Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures Springer Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web

More information

CS November 2017

CS November 2017 Bigtable Highly available distributed storage Distributed Systems 18. Bigtable Built with semi-structured data in mind URLs: content, metadata, links, anchors, page rank User data: preferences, account

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2002 Lecture 13: Content Distribution Networks (plus some other applications) Stefan Savage Some slides courtesy Srini Seshan Today s class Quick examples of other

More information

Today s class. CSE 123b Communications Software. Telnet. Network File System (NFS) Quick descriptions of some other sample applications

Today s class. CSE 123b Communications Software. Telnet. Network File System (NFS) Quick descriptions of some other sample applications CSE 123b Communications Software Spring 2004 Today s class Quick examples of other application protocols Mail, telnet, NFS Content Distribution Networks (CDN) Lecture 12: Content Distribution Networks

More information

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 5: Graph Processing Jimmy Lin University of Maryland Thursday, February 21, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system.

Information Retrieval (IR) Introduction to Information Retrieval. Lecture Overview. Why do we need IR? Basics of an IR system. Introduction to Information Retrieval Ethan Phelps-Goodman Some slides taken from http://www.cs.utexas.edu/users/mooney/ir-course/ Information Retrieval (IR) The indexing and retrieval of textual documents.

More information

Distributed Web Crawling over DHTs. Boon Thau Loo, Owen Cooper, Sailesh Krishnamurthy CS294-4

Distributed Web Crawling over DHTs. Boon Thau Loo, Owen Cooper, Sailesh Krishnamurthy CS294-4 Distributed Web Crawling over DHTs Boon Thau Loo, Owen Cooper, Sailesh Krishnamurthy CS294-4 Search Today Search Index Crawl What s Wrong? Users have a limited search interface Today s web is dynamic and

More information

Exam IST 441 Spring 2014

Exam IST 441 Spring 2014 Exam IST 441 Spring 2014 Last name: Student ID: First name: I acknowledge and accept the University Policies and the Course Policies on Academic Integrity This 100 point exam determines 30% of your grade.

More information

CS 138: Google. CS 138 XVII 1 Copyright 2016 Thomas W. Doeppner. All rights reserved.

CS 138: Google. CS 138 XVII 1 Copyright 2016 Thomas W. Doeppner. All rights reserved. CS 138: Google CS 138 XVII 1 Copyright 2016 Thomas W. Doeppner. All rights reserved. Google Environment Lots (tens of thousands) of computers all more-or-less equal - processor, disk, memory, network interface

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Chapter 17: Parallel Databases

Chapter 17: Parallel Databases Chapter 17: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery Parallelism Intraoperation Parallelism Interoperation Parallelism Design of Parallel Systems Database Systems

More information

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi 1 Lecture Notes 1 Basic Concepts Anand Tripathi CSci 8980 Operating Systems Anand Tripathi CSci 8980 1 Distributed Systems A set of computers (hosts or nodes) connected through a communication network.

More information

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs 1 Anand Tripathi CSci 8980 Operating Systems Lecture Notes 1 Basic Concepts Distributed Systems A set of computers (hosts or nodes) connected through a communication network. Nodes may have different speeds

More information

L22: SC Report, Map Reduce

L22: SC Report, Map Reduce L22: SC Report, Map Reduce November 23, 2010 Map Reduce What is MapReduce? Example computing environment How it works Fault Tolerance Debugging Performance Google version = Map Reduce; Hadoop = Open source

More information

Overview Computer Networking Lecture 16: Delivering Content: Peer to Peer and CDNs Peter Steenkiste

Overview Computer Networking Lecture 16: Delivering Content: Peer to Peer and CDNs Peter Steenkiste Overview 5-44 5-44 Computer Networking 5-64 Lecture 6: Delivering Content: Peer to Peer and CDNs Peter Steenkiste Web Consistent hashing Peer-to-peer Motivation Architectures Discussion CDN Video Fall

More information

CSE 494 Project C. Garrett Wolf

CSE 494 Project C. Garrett Wolf CSE 494 Project C Garrett Wolf Introduction The main purpose of this project task was for us to implement the simple k-means and buckshot clustering algorithms. Once implemented, we were asked to vary

More information

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia MapReduce Spark Some slides are adapted from those of Jeff Dean and Matei Zaharia What have we learnt so far? Distributed storage systems consistency semantics protocols for fault tolerance Paxos, Raft,

More information

CSE Lecture 11: Map/Reduce 7 October Nate Nystrom UTA

CSE Lecture 11: Map/Reduce 7 October Nate Nystrom UTA CSE 3302 Lecture 11: Map/Reduce 7 October 2010 Nate Nystrom UTA 378,000 results in 0.17 seconds including images and video communicates with 1000s of machines web server index servers document servers

More information

Performance Analysis for Crawling

Performance Analysis for Crawling Scalable Servers and Load Balancing Kai Shen Online Applications online applications Applications accessible to online users through. Examples Online keyword search engine: Google. Web email: Gmail. News:

More information

Data-Intensive Distributed Computing

Data-Intensive Distributed Computing Data-Intensive Distributed Computing CS 45/65 43/63 (Winter 08) Part 3: Analyzing Text (/) January 30, 08 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides are

More information

Numerical Computing with Spark. Hossein Falaki

Numerical Computing with Spark. Hossein Falaki Numerical Computing with Spark Hossein Falaki Challenges of numerical computation over big data When applying any algorithm to big data watch for 1. Correctness 2. Performance 3. Trade-off between accuracy

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. FSO]: Intellectual Property Rights Notice for Open Specifications Documentation Technical Documentation. Microsoft publishes Open Specifications documentation for protocols, file formats, languages, standards

More information

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Google CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Google Environment Lots (tens of thousands) of computers all more-or-less equal - processor, disk, memory, network interface

More information

! Parallel machines are becoming quite common and affordable. ! Databases are growing increasingly large

! Parallel machines are becoming quite common and affordable. ! Databases are growing increasingly large Chapter 20: Parallel Databases Introduction! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems!

More information

Chapter 20: Parallel Databases

Chapter 20: Parallel Databases Chapter 20: Parallel Databases! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems 20.1 Introduction!

More information

Chapter 20: Parallel Databases. Introduction

Chapter 20: Parallel Databases. Introduction Chapter 20: Parallel Databases! Introduction! I/O Parallelism! Interquery Parallelism! Intraquery Parallelism! Intraoperation Parallelism! Interoperation Parallelism! Design of Parallel Systems 20.1 Introduction!

More information

EECS 395/495 Lecture 5: Web Crawlers. Doug Downey

EECS 395/495 Lecture 5: Web Crawlers. Doug Downey EECS 395/495 Lecture 5: Web Crawlers Doug Downey Interlude: US Searches per User Year Searches/month (mlns) Internet Users (mlns) Searches/user-month 2008 10800 220 49.1 2009 14300 227 63.0 2010 15400

More information

CS November 2018

CS November 2018 Bigtable Highly available distributed storage Distributed Systems 19. Bigtable Built with semi-structured data in mind URLs: content, metadata, links, anchors, page rank User data: preferences, account

More information

CompSci 516: Database Systems

CompSci 516: Database Systems CompSci 516 Database Systems Lecture 12 Map-Reduce and Spark Instructor: Sudeepa Roy Duke CS, Fall 2017 CompSci 516: Database Systems 1 Announcements Practice midterm posted on sakai First prepare and

More information

How Does a Search Engine Work? Part 1

How Does a Search Engine Work? Part 1 How Does a Search Engine Work? Part 1 Dr. Frank McCown Intro to Web Science Harding University This work is licensed under Creative Commons Attribution-NonCommercial 3.0 What we ll examine Web crawling

More information