ADT-CNC4620 CNC46XX Series CNC System Maintenance Manual

Size: px
Start display at page:

Download "ADT-CNC4620 CNC46XX Series CNC System Maintenance Manual"

Transcription

1 ADT-CNC4620 CNC46XX Series CNC System Maintenance Manual Add: 5/F, Tianxia IC Industrial Park, Yiyuan Rd, Nanshan District, Shenzhen Postal code: Tel: Fax:

2 CNC4620 Maintenance Manual Copyright (Adtech hereafter) is in possession of the copyright of this manual. Without the permission of Adtech, the imitation, copy, transcription and translation by any organization or individual are prohibited. This manual doesn t contain any assurance, stance or implication in any form. Adtech and the employees are not responsible for any direct or indirect data disclosure, profits loss or cause termination caused by this manual or any information about mentioned products in this manual. In addition, the products and data in this manual are subject to changes without prior notice. All rights reserved

3 CNC4620 Maintenance Manual Version History Item No. First uploaded on Version No. Pages Compiled by Typeset by XT A Yang Jipeng Yang Jipeng XT A Yang Jipeng Yang Jipeng Revision Date Version/Page Result Confirmed by Remark: We have collated and checked this Manual strictly, but we can t ensure that there are no error and omission in this Manual. Due to constant improvement of product functions and service quality, any products and software described in this manual and the content of the manual are subject to changes without prior notice

4

5 Adtech Shenzhen Technology Co., Ltd. Contents Contents 1. Foreword System technical characteristics System structure System technical parameters System function Self-diagnosis Compensation Abundant instruction system Full Chinese menu operation & full screen edit Abundant error-correction functions Program exchange between CNC system and PC System operating condition Operating panel LCD/keypad LCD brightness adjustment System menus Operating keys Manual operation Returning to reference point manually Continuous feeding manually Single step feeding Handwheel feeding Manual auxiliary function operation Tool setting Centered (M series) Tool regulator (M series) Tool setting by test cutting (L series) Data settings Tool compensation data setting System parameter setting Automatic operation Memory operation MDI operation USB disk DNC Speed rate adjustment Run idle SBK function BDT function Stopping automatic operating Safe operation Emergency stop Hard limit over travel Soft limit over travel Alarm and self- diagnosis function NC program execution alarm System environment alarm Alarm processing Self-diagnosis function Program saving & editing Saving the program in the memory Keypad input (new program) PC serial port input Copying processing files from USB disk Reading programs into work area Reading programs from controller into work area Reading programs from USB disk into work area Editing & modifying programs Deleting files Deleting files in memory Main interfaces of the system I

6 ADT-CNC46XX 系列维护手册 9.1 Position interface Edit interface MDI interface File management Graphic simulation Parameter interface Compensation interface M series workpiece coordinate system setting interface Controller diagnosis interface (diagnosis) Macro variable view interface (macro variable) Current mode instruction info System maintenance Restart System upgrade Reset Parameter backup and restore Entering BIOS System parameters Parameter index list Comprehensive parameters (P1.) Axis parameter configuration (P2.) Management parameters (P3.) Tool magazine parameters (P4.) Principal axis parameters (P5.) Port configuration (P6.) Installation layout External interface diagram Mounting dimensions Installation precautions Interface definition Motor drive control interface (XS1..XS4) Digital input interface (XS5) Digital output interface (XS6) Handheld box interface (XS7) Analog output interface (XS8) Principal axis encoder interface (XS12) RS232 transmission interface (XS9) USB memory connection interface (XS10) PC USB communication interface (XS11) Electrical connection diagram Symbol schematic diagram Power connection diagram Servo drive connection diagram Step connection diagram IO electrical connection diagram II

7 Adtech Shenzhen Technology Co., Ltd. 1. Program saving & editing 1. Foreword CNC4640/4620 numerical control system is economic embedded system developed by Adtech (Shenzhen) CNC Technology Co., Ltd. for milling machines and machining centers, where CNC4640 is four axes motion controller and CNC4620 is two axes motion controller. Instructions and reading convention of the Manual Before using this CNC system, please read this Manual carefully to operate properly. Terminology note and reading convention in this Manual: CNC4640 and CNC4620 are control systems with different axes and same hardware functions. The programs developed on this platform contain M series software for milling machines and L series software for lathes. Different software has different functions and masks. M series are system for milling machine motion. The M or M series mark indicates specific interface or function for milling machine software system. L series are system for lathe motion. The L or L series mark indicates specific interface or function for lathe software system. CNC system, NC controller and CNC46XX mentioned in this Manual all refer to CNC4640/4620; The articles marked with Caution prompt users to pay special attention for operation or setting, or else this operation may fail or certain action can t be performed. 2. System technical characteristics 2.1 System structure CPU: ARM industrial mainboard; Communication: USB interface; Capacity: 64MB RAM, 60M Flash ROM; Feedback: AB phase pulse feedback; Control: FPGA motion controller; Hand pulse: Incremental hand encoder; Display: pixels 7 LCD; I/O full optical coupling isolation; Touch/film type operation panel; Highly anti-interference switching power supply; RS232 interface 2.2 System technical parameters Control axis Function Name Specification Input instruction Control axes Simultaneous control axes Minimum setting unit Minimum moving unit Maximum instruction value 4 axes (CNC4640 series) 2 axes (CNC4620 series) 4 axes linear interpolation (CNC4640 series) 2 axes linear interpolation (CNC4620 series) 2 axes arc interpolation 0.001mm 0.001mm ± mm - 3 -

8 Adtech Shenzhen Technology Co., Ltd. 2. Program saving & editing Feeding Manual Interpolation Function Name Specification Fast feeding speed Feeding speed range Per minute Per rotation Automatic acceleration/deceleration X axis, Y axis, Z axis, A axis: 9999 mm/min (maximum) 1~9999mm/min 1~500rpm Yes Feeding speed rate 10~150% Continuously manual feeding, Returning to reference point manually Single step/handwheel function Positioning, linear interpolation, arc interpolation Operating mode MDI, auto, manual, single step, edit Yes Testing function Test run, single program section, Handwheel Yes Coordinate system and pause Safe functions Program storage Pause (sec/ms) Coordinate system setting Automatic coordinate system setting Soft & hard limit check Emergency stop Program storage capacity, storage quantity Yes All control axes return to reference point simultaneously (allow setting order of priority) Yes G00, G01, G02/G03 G04 X/P_ G92 (M series) G50 (L series) Yes Yes Yes Capacity: 60MB 100 work areas No limit on processing file quantity Program edit Insert, modify, delete, cancel Program edit Program No., sequence No., address, character retrieval Decimal point programming Yes Yes Display M, S, T function Compensation function Other functions pixels 7 LCD Position screen, program edit Tool compensation setting, alarm display Handwheel test, diagnosis screen Parameter setting, graphic simulation Auxiliary function Principal axis function Tool function Tool compensation memory Reverse clearance compensation Measurement centered Automatic tool regulator Specify arc radius R/center position Electronic gear ratio Yes M code S0-S15 (gear position control) S15-S99999 (analog) T code 30 tools length, radius compensation Yes Yes Yes Yes - 4 -

9 Adtech Shenzhen Technology Co., Ltd. 2. Program saving & editing 2.3 System function Self-diagnosis Diagnose CPU, memory, LCD, I/O interface, parameter state, coordinates and processing program comprehensively every time the system is started or reset; diagnose power supply, principal axis, limit and I/O ports in real-time during operating Compensation Automatic reverse clearance compensation Automatic tool length compensation Automatic tool radius compensation Automatic tool radius biasing and automatic tool tip transition Abundant instruction system Scaling instruction Mirror processing instruction Tool biasing instructions Program cycle, program skip, program shift, program transfer, different end processing modes, macro definition and program management instructions Fixed-point instructions: starting point, setting point, etc. Linear, arc and spiral interpolation instructions Six workpiece coordinate systems, nine extension coordinate systems and one reference point Full Chinese menu operation & full screen edit 4640/4620 CNC system uses cascading menu structure and full Chinese operation to ensure simple operation and visibility Abundant error-correction functions Point out the nature and correct the errors in operation Program exchange between CNC system and PC Perform CAD/CAM/CAPP auxiliary programming with abundant software in PC, and then transmit CNC program to the system through communication interface (USB disk, RS232 interface), or transmit the programs from the system to PC. 2.4 System operating condition Operating voltage 24V DC (with filter) Operating temperature 0 45 Optimum operating temperature 5 40 Operating humidity 10% 90% (no condensing) Optimum operating humidity 20% 85% Storage temperature 0 50 Storage humidity 10% 90% Operating environment No excessive dust, acid, alkali, corrosive and explosive gases, no strong electromagnetic interference - 5 -

10 3. Program saving & editing 3. Operating panel 3.1 LCD/keypad Keypad Fig. 3.1 CNC4620 Operating Panel Diagram Note: Press the submenu buttons to perform the operations of submenus. Manual axis moving and edit & input are composite. It has different definitions according to the modes. System working mode switch section is used to switch working modes, which can improve the security and system performance. Handwheel and single step mode are switched with Repeat button

11 3. Operating panel LCD unit Fig. 3.2 CNC4620 LCD Screen Diagram Note: Screen info shows the information of current window Working mode info shows currently selected working mode System main screen shows current main screen. The submenu options are used to switch submenus with left triangle, F1~F6 and right triangle. The right arrow is used to turn pages, and the left arrow is used to close the submenus in next level and previous menu. 3.2 LCD brightness adjustment CNC46XX doesn t support brightness adjustment. 3.3 System menus CNC46XX system uses cascading menu structure. You can press the following keys to operate the menus. Press a key to show the corresponding content in the bottom of the LCD. Key in the left: Return to previous menu Key in the right: Turn pages to show other menus of same level The main menus of the system include [Monitor], [Edit], [Parameter], [Coordinate] and [Diagnosis]. Each main menu contains several submenus, which are shown below: - 7 -

12 3. Program saving & editing [Monitor] [Position] [Absolute Position] [Relative Position] [Comprehensive [Track] [Preview] [Select Plane] [MDI] [Edit] [Program Edit] [File] [Parameter] [Comprehensive Parameter] [Axis Configuration] [Management] [Tool Magazine] [Principal Axis] [Port] - 8 -

13 3. Operating panel M Series [Coordinates] [Coordinate Setting] [Compensation] [Coordinate Parameter] [Centered Measurement] [Tool Regulator] [Measurement] L Series [Coordinates] [Compensation] [Diagnosis] [Tool Setting for Test Cutting] [Alarm Info] [Input Diagnosis] [Output Diagnosis] [DA Diagnosis] - 9 -

14 3. Program saving & editing 3.4 Operating keys The keys of CNC46XX system are defined below: [RESET] [EOB], [CAN] [EOB], [CAN], [DEL] Mode switch key Cursor moving key Key Page key Menu keys Principal axis positive rotation Principal axis reverse rotation Coolant Lubricant [BDT] [SBK] [PAUSE] [START] Address/number keys Purpose Cancel alarm, reset CNC Enter letters, numbers, etc. Confirm or cancel operation Program edit (insert, delete, modify) Select operating mode Four keys are available: Up/Down: adjust ration, move cursor between subsections; Left/Right: move cursor to left/right Up/Down: Turn pages Select the menus Press it to rotate the principal axis positively, and press it again to stop rotating Press it to rotate the principal axis reversely, and press it again to stop rotating Coolant on/off Lubricant on/off Block delete on/off Single block function on/off Pause automatic running Start automatic running

15 4. Manual operation 4. Manual operation 4.1 Returning to reference point manually CNC machine tool has specific mechanical position, which is called as reference point and for tool exchange and coordinates setting. Generally, when the power supply is connected, the tool should be moved to the reference point. This operation is also called as home operation, which will make the CNC system confirm the origin of machine tool. The home operation includes program and mechanical mode: For program home, the action completes when the coordinates of machine tool are 0, and won t check whether origin switch is in position; For mechanical home, the external home sensor switch is used to locate the origin of the machine tool; two checking modes are available: With the external sensor switch, the home operation completes when the sensing is successfully repeatedly. The external sensor switch is used as deceleration switch, the servo home is enabled as home signal after sensing and then the sensing stops. You can set the Home mode in [Parameter][Comprehensive Parameter], in which 0 (default) indicates program and 1 indicates mechanical. You can also press [SBK] key in home mode to switch among Mechanical Program Mechanical quickly. This method doesn t conflict with parameter setting. You can select accordingly. To use servo home as the home signal, you need to set Axis phase Z home enable to 1 in [Parameter][Axis Configuration] in mechanical home mode, and the setting will take effect in next home checking. Several methods are available for tool returning to reference point and the steps follow: Each axis returns to reference point separately Press the mode switch key [Home] to select home operation; Press the composite key [X-], [Y-], [Z-], [A-] in the numbers section to return the corresponding axis to reference point. The axes return to reference point simultaneously Press the mode switch key [Home] to select home operation; Press the [Start] key to return Z axis to reference point, and other axes return to reference point simultaneously. The automatic home sequence can be configured in the parameters. Reset machine tool position Press the mode switch key [Home] to select home operation; In [Absolute Position] and [Coordinate System] screen, press [X], [Y], [Z], [A] respectively to show the value of corresponding axis position, and then press the [Cancel] key to reset the machine tool position of current axis, i.e. current point is used as machine tool origin. After this operation, the system considers it as a home action. Therefore, when the program is running, the alarm of not home won t occur. If you press by mistake, it will switch the screen and cancel selection automatically. Reset relative position manually Press the mode switch key [Manual] to select manual operation; In [Relative Position] and [Coordinate System] screen, press [X], [Y], [Z], [A] respectively to show the value of corresponding axis, and then press the [Cancel] key to reset the relative position of current axis. Note The tool also can return to reference point according to program instruction, i.e. returning to reference point automatically. Caution: Generally, the system will perform home operation after connecting the power supply. If the power fails while the machine tool is moving, the system also will return to reference point when the power supply is connected again. Return to Z axis to prevent tool and workpiece from colliding, and damaging tool, workpiece and clamp

16 4. Manual operation 4.2 Continuous feeding manually Press the keys on the operation panel or handwheel to move the tool along every axis. The operation follows: Press the mode switch key [Manual] to select manual operation; Press composite keys [X+], [X-]; [Y+], [Y-]; [Z+], [Z-]; [A+], [A-] in numbers area to move the tool along selected axis. The keypad follows: In manual mode, 5# key can be used to switch the manual speed and rapid traverse speed. The rapid traverse speed of every axis depends on comprehensive parameter (rapid traverse speed setting). After switching to rapid traverse speed, the manual speed of the position interface will be highlighted, while the actual speed of the position interface is sampled from the moving speed of current axis. This value can truly reflect the moving speed of current axis (unit: mm/min); Note Only single axis motion is available in manual mode. 4.3 Single step feeding Single step mode is similar to manual mode, the operations are same, but only moves a specified pulse increment every time press the key. The specific operation follows: Press the mode switch key [Handwheel/Single step] (this key is composite, and you can press it repeatedly to switch the modes) to select the single step operation; Press composite keys [X+], [X-]; [Y+], [Y-]; [Z+], [Z-]; [A+], [A-] in numbers area to move the tool for a fixed distance along the selected axis. This distance is controlled by four rates (1.000, 0.100, 0.010, 0.001) (unit: mm). To select pulse increment, press Up (+) and Down (-) key in the [Position] interface. 4.4 Handwheel feeding In handwheel mode, rotate the handwheel to make the machine perform single step or continuous motion. Determine the feed by testing the handwheel signal of the handheld box. In handwheel mode, the feeding axis and feeding unit are determined by the axis selection signal of the handheld box. The handwheel feeding step follows: Press the mode switch key [Handwheel/Single step] to select handwheel operation; Rotate the dip switch on the handwheel to select handhweel axis (X, Y, Z, A); Rotate the increment dip switch on the handwheel to select the moving amount (0.1, 0.01, 0.001); Rotate the handwheel to move the machine tool. The tool moves certain distance every time you rotate the handwheel for a scale. (For example, if you select X axis in step and select 0.01 in step, the tool moves 0.01mm every scale). Rotate the handle continuously to move the machine tool on this axis continuously. Note The handwheel feeding mode controls only one coordinate axis every time; the faster the handwheel rotates, the faster the machine tool moves

17 4. Manual operation 4.5 Manual auxiliary function operation Coolant on/off In handwheel/single step/manual mode, press this key to switch on/off the coolant. Key indicator: No matter in what mode, the key indicator is on if only the coolant is on, or else the indicator is off. Lubricant on/off In handwheel/single step/manual mode, press this key to switch on/off the lubricant. Key indicator: No matter in what mode, the key indicator is on if only the lubricant is on, or else the indicator is off. Principal axis positive rotation/stop In handwheel/single step/manual mode, press this key to rotate the principal axis positively and press it again to stop the axis. Key indicator: No matter in what mode, the key indicator is on if only the principal axis is positive rotating, or else the indicator is off. Principal axis reverse rotation/stop In handwheel/single step/manual mode, press this key to rotate the principal axis reversely and press it again to stop the axis. Key indicator: No matter in what mode, the key indicator is on if only the principal axis is reverse rotating, or else the indicator is off. General instructions for manual operation keys Cooling, lubricant, principal axis positive/reverse rotation are available in handwheel, single step and manual mode; When the principal axis is rotating, press the reverse rotation key, the principal axis will stop first, and rotate in reverse direction after pressing it again. When auxiliary output is on, if the system is switched to other modes, the output is unchanged; you need to press Reset key to switch it off, execute the corresponding M code in automatic mode or execute the corresponding M code in MDI interface to turn off the output; When the principal axis is positive/reverse rotating and execute M04/M03 directly, the system first stops positive/reverse rotating and then execute M04/M03 instruction; Positive/reverse rotating of principal is stopped while emergency stop, and other outputs can be set according to system parameters

18 4. Manual operation 4.6 Tool setting Tool setting is the main operation and important skill during CNC processing. Under certain conditions, tool setting precision can determine the processing precision of parts, and the tool setting efficiency also affects the CNC processing efficiency directly. CNC46XX has M series tool setting mode and L series tool setting mode, while M series has two tool setting methods, i.e. centered and tool regulator, and L series uses test cutting Centered (M series) The centered function is that the system calculates the center position of the workpiece automatically while tool setting to realize segment centered, rectangle centered and circle center location. Note In the tool setting operation below, if the auxiliary parameters of the coordinate system doesn t need setting, the first three steps can be omitted. Please refer to chapter 9.5 for auxiliary parameters of the coordinate system. Single axis centered Select the edit mode; Press [Coordinates], [Coordinates Parameter] to enter the auxiliary parameters setting interface of the coordinate system; Move the cursor to desired position, enter new parameters and press [EOB]; Select handwheel or manual mode; Press [Coordinates] to enter coordinate system setting interface; Press the left/right arrow to move the cursor to select coordinate system; Press [Centered Measurement] to enter centered interface; Move the tool to make its side blade touch side A surface of the workpiece, and press [EOB] to record boundary point 1; Move the tool to make its side blade touch side B surface of the workpiece, and press [EOB] to record boundary point 2; Press [EOB] to calculate the coordinates of center point; If there is no question, press [EOB] again to return the result to specified coordinate system. Square centered Select the edit mode; Press [Coordinates], [Coordinates Parameter] to enter the auxiliary parameters setting interface of the coordinate system; Move the cursor to desired position, enter new parameters and press [EOB]; Select handwheel or manual mode; Press [Coordinates] to enter coordinate system setting interface; Press the left/right arrow to move the cursor to select coordinate system; Press [Centered Measurement] to enter centered interface; Move the tool to make its side blade touch side A surface of the workpiece, and press [EOB] to record boundary point 1; Move the tool to make its side blade touch side B surface of the workpiece, and press [EOB] to record boundary point 2; Record boundary point 3.4 in the same method; Press [EOB] after recording all boundary points to calculate the coordinates of center point; If there is no question, press [EOB] again to return the result to specified coordinate system. Plane circle (XY plane) centered

19 4. Manual operation Circle centered has two modes, which are three points and two points with specified radius; If the user only types two coordinates in the option of workpiece boundary point and specifies one value for R, the system will determine the circle center with two points and radius automatically; if the user types coordinates of three points in the option of workpiece boundary point, the system will determine the circle center with three points and shield R. The centered step of three points arc follows: Select the edit mode; Press [Coordinates], [Coordinates Parameter] to enter the auxiliary parameters setting interface of the coordinate system; Move the cursor to desired position, enter new parameters and press [EOB]; Select handwheel or manual mode; Press [Coordinates] to enter coordinate system setting interface; Press the left/right arrow to move the cursor to select coordinate system; Press [Centered Measurement] to enter centered interface; Move the tool to make its side blade touch the surface of round workpiece, and press [EOB] to record boundary point 1; Move the tool to make its side blade touch another point in the surface of the workpiece, and press [EOB] to record boundary point 2; Move the tool to make its side blade touch another point in the surface of the workpiece, and press [EOB] to record boundary point 3; Press [EOB] after recording all boundary points to calculate the coordinates of circle center and display in the result section; If there is no question, press [EOB] again to return the result to specified coordinate system. Arc centered validation In the main menu, press [Monitor], [MDI] to enter the MDI interface, select edit mode, enter program block G55G0X0Y0 (if coordinate system G55 is selected while tool setting), press [Start], [EOB], and the tool moves to workpiece center automatically, indicating that three points arc centered properly. The validation steps for other tool setting methods are same Tool regulator (M series) Tool regulator principle: The tool regulator uses external sensor switch to set the reference point for axis Z, which is similar to home. After changing tool during processing or changing tool manually, transfer this function to automatically check the Z value of current workpiece s home. Tool regulator usage Before using the tool regulator, you need to set the parameters. In [Coordinate] menu, press [Coordinate Parameter] to show tool setting parameters. After that, press [Tool Regulator] in the setting interface to execute the tool regulator program according to specified parameters. The action sequence of tool regulator follows Return Z axis to mechanical home first, and then locate principal axis to X, Y coordinates of the tool regulator; Tool regulator blows to start; Z axis moves down, and retracts when touches tool regulator sensor switch, moves down at lower speed when the sensor switch leaves, records the machine tool coordinates of current Z axis when touches the switch and assigns to the Z coordinates of current selected coordinate system; Tool regulator blows to turn off; Z axis returns to home position

20 4. Manual operation Tool setting by test cutting (L series) The machine tool uses test cutting for tool setting, which moves the tool to cut the processing file, measures the value after cutting and enters into the system to complete the tool setting for center point. For tool setting by test cutting, enter the test cutting interface first. Press [Coordinate], [Tool Setting] to enter tool setting interface; Move cursor to desired tool number, and select diameter or length for the type of current test cutting; Select handwheel, single step or manual mode; Press the principal axis on, and then press [X+] [X-] [Z+] [Z-] to move the axis and test cutting the workpiece; After test cutting, turn off the principal axis but do not move the axis; Select edit mode, measure corresponding data and display data, press the number keys to enter directly, press [EOB] to calculate and save automatically, or press [Cancel] to exit; Caution 1. For tool setting by test cutting, automatically calculate the entered measurement value plus current machine tool coordinates and then enter. Therefore, the current position of machine tool must be true. 2. When measuring the diameter of workpiece, test cutting a layer of the workpiece surface. After cutting, the axis can only retract in opposite direction. Do not move X axis, or else the measured diameter will be invalid. 3. Measure the length of the workpiece, touch the workpiece end with the tool, make it can be cut; enter length value 0, indicating that current point is the workpiece home of Z axis. 4.7 Data settings Tool compensation data setting The tool compensation parameters can be set as follow: Select the edit mode; In the main menu, press [Coordinate], and then press submenu [Compensation] to enter tool compensation parameter setting interface; Move cursor to select the parameter, enter the value and then press [EOB] to modify the parameter where the cursor locates System parameter setting The system parameters can be modified as follow: Select the edit mode; In the main menu, press [Parameter] to enter parameter setting interface; Then, press the submenu key to select the parameter type (comprehensive, management ); Move cursor to select the parameter, enter the value and then press [EOB] to modify the parameter where the cursor locates

21 5. Automatic operation 5. Automatic operation The machine tool moving according to prepared program is called as automatic operation. The automatic operation modes of CNC46XX system follow: Memory operation, MDI operation, USB disk DNC operation. 5.1 Memory operation The machine tool can operate according to the program in CNC46XX memory, which is called as memory operation. The program is prestored in the memory. Select and load a program with the operation panel and press the Start key to start the automatic operation. Then, press Pause key to pause, press Start key again to resume the operation, and press Reset during operation to stop the program immediately. The step of memory operation follows: Save the program in the memory (see 8.1 for details); Select [Edit], [File] in the menu or press [File] on the panel to enter file operation interface; Press the direction keys to move the cursor, press [EOB] to select a program and load the file into the work area; Press mode selection key [Auto] to switch to automatic mode; Press the [Start] key to run the program, and the indicator is on. 5.2 MDI operation In [Monitor] interface, switch to [MDI], enter the program with keypad and make the machine tool operate according to the program. The program block isn t saved in system memory, and can t be preserved upon power failure. This is called as MDI operation and the step follows: Press mode selection key [Edit]; Select [Monitor], [MDI] in the menu to enter MDI interface; Enter program block instruction manually; Press [Start], [EOB] to start executing the program block. 5.3 USB disk DNC The program read from external USB disk can operate the machine tool without saving in CNC memory. This operation is called as USB disk DNC operation. The step of USB disk DNC operation follows: Insert the USB disk; Select [Monitor], [File] in the menu to enter file operation interface; Select USB disk and press [EOB] to enter; Move cursor to select a file in the disk; Press [EOB] to load the file into work area (system buffer); Press mode selection key [Auto]; Press the [Start] key to run the program, and the indicator is on. Caution The system won t record the USD disk path. If power failure occurs during DNC processing, the program info will be lost when the power supply is connected again. 5.4 Speed rate adjustment Feeding rate In automatic mode, press Up/Down key in [Position] interface to adjust the feeding rate; Press the key once to increase or decrease by 10% (10%-150%). Manual rate In manual mode, press Up/Down key in [Position] interface to adjust the manual rate; Press the key to increase or decrease by 10% (10%-150%). If you press the FF key and Up/Down key, you can adjust the fast forward rate by 10% (10%-150%). Principal axis rotation

22 5. Automatic operation In automatic or manual mode, press the Left/Right key to adjust the principal axis rotation by 100r/min. The maximum rotation is set by the principal axis parameters in the system and the minimum rotation is 16r/min. If you press and hold the key for three seconds, the value will be increased or decreased quickly. 5.5 Run idle (Reserved) 5.6 SBK function In automatic mode, press [SBK] to start the SBK function. Current program block stops after executing; press [Start] again and next block stops after executing. The SBK mode allows checking the program block by block. Caution: In G28-G30, single block also can be stopped at the center point; The stop points of single block in fixed circle are,, 6 in the figure below; when the single blocks of, stops, the feeding pauses and the pause indicator is on. 5.7 BDT function In automatic mode, press [BDT] to start the BDT function, which will make the block instructions in the line after / in the program invalid. 5.8 Stopping automatic operating Two methods are available to stop automatic operating, i.e. enter stop command where the program will stop (M00, M01) and press the key on the operation panel to stop the machine tool. Program stops After executing the block with M00 or M01, the automatic operating stops, which is same to single block stop, and all mode information is saved. Start with CNC and the automatic operation can be started again. After processing a part, the automatic operation stops. Program ends After executing the block with M30, the automatic operating stops, changes into reset state, and returns to program start. Feeding pause During automatic operation, press the [Pause] key on the operation panel, the automatic operation pauses and the indicator is on; press [Start] again to continue operating the machine tool and the pause indicator is on. Reset During automatic operation, press the [Reset] key on the operation panel and the system stops immediately. Here, [Reset] has the same function as emergency stop button

23 Adtech CNC Technology Co., Ltd. 6. Safe operation 6. Safe operation 6.1 Emergency stop Press the emergency stop button on the machine tool, which will stop immediately, and all outputs such as principal axis rotation and coolant are turned off. Rotate the button clockwise to cancel emergency stop, but all outputs must be restarted. Caution: The power supply isn t always cut off upon emergency stop. Please refer to the electrical configuration description of the machine tool manufacturer for details; Before releasing emergency stop, please eliminate the problems of the machine tool. 6.2 Hard limit over travel The system alarms if the tool touches travel switch during operation. The axis in corresponding direction can t move, and only moves in reverse direction. Before the alarm is released, the system can t enter automatic operation normally. After investigating the alarm reason, press [Reset] to clear the alarm information. 6.3 Soft limit over travel If the tool enters the restriction area regulated by the parameter (travel limit), the system alarms over travel, and the tool decelerates and stops. At this moment, you can move the tool to safe direction in manual mode, and then press [Reset] to release the alarm. Caution: During automatic operation, when the tool touches an axial travel switch, the tool decelerates and stops all axial motions, and only displays one over travel alarm. During manual operation, when the tool touches an axial travel switch, the tool only decelerates and stops motion on current axis, and still moves along other axes. When the tool is in safe position, press [Reset] to clear the alarm. Please refer to the manual of the machine tool for details. Both limit alarm and soft limit alarm have a deceleration stop, and therefore the sensing range of the limit should have sufficient space, or else the limit protection will be disabled due to over travel

24 7. Program saving & editing 7. Alarm and self- diagnosis function The system has several levels, and the alarm numbers also have different type, as follow: 0~1023: G code program running alarm info 1024~2048: System environment alarm info 7.1 NC program execution alarm 0000 : Reset 0001 : Prog No End 0004 : M6Tx Abort 0005 : Tool Invalid 0006 : G Program Repeat Error 0007 : G Program Number Error 0008 : G7X8X Instruction Run Error 0009 : Program Abend 0010 : Appointed M01 Instruction Stop 0011 : M98 Format Error 0012 : Motion Run Error 0013 : Current Program No Repair 0014 : G Program Format Error 0015 : M99 Instruction Abort 0016 : Motion Abort 0017 : Illegal char 0018 : Noneffective Exegesis Character 0019 : Illegal G Code 0020 : GCode RadialOffset Num Err 0021 : Noneffective GCode RadialOffset 0022 : Arc Appointed Error 0023 : Appointed Noneffective Plane 0024 : M98 Instruction Abort 0025 : Spindle Appointed Number Error 0026 : MCode Instruction Abort 0027 : Spi Appointed Err 0028 : Motion Repeat Request 0029 : Appointed Arc Nonentity 0030 : Missing X Code Error 0031 : Missing X Code Error

25 7. Program saving & editing 0032 : Missing X Code Error 0033 : Missing X Code Error 0034 : Missing X Code Error 0035 : Missing X Code Error 0036 : Missing X Code Error 0037 : Missing X Code Error 0038 : Missing X Code Error 0039 : Missing X Code Error 0040 : Missing X Code Error 0041 : Missing X Code Error 0042 : Missing X Code Error 0043 : Missing X Code Error 0044 : Missing X Code Error 0045 : Missing X Code Error 0046 : Missing X Code Error 0047 : Missing X Code Error 0048 : Screw Value Repeat Error 0049 : System Abort 0050 : Factitious return 0051 : no parameter input 0052 : no store address for Gcode pro num form 7.2 System environment alarm 1024 : no \"return zero\ 1. The system doesn t perform home action after started 1025 : 4 - direction program limit 1026 : 4 + direction program limit 1027 : Z - direction program limit 1028 : Z + direction program limit 1029 : Y - direction program limit 1030 : Y + direction program limit 1031 : X - direction program limit 1032 : X+ direction program limit

26 7. Program saving & editing 1033 : 4 - direction machine limit 1034 : 4 + direction machine limit 1035 : Z - direction machine limit 1036 : Z + direction machine limit 1037 : Y - direction machine limit 1038 : Y + direction machine limit 1039 : X - direction machine limit 1040 : X+ direction machine limit The system has corresponding limit alarm. Please check corresponding limit sensor point or parameters. If hard limit occurs, and the appearance of the sensor point doesn t has any problem, enter the diagnosis mode in manual mode and check the state of the input port in diagnosis mode. If the state is valid, please eliminate in sequence. Pull out the input IO cable and check whether the sense disappears. If yes, please check the circuit. If the problem still exists, the internal optocoupler is broken. Please contact the supplier : Emergency stop Emergency stop button of the handheld box interface is valid. External emergency stop 2 input is valid; check whether IO assignment has conflict or interference. Search for corresponding function ports in IO configuration, and then check in input diagnosis : X Sevor driver alarm 1043 : Y Sevor driver alarm 1044 : Z Sevor driver alarm 1045 : 4 Sevor driver alarm Servo alarm; if the servo doesn t alarm, parameter P2.001~004 setting and actual servo alarm level may be reverse. Please modify the parameters. The corresponding function ports are IN34~37, which can be checked in input diagnosis : Axis's physical line redefine 1047 : spi no to home Interface axis No. set by parameter P2.45~P2.49 is specified repeatedly 1048 : workpiece no lock 1049 : safe signal can't detect 1051 : air no enough 1052 : chuck signal alarm detect 7.3 Alarm processing If alarm occurs, please refer to the alarm code to confirm the failure reason. When alarm occurs, if the system isn t reset, the alarm will constantly prompt no matter whether the alarm still exists, so as to avoid the conditions that false alarm causes system suspended, but can t find the reason. If the error is caused by data setting, modify the data, and then press [Reset] to clear the alarm info

27 7. Program saving & editing When alarm occurs, please remove the alarm reason. Please note that several alarms may occur at the same time. Please refer to the alarm info in the Diagnosis menu for details. When the alarms are eliminated, please press [Reset] to clear the alarm ring. 7.4 Self-diagnosis function The CNC system may stop even when there is no alarm info, this may be because the system is executing certain processes. Please check with the self-diagnosis function. The step of self-diagnosis follows: In the main menu, press [Diagnosis] to enter the diagnosis interface; Select [Input] to enter the input diagnosis interface, or select [Output] to enter the output diagnosis interface; Output diagnosis: In edit mode, press the direction keys to select the output port, and press [EOB] to switch the output level of corresponding output port; Input diagnosis: When certain input signal is valid, the corresponding area on the screen flashes

28 8. Program saving & editing 8. Program saving & editing 8.1 Saving the program in the memory Keypad input (new program) Create new program in the memory with the keypad, and the step follows: In the main menu, press [Edit] to enter program edit interface; Press [File] to enter file operation interface; Select [New] to create a new file; Enter the file name and press [EOB] to confirm and create a new program in current directory in the memory, and load into the system by default; Select [Close] to exit [Edit] interface; In edit mode, enter the program content; After editing all programs, press [Reset] to save the edited programs into the system memory PC serial port input The step of transmitting files to controller through PC follows: Set system baud rate and ID No.; Connect to PC and run Adtech serial communication software; Set the baud rate same as controller, and scan ID device; Select the [Upload file to NC] button in the communication software; Select CNC file in the popup dialog box and press [Open] button Copying processing files from USB disk The step of copying CNC processing file to system memory through USB disk follows: In the main menu, press [Edit] to enter program edit interface; Select [File] to enter file operation interface; Select USB disk and press [EOB] to enter; Move the cursor to select a CNC file and then select [Copy]; Return to the root directory, locate the PROG directory in disk D, enter the directory, and select [Paste] to complete copying. 8.2 Reading programs into work area Reading programs from controller into work area The step of loading files from system memory into work area follows: Press [File] to enter file operation interface; Select desired program, which is in PROG directory in disk D by default, press [EOB] to enter subdirectory, or press [Cancel] to exit; Move cursor to select desired program, press [EOB] to confirm and load the program Reading programs from USB disk into work area The step of loading files from USB disk into work area follows: Insert the USB disk; Press [File] to enter file operation interface; Select USB disk, move cursor to select a file in the disk, and press [EOB] to load the file. 8.3 Editing & modifying programs The program in CNC memory can be edited with NC keypad. In the main menu, press [Edit] to enter program edit interface and edit the program in current work area (for loading program into work area, refer to 8.2). The edit mode similar to

29 8. Program saving & editing notepad in Windows. Move the cursor directly to locate, press keys to enter, press [EOB] to change line, and press [Delete] to delete the character where the cursor locates. Caution After all operations, press Reset to save the files, and the functions base on edit mode; CNC46XX uses new file mapping technology, and allows loading processing files that exceed its memory. Therefore, to ensure the system efficiency, you can only search and process, but can t edit the processing files that exceed 2MB. 8.4 Deleting files Deleting files in memory Follow the step below to delete the programs in system memory: Press [File] to enter file operation interface; Follow the prompt on the screen, select the file and press [Delete] to confirm and delete the file. Caution If the program has been loaded into work area, you need to restart the system to delete the program, or else the system will report error. The programs loaded into the work area can t be deleted, or else the system will report error

30 9. Program saving & editing 9. Main interfaces of the system 9.1 Position interface The position interface shows current machine tool coordinates, including absolute position, relative position and comprehensive position. In the main interface, press [Monitor] to enter the position interface. To enter position interface: [MONITOR] [Position] [Absolute] [Relative] [Comprehensive] Absolute position The position of current machine tool coordinates relative to the origin of workpiece coordinate system The absolute position interface follows: Absolute Position Interface

31 9. Main interfaces of the system Relative position In manual mode, reset current coordinates to check the relative motion distance of any displacement, and thus it is called as relative position. This interface is usually used for early tool setting. Considering that some operators have been used to manual calculation, this function is preserved. With the more and more powerful of automatic centered function, it is used less. The operation follows: Enter [Position] interface; Switch to [Relative] interface; Then, enter manual mode; Press a coordinate axis No., e.g., X, and the X coordinate flashes; Press Cancel to reset X coordinate to 0; The relative position interface follows: Relative Position Interface

32 9. Program saving & editing Comprehensive coordinates The interface displayed by absolute coordinates and machine tool coordinate Comprehensive position interface is shown below: Comprehensive Position Interface 9.2 Edit interface The edit interface shows the program info in current work area. In the main interface, press [Edit] to enter the program interface. To enter program edit interface: [Edit/PROG] [Edit] Program edit The program edit interface shows the NC program currently processed; in edit mode, you can edit the NC program (see 8.3 for details). Program Edit Interface System info interface The system info is a summary of the program blocks in current processing area, and calculates the resource usage in current work area. The upper right of the program directory interface shows the version info of current controller software. If our engineering personnel asks to confirm the software version of the controller on site, please provide this version info. To enter system info interface:

33 9. Main interfaces of the system [Diagnosis] [System Info] System info interface is shown below: System Info Interface 9.3 MDI interface MDI mode is mainly used for the execution of single G code in certain occasions. To enter MDI interface: [Monitor] [MDI] In MDI interface, enter complete NC code instruction in edit mode, press the [Start] key in the edit mode and confirm to execute directly. To restore the default settings quickly, press and hold the [Reset] key for three seconds and choose to reset or not. MDI interaction interface is shown below: MDI Interface

34 9. Program saving & editing 9.4 File management In the file management interface, you can manage the system files. To enter file management interface: [Edit/PROG] [File] File management mainly has the following functions: Connect the UBS disk, and copy the files between USB disk and electronic disk; Upgrade system software: Copy the upgrade file to system memory in either method above to upgrade the software; Restart the controller. In [File Management] interface, press the Reset key to restart the controller. This method is different from restarting due to power failure. In certain occasions, you can restart the controller quickly in this method to make certain function take effect. Connect to PC with the USB cable, and exchange the data between USB disk and PC. File operation interface is shown below: File Operation Interface 9.5 Graphic simulation [Track] function is to simulate NC processing program. To enter graphic simulation interface: [MONITOR] [Track] Enter track interface to enable real-time track display automatically. During automatic running of the system, the motion track is displayed in real-time. In standby mode, you can also press Preview to prescan the processing file. The shortcuts of adjusting position: PageUp: Zoom in PageDown: Zoom out : Shift position; the shift unit is the set pixel unit Graphic simulation interface is shown below:

35 9. Main interfaces of the system Graphic Simulation Interface 9.6 Parameter interface The parameter interface shows system parameter info, including comprehensive, axis parameter, management, tool magazine, principal axis, port, etc. In the main interface, press [parameter] to enter the interface. Parameter has the following menus: [Parameter/SYSTEM] [Comprehensive] [Axis Configuration] [Management [Tool Magazine [Principal Axis] [Port]

36 9. Program saving & editing Comprehensive parameters Comprehensive parameters are a set of functions that aren t classified in details, e.g. home mode, manual speed, etc. Comprehensive parameter interface is shown below: Comprehensive Parameter Interface Axis parameters Axis parameters are parameter set of interface characteristics of control position axis. Please refer to the parameter description for details. Axis parameter interface is shown below: Management parameters This is a function set that confirms identity and initialize the system. Management parameter interface is shown below:

37 9. Main interfaces of the system Management Parameter Interface Tool magazine parameters Tool magazine parameters collect the parameters that the tool magazine requires. The specific meaning of the parameters should be determined by the tool magazine of the machine tool, and therefore should refer to the instructions provided by the machine tool manufacturer. Principal axis parameters Principal axis parameters are the set of electrical characteristics of servo and common principal axes. The specific application also depends on the principal axis selection of the machine tool manufacturer. The servo parameters and axis parameters have the same meaning, and therefore please refer to the description of axis parameters. Principal axis parameter interface is shown below: Principal Axis Parameters Interface IO configuration parameters IO configuration parameters are the assignment of hardware interfaces. This parameter set is the IO pin sequence specified by the system s IO function numbers, which will improve the system flexibility. Please refer to System Parameters for the specific meaning of the parameters. IO configuration parameter interface is shown below:

38 9. Program saving & editing IO Configuration Parameters Interface 9.7 Compensation interface Tool compensation interface shows tool compensation info of the system, including tool length compensation, tool radius compensation and other input variables. The compensation method is different from M series and L series, which will be described below. To enter tool compensation interface: [Coordinates/COORD] [Compensation] M series tool compensation interface has two compensation variables, i.e. tool length compensation and tool radius compensation; corresponding to G43, G44 and G41, G42; enter compensation value to corresponding compensation number, and transfer the compensation number in NC program to realize the compensation. Tool compensation numbers have 36 variables. Tool compensation interface is shown below:

39 9. Main interfaces of the system Tool Compensation Parameter Setting Interface 9.8 M series workpiece coordinate system setting interface The coordinates interface shows coordinate system info, including setting, coordinate system, centered, and tool regulator. In the main interface, press [Coordinate] to enter coordinate system. Workpiece coordinate system Display workpiece coordinate system, i.e. the offset of workpiece home position and machine tool home position, Totally six basic workpiece coordinate systems (G54~G59) and nine extension coordinate systems (G591~G599) are available. To enter workpiece coordinate system interface: [Coordinates/COORD] [Coordinate System] The workpiece coordinate system interface is shown below:

40 9. Program saving & editing Workpiece Coordinate System Setting Interface Coordinate system auxiliary parameter setting interface The auxiliary parameters for workpiece coordinate system, including origin offset and tool setting parameters of automatic tool regulator. To enter coordinate system auxiliary parameter setting interface: [Coordinates/COORD] [Coordinate Parameter] The detailed auxiliary parameters are described in the table below: 1 X coordinates offset 2 Y coordinates offset 3 Z coordinates offset 4 A coordinates offset 5 X coordinates of tool regulator 6 Y coordinates of tool regulator 7 Z coordinates of tool regulator 8 Axis selection symbol of tool regulator 9 Effective voltage level of tool regulator 10 Set tool automatically after changing 11 Tool regulator machine tool X limit 12 Tool regulator machine tool Y limit 13 Tool regulator machine tool Z limit 14 Tool regulator X search direction 15 Tool regulator Y search direction 16 Tool regulator Z search direction 17 Tool regulator limit effective signal 18 Add offset to coordinates automatically

41 9. Main interfaces of the system Origin offset The origin offset is added to current machine tool coordinates when setting the coordinate system; this parameter setting is available in next tool setting; The application of this parameter is for the processing of certain parts that require several working procedures. The first processing procedure may damage the tool setting position of the workpiece, and the next procedure can t locate the proper tool setting position. Therefore, a reference tool setting point is required, and the offset from reference point to actual tool setting position can be set to this parameter. No matter tool setting in which procedure, you only need to set to this reference point and it is same like setting to home position of the workpiece. Tool regulator coordinates, effective signal, automatic tool setting, machine tool Z negative limit of tool regulator: The X, Y coordinates are the mechanical coordinates of the tool regulator on machine tool; the tool regulator can position automatically only when the coordinate is set properly. Effective voltage level of tool regulator is to set the signal interface level of the tool regulator, which should be set according to the actual interface of the tool regulator. Automatic tool setting after changing is that the tool regulator function executes automatically after tool changing instruction is returned successfully to improve the processing efficiency. Z negative limit is used to prevent crash caused by not in place of Z axis error checking. Once negative limit alarm occurs, the tool regulator stops working immediately. If the system is in processing state, the system will send abnormal alarm; during separate setting of the tool regulator, the alarm won t occur. 9.9 Controller diagnosis interface (diagnosis) The diagnosis interface is used to display the hardware interfaces and system info, including alarm, input, output, DA diagnosis; press [Diagnosis] to enter the diagnosis interface. The diagnosis interface follows: [Diagnosis/DGNOS] Alarm Input Output DA System Info Alarm interface Display the alarm of the system after power on, including 15 alarm records. IO diagnosis interface IO diagnosis allows entering at any moment. You can check current IO state of the system. In manual mode, press the direction keys to select corresponding IO, and press EOB to control the output manually. DA diagnosis interface Correct the output voltage of two lines DA voltage module for testing; press the direction keys to output corresponding voltage directly, input the actually measured voltage to corresponding gear position; when transferring control instructions of principal axis, the system will correct according to correction value. System info The system info shows basic information of current system, and is used to mark current software version, hardware version, upgrade info, etc. In this interface, you can follow the prompt to perform operations

42 9. Program saving & editing 9.10 Macro variable view interface (macro variable) This is the variable register view menu of macro function. In this menu, you can turn pages to view the macro variables, or enter values to variable register directly in edit mode. To enter macro variable view interface: [MONITOR] Macro Variable The macro variable menu has eight levels, as below: Local variable #100~#199 #500~#599 #600~#699 #700~#799 #800~#899 #900~#999 Process variable In the variable interfaces of different levels, you can check the corresponding variable number. Local variable has five levels totally, and shows the variables of current working layer by default. To view a specific layer, please enter local variable submenu, and then select according to layers. Process variables are to customize the names of 20 variables (#100~#999) according to CSV configuration table, so that the variable names have visual meanings. In programs, the user customized variables are transferred with variable number Current mode instruction info Display the G code mode info of current system; In [Monitor] interface, you can check the running code info of current system: Motion instruction: Select plane: Coordinate logic: Workpiece coordinate system: Radius compensation: Length compensation: G00, G01 G17, G18, G19 G90, G91 G54, G59, G591 G599 G40, G41, G42 G43, G44, G49 Compound instruction retracting plane: G98, G99 Principal axis rotation: Tool No.: S T

43 10. Program saving & editing 10. System maintenance 10.1 Restart In the main menu, press [Edit] to enter the program interface; Press [File] to enter the file interface; Press [Reset] and the system asks whether restart or not; Press [OK] to restart the system System upgrade The step of copying upgrade program with USB disk follows: In the main menu, press [Edit] to enter the program interface; Press [File] to enter the file management interface; Insert the USB disk, select the USB disk symbol in the root directory; after reading successfully, the system enters the USB directory automatically; Move cursor to the upgrade file ADTROM.BIN, select [Copy], enter ADT directory in disk D and paste; Select the second upgrade file NC_RES.NC; skip this step if the file doesn t exist. Also select Copy, enter disk D, and paste in directory ADT. (6) After upgrading, enter BIOS, select USB in [Boot-up mode], and restart the system to take effect. (7) Enter System Info in Diagnosis menu to view the system version and compilation date, and check whether the upgrade is successful Reset Select the edit mode; In the main menu, press [Parameter] to enter the parameter interface; Press [Management] key to enter management parameter interface; Move cursor to 006 Reset all parameters ; Press [EOB], the system confirms, restores the default parameters and restarts automatically Parameter backup and restore Select the edit mode; In the main menu, press [Parameter] to enter the parameter interface; Press [Management] key to enter management parameter interface; Move cursor to 007 or 008, and select corresponding operation menu; Press [EOB], the system confirms, and performs backup or restore operation; (6) The backup operation will generate the SYSCONF.BAK file in the root directory of disk D. Please save this file for backup in the future. (7) For restore operation, also save the SYSCONF.BAK file in the root directory of disk D. The system will recognize this file automatically in the process of restoring Entering BIOS (1) If the system has irreversible error and can t be started, please enter BIOS to upgrade and maintain the program; (2) To enter BIOS, press the [Cancel] key after the controller is electrified and before the application is started; after entering, a blue background interface pops up. If the BIOS requires password, a prompt pops up. Please type the password to enter the BIOS. (3) Enter BIOS to perform operations such as format disk C, D, and copy files from USB disk to upgrade;

44 11. System parameters According to occasions and functions, the parameters contain comprehensive parameters, IO configuration parameters, management parameters and coordinate setting parameters. Comprehensive parameters are complete, and contain basic operation and usage settings of the controller, including principal axis, handwheel, home, tool magazine, etc.; IO configuration parameters are mainly used for machine installation and test, adapting to the interface characteristics of machine tool and motor drive; Coordinate setting parameters are tool setting configuration in [Coordinate] interface; It is required to confirm user identity to modify the parameter table. The controller has two levels of user authority, which are super user and operator; super user can modify all parameters and user passwords; while operator only can operate the parameters that require modification, and modify the operator password; in P3.1 of management parameters, the system enters the corresponding mode automatically according to the entered password. According to the application, the parameters will take effect immediately or after restarted; the parameters that require restart are marked with < >. Certain parameters are set in binary system (parameter descriptor has bit symbol); the conversion between binary system and decimal system follows: Bit0: Set to 1 to correspond to decimal 1; Bit1: Set to 1 to correspond to decimal 2; Bit2: Set to 1 to correspond to decimal 4; Bit3: Set to 1 to correspond to decimal 8; Bit4: Set to 1 to correspond to decimal 16; Bit5: Set to 1 to correspond to decimal 32; Bit6: Set to 1 to correspond to decimal 64; Bit7: Set to 1 to correspond to decimal 128; For more bits, multiply the decimal system corresponding to binary system of previous position by 2. If only the corresponding bit is 1, accumulate the numbers of corresponding decimal system according to the comparison table to get the setting value. For example: set Bit0, Bit1 and Bit5 to 1, and the parameter will be = Parameter index list Parameter type S/N Description Effective mode General parameter (P1.) 001 X Gear Numerator Instant General parameter (P1.) 002 X Gear Denominator Instant General parameter (P1.) 003 Y Gear Numerator Instant General parameter (P1.) 004 Y Gear Denominator Instant General parameter (P1.) 005 Z Gear Numerator Instant General parameter (P1.) 006 Z Gear Denominator Instant General parameter (P1.) Gear Numerator Instant General parameter (P1.) Gear Denominator Instant General parameter (P1.) 009 X FastSpeed(mm/min) Instant General parameter (P1.) 010 Y FastSpeed(mm/min) Instant General parameter (P1.) 011 Z FastSpeed(mm/min) Instant General parameter (P1.) FastSpeed(mm/min) Instant General parameter (P1.) 013 XStartupSpeed(mm/min Instant General parameter (P1.) 014 YstartupSpeed(mm/min) Instant General parameter (P1.) 015 ZstartupSpeed(mm/min) Instant Default value Page

45 Parameter type S/N Description Effective mode General parameter (P1.) 016 4StartupSpeed(mm/min) Instant General parameter (P1.) 017 X Acceleration(Kpps) Instant General parameter (P1.) 018 Y Acceleration(Kpps) Instant General parameter (P1.) 019 Z Acceleration(Kpps) Instant General parameter (P1.) Acceleration(Kpps) Instant General parameter (P1.) 021 X Soft PosLimit+(mm) Instant General parameter (P1.) 022 X Soft PosLimit-(mm) Instant General parameter (P1.) 023 Y Soft PosLimit+(mm) Instant General parameter (P1.) 024 Y Soft PosLimit-(mm) Instant General parameter (P1.) 025 Z Soft PosLimit+(mm) Instant General parameter (P1.) 026 Z Soft PosLimit-(mm) Instant General parameter (P1.) Soft PosLimit+(mm) Instant General parameter (P1.) Soft PosLimit-(mm) Instant General parameter (P1.) 029 Inp Speed(mm/min) Instant General parameter (P1.) 030 InpStartSpeed(mm/min) Instant General parameter (P1.) 031 InpAcceleration(mm/sec) Instant General parameter (P1.) 032 XBacklashExpiate(pulse) Instant General parameter (P1.) 033 YBacklashExpiate(pulse) Instant General parameter (P1.) 034 ZBacklashExpiate(pulse) Instant General parameter (P1.) 035 4BacklashExpiate(pulse) Instant General parameter (P1.) 036 ZeroReturn Mode Instant General parameter (P1.) 037 IO FilterWave(1~8) Instant General parameter (P1.) 038 JOG Speed(mm/min) Instant General parameter (P1.) 039 MaxFeedSpeed(mm/min) Instant General parameter (P1.) 040 MaxMPGSpeed(mm/min) Instant General parameter (P1.) 041 Wheel Coefficient Instant General parameter (P1.) 042 M Code Delaytime(ms) Instant General parameter (P1.) 043 X HOME Offset(pulse) Instant General parameter (P1.) 044 Y HOME Offset(pulse) Instant General parameter (P1.) 045 Z HOME Offset(pulse) Instant General parameter (P1.) HOME Offset(pulse) Instant General parameter (P1.) 047 Line number Instant General parameter (P1.) 048 System Baudrate Instant General parameter (P1.) 049 Controler ID Instant General parameter (P1.) 050 X HomeDir Instant General parameter (P1.) 051 Y HomeDir Instant General parameter (P1.) 052 Z HomeDir Instant General parameter (P1.) HomeDir Instant General parameter (P1.) 054 Circle InpUnit(mm) Instant General parameter (P1.) 055 G73(M)LoopObligate(mm) Instant Default value Page

46 Parameter type S/N Description Effective mode General parameter (P1.) 056 G83(M)LoopObligate(mm) Instant General parameter (P1.) 057 ArcSpeedUpVal Instant General parameter (P1.) 058 interpolation speed mode Instant General parameter (P1.) 059 GCode pre-treatment Instant General parameter (P1.) 060 'O'Pro Scan Instant General parameter (P1.) 061 SpindleControlMode Instant General parameter (P1.) 062 X ZeroReturn Speed Instant General parameter (P1.) 063 Y ZeroReturn Speed Instant General parameter (P1.) 064 Z ZeroReturn Speed Instant General parameter (P1.) ZeroReturn Speed Instant General parameter (P1.) 066 Safe Signal ELevel Instant General parameter (P1.) 067 Pressure Signal ELevel Instant General parameter (P1.) 068 ChuckSignal ELevel Instant General parameter (P1.) 069 OilPressure Open(min) Instant General parameter (P1.) 070 OilPressure Keep(sec) Instant General parameter (P1.) 071 OilPressureOut Freq(Hz) Instant General parameter (P1.) 072 OilInspect ELevel Instant General parameter (P1.) 073 SpindleAlarm ELevel Instant General parameter (P1.) 074 TransduserAlarm ELevel Instant General parameter (P1.) 075 ExScram ELevel Instant General parameter (P1.) 076 BackHome ModeConf(bit) Instant General parameter (P1.) 077 Arc Acc.for Radii Instant General parameter (P1.) 078 Arc Acc.for Speed Instant General parameter (P1.) 079 PretreatmentCode Set Instant General parameter (P1.) 080 Inp AccSpeed Mode Instant General parameter (P1.) 081 'S'Speed Acceleration Instant General parameter (P1.) 082 ExStart ELevel Instant General parameter (P1.) 083 ExPause ELevel Instant General parameter (P1.) 084 HOME Check for alarm Instant General parameter (P1.) 085 HOME Check Enable Instant General parameter (P1.) 086 X diameter prog enable Instant General parameter (P1.) 087 default process plane Instant General parameter (P1.) 088 T code form Instant General parameter (P1.) 089 IP address Restart General parameter (P1.) 090 subnet mask Restart General parameter (P1.) 091 default gateway Restart General parameter (P1.) 092 Pretreatment segments Instant General parameter (P1.) 093 feed speed setting En Instant General parameter (P1.) 094 enable of G00 Inp mode Instant Default value Page

47 Parameter type S/N Description Effective mode Default value Page Axis parameter (P2.) 001 X_ServoAlarmIn ELevel Instant Axis parameter (P2.) 002 Y_ServoAlarmIn ELevel Instant Axis parameter (P2.) 003 Z_ServoAlarmIn ELevel Instant Axis parameter (P2.) 004 A_ServoAlarmIn ELevel Instant Axis parameter (P2.) 005 X_ServoResetOut ELeve Instant Axis parameter (P2.) 006 Y_ServoResetOut ELeve Instant Axis parameter (P2.) 007 Z_ServoResetOut ELeve Instant Axis parameter (P2.) 008 A_ServoResetOut ELeve Instant Axis parameter (P2.) 009 X_ECZ Home Enable Instant Axis parameter (P2.) 010 X_ECZ Home ELevel Instant Axis parameter (P2.) 011 Y_ECZ Home Enable Instant Axis parameter (P2.) 012 Y_ECZ Home ELevel Instant Axis parameter (P2.) 013 Z_ECZ Home Enable Instant Axis parameter (P2.) 014 Z_ECZ Home ELevel Instant Axis parameter (P2.) 015 4_ECZ Home Enable Instant Axis parameter (P2.) 016 4_ECZ Home ELevel Instant Axis parameter (P2.) 017 X Limit+ Enable< > Instant Axis parameter (P2.) 018 X Limit- Enable< > Instant Axis parameter (P2.) 019 X Limit ELevel< > Instant Axis parameter (P2.) 020 Y Limit+ Enable< > Instant Axis parameter (P2.) 021 Y Limit- Enable< > Instant Axis parameter (P2.) 022 Y Limit ELevel< > Instant Axis parameter (P2.) 023 Z Limit+ Enable< > Instant Axis parameter (P2.) 024 Z Limit- Enable< > Instant Axis parameter (P2.) 025 Z Limit ELevel< > Instant Axis parameter (P2.) Limit+ Enable< > Instant Axis parameter (P2.) Limit- Enable< > Instant Axis parameter (P2.) Limit ELevel< > Instant Axis parameter (P2.) 029 X Pulse Mode< > Instant Axis parameter (P2.) 030 Y Pulse Mode< > Instant Axis parameter (P2.) 031 Z Pulse Mode< > Instant Axis parameter (P2.) Pulse Mode< > Instant Axis parameter (P2.) 033 X Pulse Dir Mode< > Instant Axis parameter (P2.) 034 Y Pulse Dir Mode< > Instant Axis parameter (P2.) 035 Z Pulse Dir Mode< > Instant Axis parameter (P2.) Pulse Dir Mode< > Instant Axis parameter (P2.) 037 X Ext Home ELevel Instant Axis parameter (P2.) 038 Y Ext Home ELevel Instant Axis parameter (P2.) 039 Z Ext Home ELevel Instant

48 Parameter type S/N Description Effective mode Axis parameter (P2.) 040 A Ext Home ELevel Instant Axis parameter (P2.) 041 X Round Setting Instant Axis parameter (P2.) 042 Y Round Setting Instant Axis parameter (P2.) 043 Z Round Setting Instant Axis parameter (P2.) Round Setting Instant Axis parameter (P2.) 045 X physial Assign Num< > Instant Axis parameter (P2.) 046 Y physial Assign Num< > Instant Axis parameter (P2.) 047 Z physial Assign Num< > Instant Axis parameter (P2.) physial Assign Num< > Instant Axis parameter (P2.) 049 spindle physial Assign Num< > Instant Axis parameter (P2.) 050 X Encoder bit(p) Instant Axis parameter (P2.) 051 Y Encoder bit(p) Instant Axis parameter (P2.) 052 Z Encoder bit(p) Instant Axis parameter (P2.) Encoder bit(p) Instant Axis parameter (P2.) 054 X Reset to 360 Instant Axis parameter (P2.) 055 Y Reset to 360 Instant Axis parameter (P2.) 056 Z Reset to 360 Instant Axis parameter (P2.) Reset to 360 Instant Axis parameter (P2.) 058 X PulseLogic Level< > Instant Axis parameter (P2.) 059 Y PulseLogic Level< > Instant Axis parameter (P2.) 060 Z PulseLogic Level< > Instant Axis parameter (P2.) PulseLogic Level< > Instant Axis parameter (P2.) 062 X feature(rotate0 Line1) Instant Axis parameter (P2.) 063 Y feature(rotate0 Line1) Instant Axis parameter (P2.) 064 Z feature(rotate0 Line1) Instant Axis parameter (P2.) feature(rotate0 Line1) Instant Axis parameter (P2.) 066 X Rolling Display Usage Instant Axis parameter (P2.) 067 Y Rolling Display Usage Instant Axis parameter (P2.) 068 Z Rolling Display Usage Instant Axis parameter (P2.) Rolling Display Usage Instant Axis parameter (P2.) 070 X Rolling Path Optimize Instant Axis parameter (P2.) 071 Rolling Path Optimize Instant Axis parameter (P2.) 072 Z Rolling Path Optimize Instant Axis parameter (P2.) Rolling Path Optimize Instant Axis parameter (P2.) 074 Max Acc of X(Kpps) Instant Axis parameter (P2.) 075 Max Acc of Y(Kpps) Instant Axis parameter (P2.) 076 Max Acc of Z(Kpps) Instant Axis parameter (P2.) 077 Max Acc of 4(Kpps) Instant Axis parameter (P2.) 078 X Servo Home Dir Instant Default value Page

49 Parameter type S/N Description Effective mode Axis parameter (P2.) 079 Y Servo Home Dir Instant Axis parameter (P2.) 080 Z Servo Home Dir Instant Axis parameter (P2.) 081 A Servo Home Dir Instant Axis parameter (P2.) 082 X Ext Home Eanble Instant Axis parameter (P2.) 083 Y Ext Home Eanble Instant Axis parameter (P2.) 084 Z Ext Home Eanble Instant Axis parameter (P2.) Ext Home Eanble Instant Axis parameter (P2.) 086 X Encoder LogicDir< > Instant Axis parameter (P2.) 087 Y Encoder LogicDir< > Instant Axis parameter (P2.) 088 Z Encoder LogicDir< > Instant Axis parameter (P2.) Encoder LogicDir< > Instant Axis parameter (P2.) 090 X HomeSpeed2 Instant Axis parameter (P2.) 091 Y HomeSpeed2 Instant Axis parameter (P2.) 092 Z HomeSpeed2 Instant Axis parameter (P2.) HomeSpeed2 Instant Axis parameter (P2.) 094 X HomeSpeed3 Instant Axis parameter (P2.) 095 Y HomeSpeed3 Instant Axis parameter (P2.) 096 Z HomeSpeed3 Instant Axis parameter (P2.) HomeSpeed3 Instant Axis parameter (P2.) 098 rotation axis opt feature Instant Axis parameter (P2.) axis max rotate speed Instant Axis parameter (P2.) 100 hand wheel encoder dir Instant Axis parameter (P2.) 101 X restrain acc (mm/s^2) Instant Axis parameter (P2.) 102 Y restrain acc (mm/s^2) Instant Axis parameter (P2.) 103 Z restrain acc (mm/s^2) Instant Axis parameter (P2.) restrain acc (mm/s^2) Instant Axis parameter (P2.) 105 X max restrain rate Instant Axis parameter (P2.) 105 Y max restrain rate Instant Axis parameter (P2.) 105 Z max restrain rate Instant Axis parameter (P2.) max restrain rate Instant Default value Page Management parameter (P3.) 001 Select SupMode Instant Management parameter (P3.) 002 AlterSuperuserPasswor Instant Management parameter (P3.) 003 Alter User Password Instant Management parameter (P3.) 004 Initialize Restart Management parameter (P3.) 005 Initialize IO Config Restart Management parameter (P3.) 006 all para reset< > Restart Management parameter (P3.) 007 para backup Instant Management parameter (P3.) 008 para recover Restart

50 Parameter type S/N Description Effective mode Management parameter (P3.) 009 generate cryptogram Instant Management parameter (P3.) 010 menu click way Instant Management parameter (P3.) 011 clear add up work num Instant Management parameter (P3.) 012 clear current work num Instant Management parameter (P3.) 013 lead in CSV sys config Restart Management parameter (P3.) 014 startup display module Restart Management parameter (P3.) 015 sys language bag Restart Management parameter (P3.) 016 macro key word valid En Instant Management parameter (P3.) 017 startup picture display Instant Management parameter (P3.) 018 sys display axis setting Instant Management parameter (P3.) 019 sys debug information En Instant Management parameter (P3.) 020 axis control composite Instant Management parameter (P3.) 021 additional panel enable Instant Management parameter (P3.) 022 sys tool outlay enable Instant Default value Page Tool magazine parameter (P4.) spindle Instant Principal axis parameter (P5.) 001 Spi.Alarm ELevel Instant Principal axis parameter (P5.) 002 Spi.Reset ELevel Instant Principal axis parameter (P5.) 003 Spi.ECZ Home Enable Instant Principal axis parameter (P5.) 004 Spi.ECZ Elevel Instant Principal axis parameter (P5.) 005 Spi. Limit+ Enable Instant Principal axis parameter (P5.) 006 Spi. Limit- Enable Instant Principal axis parameter (P5.) 007 Spi.Limit Elevel Instant Principal axis parameter (P5.) 008 Spi.Pulse Mode Instant Principal axis parameter (P5.) 009 Spi.Pulse Logic Mode Instant Principal axis parameter (P5.) 010 Spi.HomeDect ELevel Instant Principal axis parameter (P5.) 011 Spi.ExtHome Check En Instant Principal axis parameter (P5.) 012 Spi.Round Setting Instant Principal axis parameter (P5.) 013 Spi.Encode bits(p) Instant Principal axis parameter (P5.) 014 Spi.ZeroOffset(p) Instant Principal axis parameter (P5.) 015 PulseLogic Level Instant Principal axis parameter (P5.) 016 Rolling Display Usage Instant Principal axis parameter (P5.) 017 Spi.Max Acc(Kpps) Instant Principal axis parameter (P5.) 018 Spi.Ext HomeDir Instant Principal axis parameter (P5.) 019 Spi.Servo HomeDir Instant Principal axis parameter (P5.) 020 Spi.Max Speed(rpm) Instant Principal axis parameter (P5.) 021 Spi.Home Speed(rpm) Instant Principal axis parameter (P5.) 022 Spi.Gear Numerator Instant Principal axis parameter (P5.) 023 Spi.Gear Denominator Instant

51 Parameter type S/N Description Effective mode Principal axis parameter (P5.) 024 Spi.Encoder Logic Dir Instant Principal axis parameter (P5.) 025 Spi.OpenDelayTime(ms) Instant Default value Page Port parameter (P6.) 001 Wheel0.1 Instant Port parameter (P6.) 002 Wheel0.01 Instant Port parameter (P6.) 003 Wheel0.001 Instant Port parameter (P6.) 004 X Wheel Instant Port parameter (P6.) 005 Y Wheel Instant Port parameter (P6.) 006 Z Wheel Instant Port parameter (P6.) 007 A Wheel Instant Port parameter (P6.) 008 SCRAM Instant Port parameter (P6.) 009 STOP Instant Port parameter (P6.) 010 STARTUP Instant Port parameter (P6.) 011 X Alarm Instant Port parameter (P6.) 012 Y Alarm Instant Port parameter (P6.) 013 Z Alarm Instant Port parameter (P6.) Alarm Instant Port parameter (P6.) 015 IN wire No:(1-24) Instant Port parameter (P6.) 016 IN wire No:(1-24) Instant Port parameter (P6.) 017 IN wire No:(1-24) Instant Port parameter (P6.) 018 IN wire No:(1-24) Instant Port parameter (P6.) 019 IN wire No:(1-24) Instant Port parameter (P6.) 020 IN wire No:(1-24) Instant Port parameter (P6.) 021 IN wire No:(1-24) Instant Port parameter (P6.) 022 IN wire No:(1-24) Instant Port parameter (P6.) 023 IN wire No:(1-24) Instant Port parameter (P6.) 024 IN wire No:(1-24) Instant Port parameter (P6.) 025 IN wire No:(1-24) Instant Port parameter (P6.) 026 IN wire No:(1-24) Instant Port parameter (P6.) 027 IN wire No:(1-24) Instant Port parameter (P6.) 028 IN wire No:(1-24) Instant Port parameter (P6.) 029 IN wire No:(1-24) Instant Port parameter (P6.) 030 IN wire No:(1-24) Instant Port parameter (P6.) 031 IN wire No:(1-24) Instant Port parameter (P6.) 032 IN wire No:(1-24) Instant Port parameter (P6.) 033 IN wire No:(1-24) Instant Port parameter (P6.) 034 IN wire No:(1-24) Instant Port parameter (P6.) 035 IN wire No:(1-24) Instant Port parameter (P6.) 036 IN wire No:(1-24) Instant Port parameter (P6.) 037 IN wire No:(1-24) Instant

52 Parameter type S/N Description Effective mode Port parameter (P6.) 038 IN wire No:(1-24) Instant Port parameter (P6.) 039 OUT wire No:(1-24) Instant Port parameter (P6.) 040 OUT wire No:(1-24) Instant Port parameter (P6.) 041 OUT wire No:(1-24) Instant Port parameter (P6.) 042 OUT wire No:(1-24) Instant Port parameter (P6.) 043 OUT wire No:(1-24) Instant Port parameter (P6.) 044 OUT wire No:(1-24) Instant Port parameter (P6.) 045 OUT wire No:(1-24) Instant Port parameter (P6.) 046 OUT wire No:(1-24) Instant Port parameter (P6.) 047 OUT wire No:(1-24) Instant Port parameter (P6.) 048 OUT wire No:(1-24) Instant Port parameter (P6.) 049 OUT wire No:(1-24) Instant Port parameter (P6.) 050 OUT wire No:(1-24) Instant Port parameter (P6.) 051 OUT wire No:(1-24) Instant Port parameter (P6.) 052 OUT wire No:(1-24) Instant Port parameter (P6.) 053 OUT wire No:(1-24) Instant Port parameter (P6.) 054 OUT wire No:(1-24) Instant Port parameter (P6.) 055 OUT wire No:(1-24) Instant Port parameter (P6.) 056 OUT wire No:(1-24) Instant Port parameter (P6.) 057 OUT wire No:(1-24) Instant Port parameter (P6.) 058 OUT wire No:(1-24) Instant Port parameter (P6.) 059 OUT wire No:(1-24) Instant Port parameter (P6.) 060 OUT wire No:(1-24) Instant Port parameter (P6.) 061 OUT wire No:(1-24) Instant Port parameter (P6.) 062 OUT wire No:(1-24) Instant Port parameter (P6.) 063 Safe Signal Instant Port parameter (P6.) 064 PressureDect Port Instant Port parameter (P6.) 065 ChuckDectect Port Instant Port parameter (P6.) 066 SysOilOut Port Instant Port parameter (P6.) 067 TChecking signal Port Instant Port parameter (P6.) 068 AlarmLight Out Port Instant Port parameter (P6.) 069 RunLight Out Port Instant Port parameter (P6.) 070 VFD 0 Level Out Port Instant Port parameter (P6.) 071 VFD 1 Level Out Port Instant Port parameter (P6.) 072 VFD 2 Level Out Port Instant Port parameter (P6.) 073 VFD 3 Level Out Port Instant Port parameter (P6.) 074 Oiling Out Port Instant Port parameter (P6.) 075 Cooler Out Port Instant Port parameter (P6.) 076 Spindle CW Out Port Instant Default value Page

53 Parameter type S/N Description Effective mode Port parameter (P6.) 077 Spindle CCW Out Port Instant Port parameter (P6.) 078 System OilDect Port Instant Port parameter (P6.) 079 SpindleAlarm DetectPort Instant Port parameter (P6.) 080 Transduser DetectPort Instant Port parameter (P6.) 081 ExScram2 DetectPort Instant Port parameter (P6.) 082 Air of ToolCheck OutPort Instant Port parameter (P6.) 083 IO Conf in RESET 00~15 Instant Port parameter (P6.) 084 IO Conf in RESET 16~23 Instant Port parameter (P6.) 085 ExStart2 DetectPort Instant Port parameter (P6.) 086 ExPause2 DetectPort Instant Port parameter (P6.) 087 TCheck Limit DetectPort Instant Default value Page 11.2 Comprehensive parameters (P1.) 001 X Gear Numerator 002 X Gear Denominator 003 Y Gear Numerator 004 Y Gear Denominator 005 Z Gear Numerator 006 Z Gear Denominator Gear Numerator Gear Denominator Range : 1~65535 Unit : None Authority : Operation admin or higher Default : 1 Note : When screws of different pitches and motors of different step angles or servo motors of different pulses are matched, or connected through gears, it allows keeping the program and actual motion distance consistent through electronic gear ratio setting of the system. CMR/CMD =P/ (L 1000) CMR: gear ratio numerator CMD: gear ratio denominator P: Pulses corresponding to one rotation of the motor L: Machine tool movement corresponding to one rotation of the motor (mm) CMD/CMR is the pulse equivalent actually, i.e. the motion distance corresponding to every pulse (unit: 0.001mm). Ex 1: the motor rotates one cycle every 5000 pulses, and the machine tool moves 5mm when the motor rotates one cycle, then CMR/CMD=5000/ (5*1000)=1/1 Then, CMR=1, CMD=1, the pulse equivalent is 0.001mm Ex 2: the motor rotates one cycle every 5000 pulses, and the machine tool moves 10mm when the motor rotates one cycle, then CMR/CMD=5000/ (10*1000)=1/2 Then, CMR=1, CMD=2, the pulse equivalent is 0.002mm

54 009 X FastSpeed(mm/min) 010 FastSpeed(mm/min) 011 Z FastSpeed(mm/min) FastSpeed(mm/min) 013 XStartupSpeed(mm/min) 014 YStartupSpeed(mm/min) 015 ZStartupSpeed(mm/min) 016 4StartupSpeed(mm/min) 017 X Acceleration(Kpps) 018 Y Acceleration(Kpps) 019 Z Acceleration(Kpps) Acceleration(Kpps) Range : 1~9999, 1~9999, 1~8000 Unit : mm/min,mm/min,mm/sec Authority : Operation admin or higher Default : 3000,200,1500 Note : This parameter is the trapezoid acceleration/deceleration setting and used for GOO instruction About start speed, 1-2 rotation motor speed is recommended for step motor; as above, the machine tool moves 5mm when the motor rotates one cycle, and the speed is 5-10mm/sec ( mm/min). For servo motor, the start and stop shouldn t have vibration. If this speed is too high, it will cause vibration during motion, and the step motor will be out of step. The acceleration and start speed also affect manual speed, home speed, etc.; 021 X Soft PosLimit+(mm) 022 X Soft PosLimit-(mm) 023 Y Soft PosLimit+(mm) 024 Y Soft PosLimit-(mm) 025 Z Soft PosLimit+(mm) 026 Z Soft PosLimit-(mm) Soft PosLimit+(mm) Soft PosLimit-(mm) Range : -9999~9999 Unit : mm Authority : Operation admin or higher Default : Maximum positive/negative value Note : Generally, the machine tool has hard limit signal. In this case, software limit isn t required. Please set the positive limit to , and negative limit to If hard limit switch isn t installed, please use soft limit, which uses machine tool coordinate system as the base point. Positive limit and negative limit are subject to actual distance (unit: mm). Since soft limit decelerates and stops at the limit point, it may exceed the set distance, which depends on acceleration time and speed. Please keep certain margin when setting this parameter

55 029 Inp Speed(mm/min) 030 InpStartSpeed(mm/min) 031 InpAcceleration(mm/sec) 039 XBacklashExpiate(pulse) Range : 1~9999, 1~9999, 1~8000, 1~9999 Unit : mm/min,mm/min,mm/sec,mm/min Authority : Operation admin or higher Default : 3000,200,1000,3000 Note : The feeding instructions such as G01, G02 and G03 move at the speed of F instruction. If the F instruction isn t specified in the program, the above instructions move at the speed set by this parameter. If the F instruction is specified, this parameter will be invalid. The maximum feeding speed restricts the F instruction during processing, i.e. no matter what F is set to, the actual speed can t exceed this parameter value. Setting this parameter will prevent the damage caused by accidental speed programming error when transferring processing files. 032 XBacklashExpiate(pulse) 033 YBacklashExpiate(pulse) 034 ZBacklashExpiate(pulse) 035 4BacklashExpiate(pulse) Range : 1~20000 Unit : Pulse Authority : Operation admin or higher Default : 0 Note : Compensate the clearance between control axis Compensate with the pulse in minimum unit. The specific number should be converted according to gear ratio. 036 ZeroReturn Mode Range : 0~1 Unit : None Authority : Operation admin or higher Default : 0 (program) Note : 0 - Program home 1 - Mechanical home Program home is that the coordinates go to home, i.e. in place. Mechanical home requires external detection switch to locate the home position; while home operation, move to specified home direction at home speed, and move back slowly after signal is detected. At this moment, move forward slowly when the signal is disconnected, and the home operation completes when the signal is valid again. When the servo Z phase enable switch in IO configuration parameters is enabled, mechanical home will enable Z phase positioning as home position automatically after signal reaches. 037 IO FilterWave(1~8) Range : 0~8 Unit : None Authority : Super Admin Default : 0 Effective time : After restarted Note : Set the filter constant; If the environment has too much interference, e.g. rain and thunder, please enter a filter value. Higher value indicates longer test time and high reliability; 0 indicates no filter;

56 038 JOG Speed(mm/min) 041 Wheel Coefficient Range : 1~9999 Unit : mm/min Authority : Operation admin or higher Default : 1000, 9000 Note : Set manual speed and handwheel speed; The start speed and acceleration in this mode are determined by 013, 014, 015, 016, 017, 018, 019, 020; 042 M Code Delaytime(ms) Range : 1~9999 Unit : ms Authority : Operation admin or higher Default : 100 Note : Set the waiting time (unit: ms) after executing M code 043 X HOME Offset(pulse) 044 Y HOME Offset(pulse) 045 Z HOME Offset(pulse) HOME Offset(pulse) Range : -9999~9999 Unit : Pulse Authority : Operation admin or higher Default : 0 Note : Set the compensation home offset (unit: pulse) after axis home operation. First, complete the mechanical home operation, offset corresponding pulse, and then set this point as mechanical home. Note: This parameter is invalid during program home operation. 047 Line number Range : 0~64 Unit : None Authority : Operation admin or higher Default : 0 Note : While editing G code manually, add a line number Nxxxxx automatically in a new line; 0 indicates that this function is disabled; 048 System Baudrate Range : 9600~ Unit : None Authority : Operation admin or higher Default : Effective time : Restart Note : The communication rate setting when DNC or other PC software and this controller are in RS232 communication mode

57 049 Controler ID 050 X HomeDir 051 Y HomeDir 052 Z HomeDir HomeDir Range : 1~255 Unit : None Authority : Operation admin or higher Default : 1 Effective time : Restart Note : The ID number setting of the controller when DNC or other PC software and this controller are in MODBUS communication mode Range : 0~1 Unit : None Authority : Operation admin or higher Default : 1, 1, 0, 0 Note : Set the mechanical home direction of every processing axis Positive Negative 054 Circle InpUnit(mm) Range : 0~1 Unit : mm Authority : Operation admin or higher Default : 0.2 Note : Set the arc interpolation equivalent If this value is too small, the arc has higher approximation accuracy, but the computation will be too high, making the pause during processing obvious and affecting the processing effect. 055 G73(M)LoopObligate(mm) 056 G83(M)LoopObligate(mm) Range : 0.1~100 Unit : mm Authority : Operation admin or higher Default : Note : Set the tool retracting amount after Q is fed in G73 and G83 instructions; this parameter (default: 2mm) is set according to actual chip removal effect. 057 ArcSpeedUpVal Range : 10~500 Unit : mm/sec Authority : Operation admin or higher Default : 100 Note : Set arc acceleration equivalent If this value is too small, the acceleration will be slow; please select a higher value according to the arc size. 058 interpolation speed mode Range : 0~1 Unit : None Authority : Operation admin or higher Default : 0 (acceleration)

58 Note : In pretreatment mode, set to 0 to use corner speed balancing algorithm, or set to 1 to use axis acceleration constraints balancing algorithm 059 GCode pre-treatment 060 'O'Pro Scan Range : 0~1 Unit : None Authority : Operation admin or higher Default : 0 (real-time processing) Note : Real-time processing is suitable for machine test. In pretreatment mode, the system enters processing state buffs for two seconds and pre-reads. The pretreatment mode only can check the direction and size of feeding segment to adjust the speed automatically and process at optimized speed. Range : 0~1 Unit : None Authority : Operation admin or higher Default : 1 Note : File scanning symbol will quicken the file transfer speed when processing large files. When transferring NC files, the system needs to scan over to position every program block. In this way, if the file only has one block and the file size is very big, it will cause unnecessary waiting time. If this option is closed, the system will exit after scanning the address of first block. 061 SpindleControlMode Range : 0~1 Unit : None Authority : Operation admin or higher Default : 0 Note : Control mode corresponding to principal axis S code (frequency conversion mode) 0: Analog output 1: Section speed regulation (4-digit code), as below: OUT S0 OUT S1 OUT S2 OUT S3 In analog output mode, the analog voltage is: V=S/MaxRPM S is the rotation set by the user, and MaxRPM is the maximum rotation of principal axis set by the parameter (P4.017); In switching quantity mode, constitute block 0-15 according to four-digit code to output; S code value is restricted to 0-15; 062 X ZeroReturn Speed 063 Y ZeroReturn Speed 064 Z ZeroReturn Speed ZeroReturn Speed Range : 0~9999 Unit : mm/min Authority : Operation admin or higher Default : 1000 Note : Set the home speed of every axis separately 066 Safe Signal ELevel

59 Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Operation admin or higher Default : 0 Note : Set the effective voltage level of the system safety signal. The source of safety signal can be customized by the user, and generally may be electric cabinet door and similar sensitive occasions. If there are several insecure places, please connect the signals in parallel to safety signal test pin of the system. Considering the convenience of maintenance, safety signals are checked only when the system starts processing, and won t prompt in idle state. 067 Pressure Signal ELevel Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Operation admin or higher Default : 0 Note : Set the effective voltage level of system air pressure alarm Both air pressure alarm and emergency stop alarm are effective globally. 073 SpindleAlarm ELevel 074 TransduserAlarm ELevel 068 ChuckSignal ELevel Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Operation admin or higher Default : 0 Note : The above alarms are checked while the system is running. The system alarms once the test is valid. This port is affected by IO configuration. 069 OilPressure Open(min) 070 OilPressure Keep(sec) 071 OilPressureOut Freq(Hz) Range : Unit : Authority : Operation admin or higher Default : 0 Note : Set the schedule start and holding time of the automatic oil pump of the system Schedule open setting is that the oil pump outputs (OUT10) when the timing reaches specified value after the system starts and times. Output signal stops keeping for the seconds specified by P1.070 (reverse phase). Output signal follows the hertz specified by P1.071 in working state, and used for oil supply devices. If it is set to 0, the system will keep low output level. 072 OilInspect ELevel Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Operation admin or higher Default : 0 Note : Lubricant pressure test is performed automatically when the lubricant output of the system completes. The system alarms immediately if no oil pressure in place signal is detected after lubricant output

60 This port is affected by IO configuration. 075 ExScram ELevel 082 ExStart ELevel 083 ExPause ELevel Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Operation admin or higher Default : 0 Note : External emergency stop button of the system This port is affected by IO configuration. 077 Arc Acc.for Radii 078 Arc Acc.for Speed Range : Unit : Coefficient Authority : Operation admin or higher Default : 50, 100 Note : Used to restrict the arc processing speed automatically. This parameter is valid in pretreatment mode. The bigger the radius coefficient is, the lower the arc speed is. The bigger the acceleration coefficient is, the higher the arc speed is. 079 PretreatmentCode Set Range : 100~1000 Unit : Instruction line Authority : Operation admin or higher Default : 500 Note : Set the pre-reading instruction lines; if the pretreatment processing pauses and pre-reads, please increase this value to pre-read more instructions. 080 Inp AccSpeed Mode 081 'S'Speed Acceleration Range : Unit : Authority : Operation admin or higher Default : Note : Used to set the performance of S curve acceleration/deceleration 084 HOME Check for alarm 085 HOME Check Enable Range : 0~1 Unit : Authority : Operation admin or higher Default : 0, 1 Note : Used to set whether prompt user to reset under certain conditions, ensuring that the user has performed the operation; If the value is set to 0, it won t check, and will run directly. 086 X diameter prog enable Range : 0~1-56 -

61 Unit : Authority : Operation admin or higher Default : 1 (L series) /0 (M series) Note : On lathe controller (L series), it is used to set whether the display and programming of X axis are in radius or diameter; 087 default process plane 088 T code form 089 IP address 090 subnet mask Range : G17,18,19 Unit : Authority : Operation admin or higher Default : G18 (L series)/g17 (M series) Note : Set the default processing plane to XY or XZ; modify the default plane, so that it isn t need to specify the modal plane value while programming, and write plane related instructions directly in stead; Range : 0~2 Unit : Authority : Operation admin or higher Default : 2 (L series) Note : Used to set the T value in tool change instruction on lathe controller (L series); the latter digits indicate the compensation number. In some conventional programming, people usually use two digits to specify the compensation number used by corresponding tool number; For example: T0801 M06 indicates changing the #8 tool and compensating with #1 length. 091 default gateway Range : Unit : Authority : Operation admin or higher Default : Effective time : Restart Note : Used to configure Ethernet parameters, which shall comply with the actual network settings, or else it can t be accessed normally. After configured successfully, the user can perform the ping command test on the PC of same network segment (same subnet mask) in the intranet. The connection has error if the return overtimes. Please check the physical connection. The network environment requires independent NC network. Do not connect to office network or Internet, because the broadcast in the network and regular query of windows will block the network communication of NC. 092 Pretreatment segments Range : 10~200 Unit : Authority : Operation admin or higher Default : 20 Note : Pretreatment forward segments are used to set the segments of pretreatment preview. The larger this value is, the greater the operation is, and the longer the waiting time before motion is. During small segment interpolating, if this value is larger, the possibility of waiting for operation during motion will become higher; the balance value is set according to the actual processing effect. If this value is smaller, the balance value is set according to the actual

62 price effect because the forward data are insufficient and the speed can t be improved during small segment interpolating. 093 feed speed setting En Range : 0~1 Unit : Authority : Operation admin or higher Default : 0 Note : This parameter is used to modify the interpolation speed in programming, making F programming invalid. Used for the cases that processing codes requires ignoring F-value. 094 enable of G00 Inp mode Range : 0~1 Unit : Authority : Operation admin or higher Default : 0 Note : Used to set whether G00 instruction is moved with G01 mode If G01 mode is used, the interpolation speed shall follow the setting of minimum speed; The acceleration is the interpolation acceleration Axis parameter configuration (P2.) 001 X_ServoAlarmIn ELevel 002 Y_ServoAlarmIn ELevel 003 Z_ServoAlarmIn ELevel 004 A_ServoAlarmIn ELevel 005 X_ServoResetOut ELeve 006 Y_ServoResetOut ELeve 007 Z_ServoResetOut ELeve 008 A_ServoResetOut ELeve Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Super Admin Default : 0, 1 Note : Adapt to the interface parameters of selected servo drive; please refer to interface voltage level description of servo for specific parameter settings. 009 X_ECZ Home Enable 010 X_ECZ Home ELevel 011 Y_ECZ Home Enable 012 Y_ECZ Home ELevel 013 Z_ECZ Home Enable 014 Z_ECZ Home ELevel 015 4_ECZ Home Enable 016 4_ECZ Home ELevel Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Super Admin Default : 0 Note : When this parameter is enabled, encoder Z phase positioning of

63 corresponding axis will be enabled automatically in mechanical home mode, i.e. the servo home positioning; in this mode, the accuracy of repeated home positioning depends on servo positioning accuracy, and therefore it is recommended to enable this function for servo motor. Step motor doesn t have encoder and can t enable this option, or else the signals can t be scanned during mechanical home operation and will move constantly. 017 X Limit+ Enable< > Limit ELevel< > Range : 0~1 Unit : None Authority : Super Admin Default : 0 Effective time : After restarted Note : Hard limit has two modes, i.e. hardware response and software scanning; Hardware response mode is integrated by the motion chip, and is triggered by the effective voltage level of the circuit test limit pin. Therefore, it is highly real-time, but it also has a defect. If the external interference is serious, the normal pulse will be affected and the system doesn t alarm because it can t read the error state in time, which will cause loss; therefore, this function requires that the wiring switch uses normally closed connection, i.e. high effective level; this function considers the complexity of field environment and the default value is off. Scanning mode is integrated by the system and can t be shielded. The scanning mode inputs signal by accessing specified function number, and uses software anti-interference detection technology to check whether limit alarm occurs or has no interference. This requires certain time to check, and thus the real time isn t as well as interrupted limit. However, in most cases (at 10mm/min processing speed), it can meet the requirement on processing safety check. The hardware response function of hard limit is prior to scanning response function, i.e. if the hardware response is enabled, it will quicken the response speed directly. It should be noted that the hardware response function only can stop pulse in instant mode. Therefore, the instant stop mode may cause mechanical vibration if the speed is too high. While software scanning mode uses maximum acceleration mode and decelerates according to the maximum acceleration set to every axis by the user (parameter P2.074~077), and therefore overshot will occur. 029 X Pulse Mode< > 030 Y Pulse Mode< > 031 Z Pulse Mode< > Pulse Mode< > Range : 0~1 Unit : None Authority : Super Admin Default : 1 Effective time : Restart Note : Pulse command format setting is to configure the mode of output pulse. The compatible command format of the motor drive should be known in advance. Pulse + pulse Pulse + direction 033 X Pulse Dir Mode< > 034 Y Pulse Dir Mode< > 035 Z Pulse Dir Mode< > Pulse Dir Mode< > Range : 0~1 Unit : None

64 Authority : Super Admin Default : 1 Effective time : Restart Note : Set pulse direction; if the controller direction is reverse to actual drive direction, please modify this parameter to adjust the rotation direction of motor. 037 X Ext Home ELevel 038 Y Ext Home ELevel 039 Z Ext Home ELevel 040 A Ext Home ELevel Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Super Admin Default : 0 Note : Set the effective voltage level of external home sensor switch during home operation. Low level High level 041 X Round Setting 042 Y Round Setting 043 Z Round Setting Round Setting Range : 0~ Unit : Pulse Authority : Super Admin Default : 0 Effective time : Restart Note : Round function is available on hardware version 1.5 or later only; This function is used to prevent the logic counting of axis exceeding the maximum counting range ( ) and causing overflow error; Generally, overflow occurs only when the axis is set to rotary. The system will calculate the corresponding pulse limit according to the gear ratio of current axis and assign to the ROUND parameter of corresponding axis, if current axis is set to rotary and uses 360 display mode after the system getting P2.062~P2.069 parameters. The user can check the change of this parameter when the rotary axis display function is enabled. The user can modify the changed parameters, and the finally displayed number will be effective. This parameter requires restart to take effect; the corresponding axis must be rotary and set to 360 display (P2.062~069); 045 X physial Assign Num< > 046 Y physial Assign Num< > 047 Z physial Assign Num< > physial Assign Num< > Range : 0~4 Unit : Pulse port sequence No. Authority : Super Admin Default : Effective time : Restart Note : In default mode, the actual number of every axis corresponds to the silk screen number on the shell. If certain function axis is abnormal, you can replace the axis through this function. For example, set P2.045 to 4, P2.048 to 1, then, any operation to X axis will be the operation to A axis encoder port on the shell. 0: no such axis 1~4: corresponding to 1#-4# axis

65 049 spindle physial Assign Num< > Range : 0~4 Unit : Pulse port sequence No. Authority : Super Admin Default : Effective time : Restart Note : It is set to 0 by default, indicating that the principal axis is in variable frequency control mode, i.e. analog or gear position control mode. To use servo principal axis, a coding port is required (servo principal axis must be in position control mode); you can modify this parameter to specify the function. 0: variable frequency principal axis adjusted by analog 1~4: corresponding to 1#-4# axis Note: If a pulse port is specified as the function port of principal axis, the pulse port should be removed from previously corresponding function axis number, or else the system will assign to principal axis after restarted and the original function axis will be invalid. 050 X Encoder bit(p) 051 Y Encoder bit(p) 052 Z Encoder bit(p) Encoder bit(p) Range : 0~9999 Unit : Wire number Authority : Super Admin Default : 2500 Note : Set the encoder wires connected to every pulse port (AB phase pulse). Since four times frequency division is performed for internal transfer, the value of this parameter should be the pulses collected by the encoder for one cycle divided by X PulseLogic Level< > 059 Y PulseLogic Level< > 060 Z PulseLogic Level< > PulseLogic Level< > Range : 0~1 Unit : LOGIC VOLTAGE LEVEL Authority : Super Admin Default : 0 Effective time : Restart Note : Set the normal voltage level when the pulse is working. If the setting is different from the normal voltage level required by motor drive, a direction will have accumulative error during every positive and negative motion (independent of pulses). Therefore, if the positioning axis of the machine has accumulative error in a direction, please check whether this parameter matches. 062 X feature(rotate0 Line1) 063 Y feature(rotate0 Line1) 064 Z feature(rotate0 Line1) feature(rotate0 Line1) Range : 0~1 Unit : None Authority : Super Admin Default : 1 Note : Set axis characteristics. 0: Rotary axis 1: Linear axis The setting of this parameter and P2.066~069 axis will affect the setting

66 of P2.041~044. Please refer to the parameter description of P2.041~044 for details. 066 X Rolling Display Usage 067 Y Rolling Display Usage 068 Z Rolling Display Usage Rolling Display Usage Range : 0~1 Unit : None Authority : Super Admin Default : 0 Note : Set the coordinate display mode of the axis. This parameter is valid when P2.062~P2.065 is set to 0 0: 0~360 display 1: ~ display The setting of this parameter and P2.062~065 axis will affect the setting of P2.041~044. Please refer to the parameter description of P2.041~044 for details. 070 X Rolling Path Optimize Rolling Path Optimize Range : 0~1 Unit : None Authority : Super Admin Default : 1 Note : This parameter is valid when P2.062~P2.065 and P2.066~P2.069 are set to 0; set whether looking for shortest path automatically; if it is rotary axis and is positioning but doesn t process, enable this function to shorten the motion time. 0: Do not optimize the path 1: Enable the shortest path Note: If processing is required during the motion, the shortest path may be not your desired processing track. 074 Max Acc of X(Kpps) 077 Max Acc of 4(Kpps) Range : 100~8000 Unit : Kpps (Kilo Pulse Per Second) Authority : Super Admin Default : 2000 Note : Set the maximum acceleration of every axis. This setting will affect the track speed optimization of pretreatment to every axis. If a high value is set, the axis response time will be shortened and characteristics of the motor will be improved according to the machine tool. This parameter also affects the home function and limit stop function. Hard limit function: Use hard limit in software scanning mode, in which the hard limit decelerates and stops according to the maximum acceleration of this axis. Therefore, if this value is too high, the machine tool will stop in emergency, and if this value is too low, it will cause too much overshoot. Home function: the home acceleration of every axis uses this value. 078 X Servo Home Dir 079 Y Servo Home Dir

67 080 Z Servo Home Dir Servo Home Dir Range : 0~1 Unit : None Authority : Super Admin Default : 0 Note : This parameter determines the Z phase search direction when servo Z phase enable parameter is enabled in P2.009~P : Positive 1: Negative 082 X Ext Home Eanble 083 Y Ext Home Eanble 084 Z Ext Home Eanble Ext Home Eanble Range : 0~1 Unit : None Authority : Super Admin Default : 1 Note : When mechanical home mode is selected, this parameter determines whether external deceleration switch should be searched. If this parameter is set to 0, and P2.009~P2.016 (servo Z phase enable) is also set to 0, the home mode sets current point as the home directly in mechanical mode. 0: No 1: Yes 086 X Encoder LogicDir< > 087 Y Encoder LogicDir< > 088 Z Encoder LogicDir< > Encoder LogicDir< > Range : 0~1 Unit : None Authority : Super Admin Default : 0 Note : If the logic direction obtained by the encoder is reverse to the actual motion direction of the axis, please set this parameter. Handwheel encoder reuses A axis encoder. Principal axis encoder reuses X axis encoder. 0: Positive 1: Negative 090 X HomeSpeed2 091 Y HomeSpeed2 092 Z HomeSpeed HomeSpeed2 094 X HomeSpeed3 095 Y HomeSpeed3 096 Z HomeSpeed HomeSpeed3 Range : 1~20000 Unit : mm/min Authority : Super Admin Default : 100,

68 Note : Used to set the speed parameters of mechanical resetting; the specific effective sequence follows: Resetting speed > (when detecting external zero switch) deceleration > scanning speed 100 hand wheel encoder dir Range : 0~1 Unit : None Authority : Super Admin Default : 0 Note : When the logic direction obtained by handheld box encoder is reverse to the actual motion direction of the axis, set this parameter to perform in-phase setting. 0: positive direction 1: negative direction 101 X restrain acc (mm/s^2) 102 Y restrain acc (mm/s^2) 103 Z restrain acc (mm/s^2) restrain acc (mm/s^2) 105 X max restrain rate 106 Y max restrain rate 107 Z max restrain rate max restrain rate Range : 1~90000 Unit : Authority : Super Admin Default : Note : Used to configure the restriction acceleration of every axis during pretreatment processing. No matter which parameter, the lower the setting is, the slower the processing speed is; vice versa. The setting value should be as high as possible if each axis permits. In comprehensive parameter P1.58 (interpolation speed mode), this parameter is valid if it is set to 1; the default setting is invalid Management parameters (P3.) 001 Select SupMode 002 AlterSuperuserPasswor 003 Alter User Password Range : None Unit : None Authority : None Default : None Note : In this menu, type the password and press Insert. If the password is valid, the system will enter this user mode; After entering, this menu will turn into Exit XXX admin mode, indicating entering successfully;

69 004 Initialize In the new menu, press the Insert key to exit the admin mode. To modify the parameter table at this moment, you need to enter the admin mode again; The super user can modify all passwords, while the operation user only can modify the own password. Password 0 indicates that the password isn t checked in this mode; it isn t required to enter the admin mode to modify the parameters. 005 Initialize IO Config 006 all para reset< > Range : None Unit : None Authority : Super user Default : None Note : Initial parameter table only in super user mode 007 para backup 008 para recover Range : None Unit : None Authority : Super user Default : None Note : The parameters are backed up and restored only in super user mode. The parameters are backed up to the sysconf.bak file in the root directory of the controller. If this folder already has a file with same name, the latest backup will overwrite this file. The sysconf.bak file in the root directory is also used for restoring. During restoring, it will check whether the parameter versions are same according to the backed up parameter version; if not, the system won t restore the parameter table. After restoring, the system will restart automatically. 009 generate cryptogram Range : None Unit : None Authority : None Default : None Note : If you have forgotten the password, you can generate a PassMeg.DAT file with this function, provide this file to controller manufacturer and ask the manufacturer to reset the password. 010 menu click way Range : 0~1 Unit : None Authority : None Default : 0 (click) Note : This function is to be developed 011 clear add up work num 012 clear current work num Range : None Unit : None Authority : None Default : None Note : Clear the accumulated value of current processing pieces 013 lead in CSV sys config Range : None

70 Unit : None Authority : None Default : None Effective time : Restart Note : Import the CSV system configuration of the manufacturer into the system 014 startup display module Range : Select Unit : None Authority : Operation admin Default : ABS Note : Select default boot screen from absolute position, relative position and comprehensive position. 015 sys language bag Range : 0~1 Unit : None Authority : Operation admin Default : 0 (Chinese) Note : Select system language Chinese English 016 macro key word valid En Range : 0~1 Unit : None Authority : Operation admin Default : 0 (Chinese) Note : Macro keyword effective parameter is used to set whether the macro expression symbol on the membrane is valid (1: valid, 0: invalid). 017 startup picture display Range : 0~6 Unit : None Authority : Operation admin Default : 1S Note : Used to configure the display mode of the logo; if it is set to 0, the user needs to press any key to enter the system; for any other value, the system delays for corresponding time and enters automatically. 018 sys display axis setting Range : Unit : None Authority : Super user Default : XYZ Note : Used to configure the display axis of current system, and different display combinations are available. This configuration only determines the content of the interface. If the axis function of the hardware exists, it still can output axis control during programming, but the axis status won t be displayed. The status such as axis limit and alarm will be ignored

71 019 sys debug information En Range : 0~1 Unit : None Authority : Super user Default : OFF/0 Note : Used to configure whether RS232 of current system outputs the testing info while program is running. This parameter is dedicated for programmers, and the users are not suggested using this parameter. If the testing info is enabled, the system performance will be lowered, and therefore it is disabled during normal processing. If networking is enabled, this function must be disabled, or else the networking will fail. 020 axis control composite Range : 0~1 Unit : None Authority : Super user Default : ON/1 Note : Used to configure whether the key for axis motion on the control panel is enabled. This parameter is used to shield the composite function of the key for axis motion on the NC panel and reduce the possibility of misoperation when additional panel is used. However, if no additional panel is used, this parameter must be enabled, or else the axis motion can t be controlled through the key. 021 additional panel enable Range : 0~1 Unit : None Authority : Super user Default : OFF/0 Note : Used to configure whether NC uses additional panel, which must be ADT matching additional panel, or compatible with the interface of same protocol. If additional panel is used, the system testing info enable must be deactivated (P3.19). 022 sys tool outlay enable Range : 0~1 Unit : None Authority : Super user Default : OFF/0 Note : Used to configure the ATC function of the system, which is achieved by calling out T_FUNC.NC or not Tool magazine parameters (P4.) 001 Customized by manufacturer Range : Unit : Authority : Operation admin or higher Default : Note : This parameter is determined by tool magazine design of each machine

72 tool manufacturer. Please refer to the machine too manuals for details

73 11.6 Principal axis parameters (P5.) 001 Spi.Alarm ELevel 002 Spi.Reset ELevel 003 Spi.ECZ Home Enable 004 Spi.ECZ Elevel 005 Spi. Limit+ Enable 006 Spi. Limit- Enable 007 Spi.Limit Elevel 008 Spi.Pulse Mode 009 Spi.Pulse Logic Mode 010 Spi.HomeDect ELevel 011 Spi.ExtHome Check En 012 Spi.Round Setting 014 Spi.ZeroOffset(p) 015 Spi.PulseLogic Level 016 Spi.Rolling Display Usage 017 Spi.Max Acc(Kpps) 018 Spi.Ext HomeDir 019 Spi.Servo HomeDir 021 Spi.Home Speed(rpm) Range : Unit : Authority : Operation admin or higher Default : Effective time : Note : Servo principal axis parameters are same as common positioning axis parameters. If only the principal axis is controlled with servo port, you can set the number according to axis parameters. 013 Spi.Encode bits(p) Range : 64~9999 Unit : None Authority : Operation admin or higher Default : 2500 Note : The received wire number of the encoder when the principal axis rotates one circle; Same as common axis encoder, it can only receive AB phase pulse, and thus the wire number of the encoder must be pulses of one circle divided by 4. This parameter will affect G74 and G84 tap instructions. Please set it properly. 020 Spi.Max Speed(rpm) Range : 1~30000 Unit : None Authority : Operation admin or higher Default : Note : This setting is used to calculate the analog output of the controller, and suppose that the analog of variable frequency control is in linear control mode; This method is to set the rotation to this parameter according to the variable frequency rotation corresponding to analog 10V, and transfer the

74 rotation directly later, while the controller will output corresponding analog voltage according to linear scale automatically. 022 Spi.Gear Numerator 023 Spi.Gear Denominator Range : 1~65535 Unit : None Authority : Operation admin or higher Default : 1 Note : If the principal axis has gear position, please set the hardware gear ratio to this parameter, which hasn t been used in standard version, but may be used in certain special conditions Port configuration (P6.) 001 Wheel Input wire No Alarm Input wire No. Range : 0~24 Unit : None Authority : Super Admin Default : The port table in the manual Note : Handheld box interface and servo alarm function pin definition; Type 8888 and press Insert, the system won t map and will use the default wire No. in the manual. If the operation is successful, it displays ======= ; Input value 1~24: map to corresponding pin on IO board 015 IN Input wire No. 038 IN Input wire No. Range : 1~24 Unit : None Authority : Super Admin Default : The port table in the manual Note : Input terminal No. configuration parameter Terminal No. is the object of the system to control IO, e.g. X external home signal test, the system tests terminal No. IN0, which corresponds to input wire 1 by default, and thus the system tests input pin1 indirectly; by default, the terminal No. is assigned to wire No. according to the IO relationship in the manual; however, this relationship isn t constant, and you can specify in these parameters and reassign a terminal No. to any input port; For example, if you set 10 in parameter 042, the system will test pin 10 instead of pin 1 when it tests X home signal during home operation. 039 OUT Output wire No. 062 OUT Input wire No. Range : 1~24 Unit : None Authority : Super Admin Default : The port table in the manual Note : Output terminal No. configuration is same as input terminal configuration. Output terminal No. and wire No. are mapped

75 063 Safe Signal 087 TCheck Limit DetectPort Range : 0~23 Unit : Terminal No. Authority : Super Admin Default : The port table in the manual Note : System functions correspond to assigned terminal No.; Terminal No. is also set by parameter 15~62, and mapped to specified wire No.; To shield this function, you can type 8888 and press Insert. This operation is in background, and displays 255 if the operation is successful. 083 IO Conf in RESET 00~ IO Conf in RESET 16~23 Range : 0~65535 Unit : Authority : Super Admin Default : Note : Used to configure the IO signal that the system needs to reset when there is alarm. Use binary system to configure in positions. For example: 83:65404, is in binary system; Which indicates that port 0, 1 and 7 won t be reset due to system pause or alarm

76 12.1 Installation layout External interface diagram X axis, Y axis, Z axis, A axis: 15-core D-pin socket connects to step motor drive or digital AC servo drive XS5 digital input: 25-core D-pin socket inputs signals for every axis limit and other switching quantity XS6 digital output: 25-core D-pin socket outputs signals for switching quantity USB and serial port exchange files between PC and CNC4640 controller and realize other functions. CNC4640 controller uses 24V DC power supply, and the internal power consumption is about 5W. XS7 accessory panel: 15-core D-pin socket connects to handwheel XS8 principal axis: 9-core D-pin socket connects to principal axis inverter

77 Mounting dimensions

78 Installation precautions Installation condition for electric cabinet The cabinet must be able to effectively prevent dust, coolant and organic solution entering; When design electric cabinet, the distance between rear cover and case should be at least 20CM; considering the temperature rises in the cabinet, the temperature difference between interior and exterior of the cabinet shouldn t exceed 10 ; The cabinet should be installed with fan to ensure interior ventilation; The display panel should be installed at the position can t be sprayed by the coolant; When design electric cabinet, the external electrical interference should be reduced to lowest to prevent interfering with the system; To prevent interference The system is designed with anti-interference measures such as shielding space electromagnetic radiation, absorbing impact current and filtering power clutter, which can prevent interference with the system in certain degree. To ensure system stability, please take the following measures to install and connect the system: CNC must be kept away from the equipment with interference (e.g. inverter, AC contactor, electrostatic generator, high voltage generator, and sub-unit of power lines), and the switching power supply should be connected to a filter to improve the anti-interference of CNC (as in Fig.1-4); To supply power to the system through isolation transformer, the machine tool must be grounded, CNC and drive must be connected to separate earth wire. To suppress interference Connect RC circuit (0.01μF, 100~200Ω, as in Fig. 1-5) to both sides of AC coil in parallel. RC circuit should be installed close to inductive load; connect freewheeling diode reversely on both sides of DC coil in parallel (as in Fig.1-6); connect surge absorber to the winding of AC motor in parallel (as in Fig. 1-7). To reduce the interference between CNC signal cables and strong current cables, the wiring shall follow the principles below:

79 Group Cable type Wiring Requirement A AC power cord AC coil Bundle the cables of group A separately from group B and C, keep at least 10cm clearance, or make AC contactor electromagnetic shielding for group A AC coil (24VDC) DC relay (24VDC) Bundle the cables of group B separately from group A B or shield group B; group B and group C should be as Cable between system and strong current cabinet far as possible Cable between system and machine tool Cable between system and servo drive Position feedback cable Bundle the cables of group C separately from group A, C Position encoder cable or shield group C; keep at least 10cm clearance Handwheel cable between group C and group B and use twisted pair Other cables for shielding

80 12.2 Interface definition Motor drive control interface (XS1..XS4) Four drive interfaces are available (XS1 X axis, XS2 Y axis, XS3 Z axis, XS4 A axis), and they have the same definition, as shown below: Simple Internal Circuit Diagram for Pulse Output

81 Wire No. Definition Function 1 PU+ Pulse signal + 2 PU- Pulse signal - 3 DR+ Direction signal + 4 DR- Direction signal - 5 ALM 6 OUT Servo alarm signal input X axis: IN34, Y axis: IN35, Z axis: IN36, A axis: IN37 Axis alarm reset output signal X axis: OUT24, Y axis: OUT25, Z axis: OUT26 A, axis: OUT27 7 ECZ+ Encoder phase Z input + 8 ECZ- Encoder phase Z input - 9 PUCOM Controller for single end input 10 24V V- Internally provided 24V power supply, directly connected to 24V power supply of the controller 12 ECA+ Encoder phase A input + 13 ECA- Encoder phase A input - 14 ECB+ Encoder phase B input + 15 ECB- Encoder phase B input - Standard pulse wiring diagram This wiring is suitable for CNC4640/4620/4340/4240/4342 controller; Step motor drive cable to differential input Adtech CNC drive is for reference, all of which use differential input mode. This mode has strong anti-interference and is recommended. Please refer to the figure below for the connection of CNC with step motor drive and step motor

82 Step motor drive wiring diagram for single-ended input Certain companies connect together the optocoupler input cathodes of step drives, i.e. common cathode connection, which isn t suitable for CNC controller. Common anode connection connects together the anodes of optocoupler input. The wiring shall follow the figure below, and do not connect PU+ and DR+ together, or else the pulse interface may be damaged. Wiring Diagram for Step Motor Drive with Common Anode Input Servo motor drive wiring diagram Since differential connection is used in most cases, please refer to differential mode for the pulse connection. Most servo drives require 12-24V power supply, and the 24V power provided by pin 10, 11 is available. The specific connection depends on servo drive. Please contact us if you have any question. Caution Either two of PU+, PU-, DR+ and DR- shouldn t be connected, or else the pulse interface may be damaged

83 Digital input interface (XS5) The digital input interface contains the hard limit signal of every axis, and the definition follows: Simple Internal Output Diagram for Digital Input Photoelectric Switch Wiring Diagram + is the anode of approach switch, - is the earth wire, and OUT is output signal. For common approach switch, please select 10-30V power supply and NPN output. Photoelectric switch is similar

84 Default input port configuration of M series (milling machine) Wire Definition No. Function 1 IN0 X axis zero point 2 IN1 Y axis zero point 3 IN2 Z axis zero point 4 IN3 A axis zero point 5 IN4 Tool regulator in place test 6 IN5 Security door test input 7 IN6 System under-voltage alarm input 8 IN7 System lubricant pressure alarm input 9 IN8 Standby input 10 IN9 Standby input 11 IN10 System material clamping alarm input 12 IN11 Standby input 13 IN12 Standby input 14 IN13 Standby input 15 IN14 Standby input 16 IN15 Standby input 17 IN16 (XLMT-) X axis negative limit (standby IN32) 18 IN17 (XLMT+) X axis positive limit (standby IN33) 19 IN18 (YLMT-) Y axis negative limit (standby IN34) 20 IN19 (YLMT+) Y axis positive limit (standby IN35) 21 IN20 (ZLMT-) Z axis negative limit (standby IN36) 22 IN21 (ZLMT+) Z axis positive limit (standby IN37) 23 IN22 (ALMT-) A axis negative limit (standby IN38) 24 IN23 (ALMT+) A axis positive limit (standby IN39) 25 INCOM Input common end INCOM (24V+, 12V+) connects to internal or external power supply

85 Default input port configuration of L series (lathe) Wire Definition No. Function 1 IN0 X axis zero point 2 IN1 Standby input 3 IN2 Z axis zero point 4 IN3 Standby input 5 IN4 Tool #1 in place test 6 IN5 Tool #2 in place test 7 IN6 Tool #3 in place test 8 IN7 Tool #4 in place test 9 IN8 Tool #5 in place test 10 IN9 Tool #6 in place test 11 IN10 Tool #7 in place test 12 IN11 Tool #8 in place test 13 IN12 Standby input 14 IN13 Standby input 15 IN14 Standby input 16 IN15 Standby input 17 IN16 (XLMT-) X axis negative limit (standby IN32) 18 IN17 (XLMT+) X axis positive limit (standby IN33) 19 IN18 20 IN19 21 IN20 (ZLMT-) Z axis negative limit (standby IN36) 22 IN21 (ZLMT+) Z axis positive limit (standby IN37) 23 IN22 24 IN23 25 INCOM Input common end INCOM (24V+, 12V+) connects to internal or external power supply Digital output interface (XS6) The wiring of digital output interface follows:

86 Simple Internal Circuit of Digital Output (left) Wiring with Machine Tool (right) (principal axis positive rotation for example)

ADT-CNC46208 CNC LATHE SYSTEM Maintenance Manual

ADT-CNC46208 CNC LATHE SYSTEM Maintenance Manual ADT-CNC46208 CNC LATHE SYSTEM Maintenance Manual http//www.salecnc.com Email sales@salecnc.com . Contents Contents 1. Foreword... - 3-2. System technical characteristics... - 3-2.1 System structure...-

More information

ADT-CNC4940 CNC4940 Milling Machine Control System. Programming Manual

ADT-CNC4940 CNC4940 Milling Machine Control System. Programming Manual ADT-CNC4940 CNC4940 Milling Machine Control System Programming Manual Adtech (Shenzhen) Technology Co., Ltd. Add: F/5, Bldg/27-29, Tianxia IC Industrial Park, Yiyuan Rd, Nanshan District, Shenzhen Postal

More information

GSK218M Milling Machine CNC System

GSK218M Milling Machine CNC System GSK218M Milling Machine CNC System GSK218M is widespread CNC system (matched with machining center and general milling machine) employed with 32-bit high performance CPU and super-large-scale programmable

More information

Operation Manual. 3.1 Absolute coordinate Relative coordinate Mechanical coordinate

Operation Manual. 3.1 Absolute coordinate Relative coordinate Mechanical coordinate DELTA_NC300_O_EN_20130624 Operation Manual Table of content NC300 Chapter 1: Table of group menu 1.1 Table of system group menu... 1-1 1.2 Primary control panel function keys... 1-9 1.3 Secondary control

More information

SALECNC CNC ROUTER. User s Operation Manual (NC-Studio Program) SaleCNC.com By: AutomationMaker

SALECNC CNC ROUTER. User s Operation Manual (NC-Studio Program) SaleCNC.com By: AutomationMaker SALECNC CNC ROUTER User s Operation Manual (NC-Studio Program) SaleCNC.com By: AutomationMaker 1 Content Content... 1 Ⅰ. Introduction of wiring of CNC router....2 Ⅱ.Install control software.....2 Ⅲ. Introduction

More information

Operation Manual. 3.1 Absolute coordinate Relative coordinate Mechanical coordinate

Operation Manual. 3.1 Absolute coordinate Relative coordinate Mechanical coordinate DELTA_NC300_O_EN_20140428 Operation Manual NC300 Table of content Chapter 1: Table of group menu 1.1 Table of system group menu... 1-1 1.2 Primary control panel function keys... 1-9 1.3 Secondary control

More information

Conversational Programming for 6000i CNC

Conversational Programming for 6000i CNC Conversational Programming for 6000i CNC www.anilam.com P/N 634 755-22 - Contents Section 1 - Introduction Section 2 - Conversational Mode Programming Hot Keys Programming Hot Keys... 2-1 Editing Keys...

More information

Content. Content Ⅰ. Introduction of wiring of CNC router...2. Ⅱ.Install control software...2. Ⅲ. Introduction of Software...

Content. Content Ⅰ. Introduction of wiring of CNC router...2. Ⅱ.Install control software...2. Ⅲ. Introduction of Software... Content Content... 1 Ⅰ. Introduction of wiring of CNC router....2 Ⅱ.Install control software.....2 Ⅲ. Introduction of Software....5 Ⅳ. Description of software menus... 17 Ⅴ. Operation procedures...22 Ⅵ.Attachment:

More information

Conversational Programming for 6000M, 5000M CNC

Conversational Programming for 6000M, 5000M CNC Conversational Programming for 6000M, 5000M CNC www.anilam.com P/N 70000486F - Contents Section 1 - Introduction Section 2 - Conversational Mode Programming Hot Keys Programming Hot Keys... 2-1 Editing

More information

CNC MILLING MACHINE NER VC180)

CNC MILLING MACHINE NER VC180) CNC MILLING MACHINE (SPINNER NER VC180) PREPARED BY: RAFIZAH BINTI ABDUL RASHID NOR ZAIAZMIN BIN YAHAYA PREPARED FOR: ADVANCED MANUFACTURING TECHNOLOGY (EPT 311) Page 1 of 12 TURNING ON THE CNC MILLING

More information

IEEM 215. Manufacturing Processes I Introduction to the ARIX CNC milling machine

IEEM 215. Manufacturing Processes I Introduction to the ARIX CNC milling machine IEEM 215. Manufacturing Processes I Introduction to the ARIX CNC milling machine The image below is our ARIX Milling machine. The machine is controlled by the controller. The control panel has several

More information

Operation Manual. V3.3 December, Wuhan Huazhong Numerical Control Co., Ltd

Operation Manual. V3.3 December, Wuhan Huazhong Numerical Control Co., Ltd Century Star Milling CNC System Operation Manual V3.3 December, 2007 Wuhan Huazhong Numerical Control Co., Ltd 2007 Wuhan Huazhong Numerical Control Co., Ltd Preface Preface Organization of documentation

More information

Lesson 6 The Key Operation Procedures

Lesson 6 The Key Operation Procedures Lesson 6 The Key Operation Procedures Step-by-step procedures can keep you from having to memorize every function that you must perform on your CNC machining center. You will soon memorize procedures for

More information

300S READOUTS REFERENCE MANUAL

300S READOUTS REFERENCE MANUAL 300S READOUTS REFERENCE MANUAL 300S Key Layout 1 Display Area 2 Soft keys 3 Power Indicator light 4 Arrow Keys: Use the UP/DOWN keys to adjust the screen contrast. 5 Axis Keys 6 Numeric Keypad 7 ENTER

More information

Wizard 1000 REFERENCE MANUAL

Wizard 1000 REFERENCE MANUAL Wizard 1000 REFERENCE MANUAL W1000 Key Layout Display Area Axis Keys Numeric Keypad Clear key Soft keys Enter key Power Indicator light Arrow keys - Up/ Down arrow keys are also used to adjust the screen

More information

Lesson 4 Introduction To Programming Words

Lesson 4 Introduction To Programming Words Lesson 4 Introduction To Programming Words All CNC words include a letter address and a numerical value. The letter address identifies the word type. The numerical value (number) specifies the value of

More information

OPERATION MANUAL. TYPE:C-Type Series CONTROLLER:FANUC 0iMD / 18iMB / 31iB VERSION NO.:AFEQFI03 DATE:2012/05/03 AWEA MECHANTROINC CO.

OPERATION MANUAL. TYPE:C-Type Series CONTROLLER:FANUC 0iMD / 18iMB / 31iB VERSION NO.:AFEQFI03 DATE:2012/05/03 AWEA MECHANTROINC CO. OPERATION MANUAL TYPE:C-Type Series CONTROLLER:FANUC 0iMD / 18iMB / 31iB VERSION NO.:AFEQFI03 DATE:2012/05/03 AWEA MECHANTROINC CO., LTD NO.15,Keyuan 2nd Rd., Taichung City, Taiwan. 40763 TEL:886-4-2462-9698

More information

User s Manual V MillPlus IT. NC Software

User s Manual V MillPlus IT. NC Software User s Manual V600-02 MillPlus IT NC Software 538 952-02 538 953-02 538 954-02 538 955-02 538 956-02 English (en) 6/2008 Controls on the visual display unit Select window User keys Manual operation Axis-direction

More information

KA3-6VS 300mm KA3-6VS 400mm Vertical Spindle

KA3-6VS 300mm KA3-6VS 400mm Vertical Spindle Vertical KA3-6VS 300mm KA3-6VS 400mm Vertical Spindle The Kira KA3- Series of traveling column (3) Axis CNC Machining Modules are an excellent choice for special application machine builders. These modules

More information

Preface. GSK983Ma User Manual divides into three parts, that is, Programming, Operation and Appendix.

Preface. GSK983Ma User Manual divides into three parts, that is, Programming, Operation and Appendix. This user manual describes all proceedings concerning the operations of this CNC system in detail as much as possible. However, it is impractical to give particular descriptions for all unnecessary or

More information

Operation Manual (B) KVR-2418 (24L) Fanuc OiMD CNC. KENT INDUSTRIAL (USA) INC Edinger Ave., Tustin, CA 92780

Operation Manual (B) KVR-2418 (24L) Fanuc OiMD CNC. KENT INDUSTRIAL (USA) INC Edinger Ave., Tustin, CA 92780 Operation Manual (B) KVR-2418 (24L) Fanuc OiMD CNC KENT INDUSTRIAL (USA) INC. 1231 Edinger Ave., Tustin, CA 92780 Tel: (714) 258-8526 Fax: (714) 258-8530 Internet: WWW.KENTUSA.COM KENT USA THE WAY TO AFFORDABLE

More information

Mach4 CNC Controller Mill Programming Guide Version 1.0

Mach4 CNC Controller Mill Programming Guide Version 1.0 Mach4 CNC Controller Mill Programming Guide Version 1.0 1 Copyright 2014 Newfangled Solutions, Artsoft USA, All Rights Reserved The following are registered trademarks of Microsoft Corporation: Microsoft,

More information

G & M Code REFERENCE MANUAL. Specializing in CNC Automation and Motion Control

G & M Code REFERENCE MANUAL. Specializing in CNC Automation and Motion Control REFERENCE MANUAL Specializing in CNC Automation and Motion Control 2 P a g e 11/8/16 R0163 This manual covers definition and use of G & M codes. Formatting Overview: Menus, options, icons, fields, and

More information

CNC Milling System Operation Manual

CNC Milling System Operation Manual HNC-08M CNC SYSTEM CNC Milling System Operation Manual V1.22 2011/01 WuHan HuaZhong Numerical Control Co., Ltd Table of Contents 1 SUMMARIZE...1 1.1 CNC SOFTWARE SYSTEM INTRODUCTION...1 1.1.1 CNC System

More information

3000M CNC Programming and Operations Manual for Two-Axis Systems

3000M CNC Programming and Operations Manual for Two-Axis Systems 3000M CNC Programming and Operations Manual for Two-Axis Systems www.anilam.com P/N 70000496G - Contents Section 1 - CNC Programming Concepts Programs... 1-1 Axis Descriptions... 1-1 X Axis... 1-2 Y Axis...

More information

NCT. PLC Programmer s Manual. Machine Tool Controls. From SW Version x.061 (M) (L)

NCT. PLC Programmer s Manual. Machine Tool Controls. From SW Version x.061 (M) (L) NCT Machine Tool Controls PLC Programmer s Manual From SW Version x.061 (M) (L) Produced and developed by NCT Automation kft. H1148 Budapest Fogarasi út 7 : Letters: 1631 Bp. P.O. Box 26 F Phone: (+36

More information

6 Series Mill Controller Operation Manual

6 Series Mill Controller Operation Manual 6 Series Mill Controller Operation Manual Date: 2013/10/25 Version: 1.1 Contents 1 Function Key and System Configuration... 4 1.1 Main Screen Sections... 4 1.2 CNC System Configuration... 5 1.3 Coordinate...

More information

GE Fanuc Automation. Series 16i / 18i / 21i Model TA Manual Guide. Computer Numerical Control Products. Operator's Manual

GE Fanuc Automation. Series 16i / 18i / 21i Model TA Manual Guide. Computer Numerical Control Products. Operator's Manual GE Fanuc Automation Computer Numerical Control Products Series 16i / 18i / 21i Model TA Manual Guide Operator's Manual B-63344EN/01 July 1998 Warnings, Cautions, and Notes as Used in this Publication GFL-001

More information

HDS Series Quick Start Guide.

HDS Series Quick Start Guide. Techno-Osai Start Up Sequence HDS Series Quick Turn the Main power switch to the ON Position. 220 volts should have been attached to this switch by an electrician. Power On Button. Computer power ON. The

More information

VMC600II VMC800II VMC1000II

VMC600II VMC800II VMC1000II OPERATOR S MANUAL Revised: March 15, 2001 VMC600II VMC800II VMC1000II Vertical Machining Centers Equipped with the Hardinge / Fanuc Control System II Manual No. M-378 Litho in U.S.A. Part No. M -0009500-0378

More information

2. INTRODUCTION TO CNC

2. INTRODUCTION TO CNC Q. Define NC Machines. 2. INTRODUCTION TO CNC A method of automation, in which various functions and processing of machine tools are controlled by letters and symbols. The general objective of NC technology

More information

Polar coordinate interpolation function G12.1

Polar coordinate interpolation function G12.1 Polar coordinate interpolation function G12.1 On a Turning Center that is equipped with a rotary axis (C-axis), interpolation between the linear axis X and the rotary axis C is possible by use of the G12.1-function.

More information

Welcome to. the workshop on the CNC 8055 MC

Welcome to. the workshop on the CNC 8055 MC Welcome to the workshop on the CNC 8055 MC Sales Dpt-Training: 2009-sept-25 FAGOR CNC 8055MC seminar 1 Sales Dpt-Training: 2009-sept-25 FAGOR CNC 8055MC seminar 2 This manual is part of the course for

More information

Series 0ί -MD Mate CNC STANDARD FEATURES

Series 0ί -MD Mate CNC STANDARD FEATURES STANDARD FEATURES Axis Control Digital Servo Function 1 Controlled Path Simultaneously controlled axes: Up to maximum of 3 Serial Encoder Interface Axis Name Selected from X,Y,Z and U,V,W,A,B,C Spindle

More information

Milling Controller User Manual

Milling Controller User Manual ADT-CNC4840 Milling Controller User Manual ADTECH (SHENZHEN) CNC TECHNOLOGY CO., LTD 5th Floor, 27-29th Building, Tianxia IC Industrial Park, Yiyuan road, Nanshan District, Shenzhen Post code: 518052 Tel:86-755-26722719

More information

6 Series Mill Controller Operation Manual

6 Series Mill Controller Operation Manual 6 Series Mill Controller Operation Manual Date: 2015/11/13 Version: 1.3 2 Contents 1 Function Key and System Configuration... 4 1.1 Main Screen Sections... 4 1.2 CNC System Configuration... 5 1.3 Coordinate...

More information

MELDAS, MELDASMAGIC, and MELSEC are registered trademarks of Mitsubishi Electric Corporation. The other company names and product names are

MELDAS, MELDASMAGIC, and MELSEC are registered trademarks of Mitsubishi Electric Corporation. The other company names and product names are MELDAS, MELDASMAGIC, and MELSEC are registered trademarks of Mitsubishi Electric Corporation. The other company names and product names are trademarks or registered trademarks of the respective companies.

More information

VERTICAL MACHINING CENTER OPERATION MANUAL I-SERIES-CAM

VERTICAL MACHINING CENTER OPERATION MANUAL I-SERIES-CAM VERTICAL MACHINING CENTER OPERATION MANUAL I-SERIES-CAM 07.10,2010 FANUC 18M,0I,18I,21I 1. PREFACE... 1-1 2. INSTALLATION AND POWER ON... 2-1 2.1 INPUT POWER ON... 2-2 2.2 SPECIFICATIONS OF ELECTRICAL

More information

For the latest information about this machine (including manuals), see the Roland DG Corp. website (http://www.rolanddg.com).

For the latest information about this machine (including manuals), see the Roland DG Corp. website (http://www.rolanddg.com). VPanel is a program to operate the modeling machine on the computer screen. It has functions to output cutting data, perform maintenance, and make various corrections. In addition, it displays error messages

More information

Our thanks go to: Puppy Linux, RTAI, EMC, axis, all the kernel developers and big mama thornton.

Our thanks go to: Puppy Linux, RTAI, EMC, axis, all the kernel developers and big mama thornton. CoolCNC Linux First Steps This manual is a step by step introduction for the installation of the CoolCNC Linux Live CD. Its intent is to lead to a better understanding of the current processes. This document

More information

Date 18/05/17. Operation and maintenance instructions for driver configurator QSet

Date 18/05/17. Operation and maintenance instructions for driver configurator QSet Operation and maintenance instructions 28 1. General recommendations The recommendations regarding safe use in this document should be observed at all times. Some hazards can only be associated with the

More information

Wizard 550 READOUTS REFERENCE MANUAL

Wizard 550 READOUTS REFERENCE MANUAL Wizard 550 READOUTS REFERENCE MANUAL Wizard 550 Key Layout Axis Keys Numeric Keypad Display Area Enter key Soft keys Power Indicator light Wizard 550 Soft Keys There are three pages of soft key functions

More information

Features & Specifications V

Features & Specifications V Features & Specifications V18.0919 KEEP THE IRON. UPGRADE YOUR MACHINE. A Turnkey Solution to easily replace your Fadal Control Utilize your existing AC/DC servo components and wiring Replace your old

More information

Mach4 CNC Controller Lathe Programming Guide Version 1.0

Mach4 CNC Controller Lathe Programming Guide Version 1.0 Mach4 CNC Controller Lathe Programming Guide Version 1.0 1 Copyright 2014 Newfangled Solutions, Artsoft USA, All Rights Reserved The following are registered trademarks of Microsoft Corporation: Microsoft,

More information

Xbox gamepad CNC pendant user manual

Xbox gamepad CNC pendant user manual Patrik Tegelberg 2017-09-04 Xbox gamepad CNC pendant user manual Computer controlled manufacturing machines are awesome, and not designed for manual cutting. This controller, for LinuxCNC, maintains the

More information

CNC Knee Type Milling Machines with USA CENTROID M-400S CNC control

CNC Knee Type Milling Machines with USA CENTROID M-400S CNC control CNC Knee Type Milling Machines with USA CENTROID M-400S CNC control GMM-949-CNC, 9 x49 table, R8, vari-speed, 3 axis CNC... GMM-949F-CNC, 9 x49 table, R8, inverter drive, 5,000 rpm, 3 axis CNC.. Note:

More information

Century Star Turning CNC System. Programming Guide

Century Star Turning CNC System. Programming Guide Century Star Turning CNC System Programming Guide V3.5 April, 2015 Wuhan Huazhong Numerical Control Co., Ltd 2015 Wuhan Huazhong Numerical Control Co., Ltd Preface Preface Organization of documentation

More information

A-SERIES BED MILLS. 3-Axis CNC for Job Shops, Tool Rooms, and Production Operations. Featuring Semi-Automatic + Conversational Programming + G-Code

A-SERIES BED MILLS. 3-Axis CNC for Job Shops, Tool Rooms, and Production Operations. Featuring Semi-Automatic + Conversational Programming + G-Code A-SERIES BED MILLS 3-Axis CNC for Job Shops, Tool Rooms, and Production Operations Featuring Semi-Automatic + Conversational Programming + G-Code A-Series Bed Mills are offered in two styles: NC HEAD The

More information

NcStudio Programming Manual

NcStudio Programming Manual NcStudio Programming Manual 6th Edition Weihong Electronic Technology Co., Ltd. The copyright of this manual belongs to Weihong Electronic Technology Co., Ltd. (hereinafter referred to as Weihong Company).

More information

Conversational Programming for 6000i CNC

Conversational Programming for 6000i CNC Conversational Programming for 6000i CNC January 2008 Ve 01 634755-21 1/2008 VPS Printed in USA Subject to change without notice www.anilam.com P/N 634755-21 - Warranty Warranty ANILAM warrants its products

More information

9000 CNC 9000 CNC: THE NEW STANDARD OF CONTROL. INTUITIVE EFFICIENT PRODUCTIVE

9000 CNC 9000 CNC: THE NEW STANDARD OF CONTROL. INTUITIVE EFFICIENT PRODUCTIVE 3D Solid Model Graphics Solid Model with Tool Path Overlay 9000 CNC 9000 CNC: THE NEW STANDARD OF CONTROL. At Milltronics we are constantly refining our controls to simplify operation, shorten setup times

More information

2 1.1 Safety using methods Definition of warning symbols Standard accessories Installation...

2 1.1 Safety using methods Definition of warning symbols Standard accessories Installation... Table of Contents 1 Satety precautions... 2 1.1 Safety using methods...2 1.2 Definition of warning symbols...2 2 Standard accessories......6 3 Installation... 7 3.2 Leg frame... 7 3.3 Installation and

More information

Conversational Programming for 6000M, 5000M CNC

Conversational Programming for 6000M, 5000M CNC Conversational Programming for 6000M, 5000M CNC www.anilam.com P/N 70000486E - Warranty Warranty ANILAM warrants its products to be free from defects in material and workmanship for one (1) year from date

More information

NC CODE REFERENCE MANUAL

NC CODE REFERENCE MANUAL NC CODE REFERENCE MANUAL Thank you very much for purchasing this product. To ensure correct and safe usage with a full understanding of this product's performance, please be sure to read through this manual

More information

Operating Instructions POSITIP 880

Operating Instructions POSITIP 880 Operating Instructions POSITIP 880 English (en) 12/2008 POSITIP 880 Back View Axis ports Edge finder Ground Power button Parallel port Auxiliary Machine Interface connector Serial port Main power input

More information

DYNASCAN D-250 2D+ Ø DRO

DYNASCAN D-250 2D+ Ø DRO DYNASCAN D-250 2D+ Ø DRO The D-250 is an advanced digital readout system for performing three axes (two linear and one angular) geometrical measurement at very high level of precision and accuracy. Its

More information

FANUC OPEN CNC OPERATOR S MANUAL BASIC OPERATION PACKAGE 2 B-63924EN/01

FANUC OPEN CNC OPERATOR S MANUAL BASIC OPERATION PACKAGE 2 B-63924EN/01 FANUC OPEN CNC BASIC OPERATION PACKAGE 2 OPERATOR S MANUAL B-63924EN/01 No part of this manual may be reproduced in any form. All specifications and designs are subject to change without notice. The export

More information

CNC Programming Simplified. EZ-Turn Tutorial.

CNC Programming Simplified. EZ-Turn Tutorial. CNC Programming Simplified EZ-Turn Tutorial www.ezcam.com Copyright Notice This manual describes software that contains published and unpublished works of authorship proprietary to EZCAM Solutions, Inc.

More information

SSII SUV MANUAL. LAGUNA TOOLS 2072 Alton Parkway Irvine, California Ph:

SSII SUV MANUAL. LAGUNA TOOLS 2072 Alton Parkway Irvine, California Ph: SSII SUV MANUAL LAGUNA TOOLS 2072 Alton Parkway Irvine, California 92606 Ph: 800.234.1976 www.lagunatools.com 2018, Laguna Tools, Inc. LAGUNA and the LAGUNA Logo are the registered trademarks of Laguna

More information

Small Machine Operator s Panel Connection Manual

Small Machine Operator s Panel Connection Manual Small Machine Operator s Panel Connection Manual -Item- 1. Overview 2. Overall connection diagram 3. Each connections 3.1 Pin assignment 3.2 Power connection 3.3 Emergency stop switch 3.4 I/O Link connection

More information

CNC Turning. Module2: Introduction to MTS-TopTurn and G & M codes. Academic Services PREPARED BY. January 2013

CNC Turning. Module2: Introduction to MTS-TopTurn and G & M codes. Academic Services PREPARED BY. January 2013 CNC Turning Module2: Introduction to MTS-TopTurn and G & M codes PREPARED BY Academic Services January 2013 Applied Technology High Schools, 2013 Module2: Introduction to MTS-TopTurn and G & M codes Module

More information

REACH HD Encoder ENC1200

REACH HD Encoder ENC1200 REACH HD Encoder ENC1200 V1.5 2012-01 Copyright Shenzhen Reach IT Co., Ltd. Shenzhen Reach IT Co., Ltd. provides full technical supports for the customers. If you have any inquiries, please contact the

More information

Software designed to work seamlessly with your CNC Masters machine. Made to work with Windows PC. Works with standard USB

Software designed to work seamlessly with your CNC Masters machine. Made to work with Windows PC. Works with standard USB Software designed to work seamlessly with your CNC Masters machine Made to work with Windows PC Works with standard USB Clutter free interface. The software is engineered for the machine so you don t have

More information

Ultimate Screen Reference Guide

Ultimate Screen Reference Guide MACHMOTION Ultimate Screen Reference Guide 8/11/2011 Everything you need to know to use and setup the MachMotion Ultimate Screen. MachMotion Version 1.0.2 2 P a g e Copyright 2011, MachMotion.com All rights

More information

CHAPTER 12. CNC Program Codes. Miscellaneous CNC Program Symbols. D - Tool Diameter Offset Number. E - Select Work Coordinate System.

CHAPTER 12. CNC Program Codes. Miscellaneous CNC Program Symbols. D - Tool Diameter Offset Number. E - Select Work Coordinate System. General CHAPTER 12 CNC Program Codes The next three chapters contain a description of the CNC program codes and parameters supported by the M-Series Control. The M-Series Control has some G codes and parameters

More information

527F CNC. Retrofit controller for machines made by Fadal Machining Centers. Installation and set-up manual Calmotion LLC

527F CNC. Retrofit controller for machines made by Fadal Machining Centers. Installation and set-up manual Calmotion LLC 527F CNC Retrofit controller for machines made by Fadal Machining Centers Installation and set-up manual 2008-2018 Calmotion LLC Calmotion LLC 7536 San Fernando Road Sun Valley, CA 91352 www.calmotion.com

More information

USB Indexer USB Indexer for CNC Controls

USB Indexer USB Indexer for CNC Controls USB Indexer USB Indexer for CNC Controls 2009-2011 Calmotion LLC, All rights reserved Calmotion LLC 9909 Topanga Canyon Blvd. #322 Chatsworth, CA 91311 www.calmotion.com -1 2009-2011Calmotion LLC, All

More information

GE Fanuc Automation. Series 30i-Model A Series 300i-Model A Series 300is-Model A. Macro Compiler / Macro Executor. Computer Numerical Control Products

GE Fanuc Automation. Series 30i-Model A Series 300i-Model A Series 300is-Model A. Macro Compiler / Macro Executor. Computer Numerical Control Products GE Fanuc Automation Computer Numerical Control Products Series 30i-Model A Series 300i-Model A Series 300is-Model A Macro Compiler / Macro Executor Programming Manual GFZ-63943EN-2/01 July 2003 Warnings,

More information

CNC USB 6040 Engraving Machine User Manual

CNC USB 6040 Engraving Machine User Manual CNC USB 6040 Engraving Machine User Manual Factory Address: 1st Floor, A Building, First Industrial Park, Bantian, Longgang District, Shenzhen, 518027, China Office address: 038-068 2F handmade culture

More information

Warranty. Student Workbook for Three-Axis Systems

Warranty. Student Workbook for Three-Axis Systems www.anilam.com P/N 70000505 - Warranty Warranty ANILAM warrants its products to be free from defects in material and workmanship for one (1) year from date of installation. At our option, we will repair

More information

GE Fanuc Automation. Computer Numerical Control Products. Series 15i/150i-Model A Programming Manual (Macro Compiler/Macro Executor)

GE Fanuc Automation. Computer Numerical Control Products. Series 15i/150i-Model A Programming Manual (Macro Compiler/Macro Executor) GE Fanuc Automation Computer Numerical Control Products Series 15i/150i-Model A Programming Manual (Macro Compiler/Macro Executor) GFZ-63323EN-2/01 November 2000 Warnings, Cautions, and Notes as Used in

More information

527F CNC. Retrofit controller for machines made by Fadal Machining Centers. Installation and set-up manual Calmotion LLC

527F CNC. Retrofit controller for machines made by Fadal Machining Centers. Installation and set-up manual Calmotion LLC 527F CNC Retrofit controller for machines made by Fadal Machining Centers Installation and set-up manual 2008-2018 Calmotion LLC Calmotion LLC 7536 San Fernando Road Sun Valley, CA 91352 www.calmotion.com

More information

2LIST OF SPECIFICATIONS

2LIST OF SPECIFICATIONS B 63522EN/02 GENERAL 2. LIST OF SPECIFICATIONS 2LIST OF SPECIFICATIONS : Standard : Standard option : Option : Function included in another option Note) The use of some combinations of options is restricted.

More information

CNC Programming Simplified. EZ-Turn / TurnMill Tutorial.

CNC Programming Simplified. EZ-Turn / TurnMill Tutorial. CNC Programming Simplified EZ-Turn / TurnMill Tutorial www.ezcam.com Copyright Notice This manual describes software that contains published and unpublished works of authorship proprietary to EZCAM Solutions,

More information

Software Manual. Version: H BENCHTOP ROBOT SOFTWARE USER GUIDE Version H

Software Manual. Version: H BENCHTOP ROBOT SOFTWARE USER GUIDE Version H Software Manual Version: H6.1.1.292 BENCHTOP ROBOT SOFTWARE USER GUIDE Version H6.1.1.293 Software Manual Table of Contents SECTION 1: INTRODUCTION... 5 1.1 Introduction...6 1.2 Safety...6 1.3 New Features...6

More information

I.CH Brushless DC Motor Driver

I.CH Brushless DC Motor Driver V II 20100513 I.CH Brushless DC Motor Driver I.CH MOTION CO., LTD MOTION WORLD Characteristic : This control system with perfect function, simple operation, capability of anti-interference, energy saving,

More information

6000i CNC User s Manual

6000i CNC User s Manual 6000i CNC User s Manual January 2008 Ve 02 627785-21 1/2008 VPS Printed in USA Subject to change without notice www.anilam.com P/N 627785-21 - Warranty Warranty ANILAM warrants its products to be free

More information

GE FANUC 21 CONCEPT 55 MILL ATC TEACHER GUIDE

GE FANUC 21 CONCEPT 55 MILL ATC TEACHER GUIDE GE FANUC 21 CONCEPT 55 MILL ATC TEACHER GUIDE 11/1/07 Version 2 Made by EMCO Authored by Chad Hawk Training Index Control Keyboard Pg 1 Fanuc 21 Control Machine Control Fanuc 21 Screen. Pg 2 Fanuc 21 Keys.

More information

3300M/MK CNC Programming and Operations Manual

3300M/MK CNC Programming and Operations Manual 3300M/MK CNC Programming and Operations Manual www.anilam.com P/N 70000381C - Contents Section 1 - CNC Programming Concepts Programs... 1-1 Axis Descriptions... 1-1 X Axis... 1-2 Y Axis... 1-2 Z Axis...

More information

130Series. CNC Horizontal Boring & Milling Machines SNK AMERICA, INC. MACHINE TOOL GROUP

130Series. CNC Horizontal Boring & Milling Machines SNK AMERICA, INC. MACHINE TOOL GROUP 130Series CNC Horizontal Boring & Milling Machines SNK AMERICA, INC. MACHINE TOOL GROUP 100 Howard Street Elk Grove, IL 60007 Tel: 47.364.001 Fax: 47.364.4363 www.snkamerica.com PRINTED IN USA 0/0 CNC

More information

FAGOR 800T CNC OPERATING MANUAL. Ref (in)

FAGOR 800T CNC OPERATING MANUAL. Ref (in) FAGOR 800T CNC OPERATING MANUAL Ref. 9701 (in) ABOUT THE INFORMATION IN THIS MANUAL This manual is addressed to the machine operator. It includes the necessary information for new users as well as advanced

More information

MELDASMAGIC MMI OPERATION MANUAL (FOR L/G) BNP-B2194 (ENG)

MELDASMAGIC MMI OPERATION MANUAL (FOR L/G) BNP-B2194 (ENG) MELDASMAGIC MMI OPERATION MANUAL (FOR L/G) BNP-B2194 (ENG) MELDASMAGIC is a registered trademark of Mitsubishi Electric Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation.

More information

Computer Aided Engineering Applications 3. Advanced Manufacturing 3.5 NC programming 3.6 Automated Manufacturing systems 3.7 Rapid prototyping

Computer Aided Engineering Applications 3. Advanced Manufacturing 3.5 NC programming 3.6 Automated Manufacturing systems 3.7 Rapid prototyping Computer Aided Engineering Applications 3. Advanced Manufacturing 3.5 NC programming 3.6 Automated Manufacturing systems 3.7 Rapid prototyping Engi 6928 - Fall 2014 3.5 Part programming Structure of an

More information

MEMEX FANUC METER (512K) HSL5/MME MEMORY UPGRADE INSTALLATION AND USER MANUAL M100704A

MEMEX FANUC METER (512K) HSL5/MME MEMORY UPGRADE INSTALLATION AND USER MANUAL M100704A MEMEX FANUC 9 1280 METER (512K) HSL5/MME MEMORY UPGRADE INSTALLATION AND USER MANUAL Memex Inc. 105-3425 Harvester Road, Burlington, Ontario Canada L7N 3N1 Phone: 905-635-3040 Fax: 905-631-9640 http://www.memex.ca

More information

OPERATION INSTRUCTION

OPERATION INSTRUCTION KEYBOARD CONTROLLER OPERATION INSTRUCTION Copyright 2003-2007. All Rights Reserved. Precautions: 1. Installation Site Keep away from heat source and high temperature environment. Avoiding exposing to direct

More information

Machine Tools Suite 4

Machine Tools Suite 4 Machine Tools Suite 4 Job Name Server Job Console Job Editor Job Reporter Motion Mechanic Job Name Server Job Name Server Job Name Server is a small utility that runs in the background of the PC. It is

More information

U90 Ladder Software Manual. Version 3.50, 6/03

U90 Ladder Software Manual. Version 3.50, 6/03 U90 Ladder Software Manual Version 3.50, 6/03 Table Of Contents Welcome to U90 Ladder... 1 Program Editors... 1 Project Navigation Tree...1 Browse Sequences...1 Printing Documentation...2 Interface Language...

More information

DIFFERENCES FROM SERIES 0i-C

DIFFERENCES FROM SERIES 0i-C B DIFFERENCES FROM SERIES 0i-C Appendix B, "Differences from Series 0i-C", consists of the following sections: B.1 SETTING UNIT...247 B.2 AUTOMATIC TOOL OFFSET...247 B.3 CIRCULAR INTERPOLATION...249 B.4

More information

Profi4 Main Board Manual

Profi4 Main Board Manual Profi4 Main Board Manual A. Scope of application It is used to run the signal processing of the host computer ( LPT port ), with MACH 3 CNC system software, and the peripheral machine dynamic electrical.

More information

COPYCAT NEW FANGLED SOLUTIONS 2/6/2009

COPYCAT NEW FANGLED SOLUTIONS 2/6/2009 1.0 INTRODUCTION 1.1 CopyCat is a unique wizard used with MACH3. It is not a stand alone program. This wizard will allow you to jog a machine around and create a Gcode file from the movement. 2.0 REQUIREMENTS

More information

TNC-M14-CNC Controller v1.1

TNC-M14-CNC Controller v1.1 TNC-M14-CNC Controller v1.1 Document: Operation Manual Document #: T12 Document Rev: 1.0 Product: CNC Controller Product Rev: 2.0 Created: Oct-2013 Updated: Dec-2014 THIS MANUAL CONTAINS INFORMATION FOR

More information

Mach4 CNC Controller Mill Programming Guide Version 1.1 Build 3775

Mach4 CNC Controller Mill Programming Guide Version 1.1 Build 3775 Mach4 CNC Controller Mill Programming Guide Version 1.1 Build 3775 Copyright 2014 Newfangled Solutions, Artsoft USA, All Rights Reserved The following are registered trademarks of Microsoft Corporation:

More information

GE Fanuc Automation Europe. Computer Numerical Controls. FANUC DeviceNet Board. Operator s Manual B-63404EN/03 TECHNOLOGY AND MORE

GE Fanuc Automation Europe. Computer Numerical Controls. FANUC DeviceNet Board. Operator s Manual B-63404EN/03 TECHNOLOGY AND MORE GE Fanuc Automation Europe Computer Numerical Controls FANUC DeviceNet Board Operator s Manual B-63404EN/03 TECHNOLOGY AND MORE B-63404EN/03 SAFETY PRECAUTIONS SAFETY PRECAUTIONS This section describes

More information

Contents CONTENTS PREPARATION FOR COMMISSIONING... 1

Contents CONTENTS PREPARATION FOR COMMISSIONING... 1 Contents CONTENTS... 1 1 PREPARATION FOR COMMISSIONING... 1 1.1 VERIFICATION AND RECORDING... 1 1.2 VERSION INFORMATION... 1 1.2.1 System Version... 1 1.2.2 User Version... 2 1.2.3 Servo Software Version...

More information

Section 15: Touch Probes

Section 15: Touch Probes Touch Probes Touch Probe - Length Offset The tool setting probe is used with the UTILITY command to establish the length offset. It can also be used for tool breakage detection and setting tool diameter

More information

GE FANUC 21 CONCEPT 55 TURN TEACHER GUIDE

GE FANUC 21 CONCEPT 55 TURN TEACHER GUIDE GE FANUC 21 CONCEPT 55 TURN TEACHER GUIDE 2/13/08 Version 2 Made by EMCO Authored by Chad Hawk Training Index Control Keyboard Pg 1 Fanuc 21 Control Machine Control Fanuc 21 Screen Pg 2 Fanuc 21 Keys Pg

More information

PC-BASED NUMERIC CONTROLLER

PC-BASED NUMERIC CONTROLLER Ncstudio PC-BASED NUMERIC CONTROLLER PROGRAMMING MANUAL there is WEIHONG Where there is motion control Thank you for choosing our products! This manual will help you acquaint with our products and learn

More information

200S READOUTS REFERENCE MANUAL

200S READOUTS REFERENCE MANUAL 200S READOUTS REFERENCE MANUAL 200S Key Layout Axis Keys Numeric Keypad Display Area Enter key Soft keys Power Indicator light 200S Soft Keys There are three pages of soft key functions to select from

More information

List of ISO supported G-Codes and M-functions

List of ISO supported G-Codes and M-functions ARISTOTLE G-Codes List of ISO supported G-Codes and M-functions G-code Function G00 Travers motion and positioning G01 Linear interpolation G02 Circular interpolation CW G03 Circular interpolation CCW

More information

3000M CNC Programming and Operations Manual for Three- and Four-Axis Systems

3000M CNC Programming and Operations Manual for Three- and Four-Axis Systems 3000M CNC Programming and Operations Manual for Three- and Four-Axis Systems www.anilam.com 70000504H - Warranty Warranty ANILAM warrants its products to be free from defects in material and workmanship

More information