Tutorial. BOSfluids. Water hammer (part 1) Modeling

Size: px
Start display at page:

Download "Tutorial. BOSfluids. Water hammer (part 1) Modeling"

Transcription

1 BOSfluids Tutorial Water hammer (part 1) Modeling The Water hammer tutorial is a 3 part tutorial describing the phenomena of water hammer in a piping system and how BOSfluids can be used to examine the resulting pressure spike and unbalanced forces in the system. This first part describes the creation of the BOSfluids model and the set-up of the analysis.

2 1. INTRODUCTION A piping system, illustrated in Figure 1, is subject to a sudden valve closure at the pump suction end, resulting in a water hammer. BOSfluids will be used to calculate the pressure rise and the unbalanced forces that result from the closure. The unbalanced force time history results can be exported to a data file, which can be imported by a pipe stress analysis software package such as CAESAR II. This first part of the Water Hammer tutorial describes the model construction, some of the theory of pressure waves and the set-up of the analysis. The second part describes the postprocessing of results and the available output options in BOSfluids. The dynamic analysis of the water hammer event is completed in the third part of this tutorial, which describes how to export a piping model and unbalanced force results to CAESAR II. This program can be used to perform a dynamic stress analysis, to determine the effect of the water hammer on the structural side of the piping system. 2. BUILDING THE MODEL 2.1. Creating the Piping Model Start BOSfluids and create a new model with the filename Hammer, selecting the units Metric (mm). Using the information from Figure 1 and Table 1, define all the piping and valve elements to create the piping system. Figure 1 3-D model of piping system Copyright Dynaflow Research Group. Page 1 of 9

3 Table 1 Element parameters Length(mm) Element X-Dim Y-Dim Z-Dim Description Valve (name: valve1) See note Bend at node Bend at node Bend at node 30 and Bend at node Bend at node Bend at node 85 and Bend at node Note: Specify the transient valve to be open in steady state action and closing in 0.4 seconds in the Valve Actions menu. Starting from 100% at 1.0 sec to fully closed (0% open) at 1.4 sec. Page 2 of 9 Copyright Dynaflow Research Group.

4 2.2. Boundary Condition Theory There are two boundary conditions in this model that need to be defined. One is at the pump suction (node 1). The second boundary condition is at the supply tank (node 125). The boundary condition at the supply tank will reflect the pressure waves coming from the closed valve. How the pressure wave is reflected will affect the solution, so this boundary condition should be modeled correctly. Figure 2 Boundary conditions of hammer model An open ended boundary condition is one where the flow velocity at the boundary is variable. A closed boundary exists where the flow velocity is constant. At these points, incoming pressure waves are reflected just like the system end was closed. So at a pipe end cap, or at a closed valve, where the flow velocity is zero, the system will see a closed boundary condition. For the piping system above, where water is pumped from a supply tank, node 125 will be at an open end. At this location the pressure will be assumed to stay constant. The closed valve at node 5 will act as a closed boundary. So the system will behave like a closed-open system whose natural period is 4L/c where L is the length from node 5 to node 125, and c is the speed of sound in the fluid. Reflections from a closed end pipe will cause a pressure maximum and a corresponding velocity minimum. Closed-closed systems and open-open systems will have a fundamental natural period of 2L/c. This relationship is demonstrated in Figure 3. Figure 3 The natural period of a pressure wave in a pipe with different boundary conditions Copyright Dynaflow Research Group. Page 3 of 9

5 When a frequency analysis is performed for the system, it is expected that the fundamental period displayed will be 4L/c where L is the distance from node 5 to node 125. Note that the actual wave front is shown as a sloped black line in Figure 2 above. Actual wave fronts can be quite long as the total extent of a valve closure wave front equals, where is the valve closure time. If the speed of sound, c, in the system is equal to 1373 m/s, and the valve closure is 0.4 seconds, then the wave front length will be = 549 m, which is longer than the total system length! (The actual wave front length will be some fraction of this distance since the valve closure is not typically a linear function through the closure time duration). With the total system length equaling 83 meters, and the characteristic time scale equal to 2L/c, the reflected wave already returns to the valve and begins cancelling the source before the valve is fully closed. The distance between an elbow pair would have to be equal to or longer than 549 meters to develop the full unbalanced pressure thrust load due to the water hammer. Since the longest distance between elbows in the model is only a fraction of this length, the maximum magnitude of the unbalanced water hammer load will be smaller than that predicted by the famous Joukowski equation: Water hammer and steam hammer waves reflect from both closed and open ends, as well as from changes in diameter. Only five reflections are needed to produce a resonant level response in an undamped piping system. This means that even low magnitude pressure waves can produce large displacements if the characteristic frequency of the fluid dynamics corresponds to a mechanical natural frequency of the system. It is for this reason that some systems are particularly susceptible to acoustic excitation: 1) Hot pipework supported by springs often have low natural frequencies. 2) Any long runs of pipe that is hanger supported typically will often not have inherent horizontal restraint. 3) Any system that is exposed to flow perturbations: Systems attached to reciprocating equipment Systems where valves open or close quickly Systems where boiling or chemical reactions occur Systems containing two phase flow Defining the Boundary Conditions As stated in the previous section, two pressure boundary conditions need to be defined in the model, the pump suction and source pressure. Boundary conditions are defined in the Page 4 of 9 Copyright Dynaflow Research Group.

6 sub-tab BCs and Nodes. The specified pressures are fixed pressure boundary conditions and the values are given in Figure 2 and tabulated below. Table 2 Node boundary conditions Node Boundary Condition Value 1 Fixed Pressure P = 16.0 bar 125 Fixed Pressure P = 17.2 bar Go to the BCs and Nodes tab and select Node Group All, to get an overview of all Nodes. Select node 1, and change the Node Type from Simple to Fixed Pressure from the drop-down menu and enter the pressure value. Repeat this for node Unbalanced Forces When a pressure wave runs over a long straight section of pipe with an elbow at each end, there is a difference in pressure at the first elbow with respect to the second elbow. The first elbow already experiences an elevated pressure due to the water hammer event, while the pressure at the second elbow is still at the steady state operating conditions. Consequently, the pressure force on the first elbow is different from the one on the second elbow; hence an overall unbalanced force between the elbow pair. The unbalanced forces that act on the piping system due to the water hammer can interact with the natural mechanical vibration of the system, producing large displacement and stress, leading to pipe rupture or damage to pipe fixtures. Therefore the mechanical vibrations of the piping system need to be examined whenever a large pressure wave or slug is sent through the piping system. Preventing large displacements and stress in the piping system due to water hammer event, requires correct and adequate restraints in the piping system. Users often begin a dynamic mechanical study of a piping system by investigating the effect of the largest water hammer loads on the most flexible axial portion of the system. It is generally here where the largest displacement and stress concentration problems are seen. If the system is restrained, then the user must be sure that the supports providing the rigidity can sustain the maximum value of the dynamic loading. The longest axial sections in the water hammer model are from node 45 to 75 and 90 to 110. BOSfluids is used to determine the magnitude and transient force profile for these two sections. The results are then exported in a data file so they can be imported into CAESAR II, to determine the fluid dynamic loads on the supports. Copyright Dynaflow Research Group. Page 5 of 9

7 3. SETTING UP THE ANALYSIS The analysis is set-up in the sub-tab Analysis. The two main analysis types that are available are a Steady State and a Transient analysis. Since this tutorial deals with a water hammer event due to a valve closure, the results vary in time; hence a transient analysis needs to be performed. To perform a transient analysis, select Analysis Type Transient. Note that a transient analysis usually starts from a steady state. So when a transient analysis is performed BOSfluids first starts with the computation of the steady state. The steady state results are available by reviewing the output at time step t = Adjusting the Analysis Parameters There are several characteristics of the analysis that the user may wish to control. These can be found after selecting Analysis Analysis Type: Transient in the tables Transient and Output, see Figure 4. Some of the important parameters are described in this section. Figure 4 Transient and Output configuration options Page 6 of 9 Copyright Dynaflow Research Group.

8 Force Pairs Double click this parameter to specify the elbow node pairs for which the unbalanced force time history needs to be exported. BOSfluids calculates the unbalanced forces for the complete piping system; these results are available in the Results-tab. However only the results for the node pairs explicitly specified in this parameter are available in the export dialog. After the simulation has been performed the results can then be easily exported to a data file Simulation Time If the simulation time is too short, the maximum pressure, velocity, flow or cavity size during the transient may not be calculated. If the total time is too long then runs may take too much disk space and an inordinate amount of time to post-process or view. The longer the total time the more conservative the resulting calculation. The field for Simulation Time on the dynamic input screen can be left blank. In this case BOSfluids will estimate a required total solution time based on its best estimate of the system transient loading and the acoustic response. In many cases the BOSfluids calculated solution times will be satisfactory. In some cases it will not. It is the user s responsibility to review the transient output and assure that a sufficient total calculation time has been used. A patient review of the animated pressure results along with some quick hand calculations should provide an adequate assurance. In the animated results the pressure wave can be seen as it travels through the piping system. The wave should travel from the source of the disturbance to the end of the system and back again at least two or three times. (In some long pipeline systems only a single return of the pressure wave is required.) The total time should also be long enough for any transient disturbance to stop, and the system to have undergone its worst possible pressure loading scenario. As the user gains more experience with transient fluid solutions, a greater confidence will be gained in the comfortable estimation of an optimum total solution time. Longer times are also required if low frequency data is to be obtained from the time history plots Lowest Frequency This is the lowest mechanical natural frequency of the piping system represented by the fluid model. The parameter can be used during the dynamic analysis of the system to determine the total solution. This is an optional input. If entered, this value will be used as part of the criteria employed to establish the total simulation time. One criteria used for determining the Copyright Dynaflow Research Group. Page 7 of 9

9 total simulation time is that the low frequency harmonic responses due to collective wave reflection must be trapped. The low frequency response is often due to the collective harmonic contribution of multiple reflections Output Interval, Start and End Time The input fields under Output are used to control the volume of the output information from the transient solution. Long transient solutions can easily produce many megabytes and in some cases gigabytes of disk file data if some care concerning output selection is not exercised. The Output Interval is the time step used for the output, which is larger than the time step used in the solver. BOSfluids attempts to set the Output Interval for the user automatically based on system parameters and experience. This is a difficult value to establish however without some prior knowledge of system behavior and the user s desired output. If the only information required from the transient solution is the maximum pressure, or the maximum unbalanced load then the Output Interval can be any value, because the maximum pressure and maximum unbalanced loads for all points in the system are trapped during each time step. If the user wants an accurate depiction of the pressure or load time history then a suitable Output Interval must be used. Accurate time histories are needed when the time history data is to be used in a subsequent mechanical load analysis of the system, or if a frequency decomposition of the time waveform is needed. BOSfluids estimates the Output Interval based on an approximated fundamental acoustic mode, and several experience factors. If the force vs. time function that is produced from BOSfluids is to be used in a CAESAR II analysis then the Output Interval should be set sufficiently small to capture the oscillations with the highest mechanical natural frequency of interest. The user may also specify a starting and stopping time following the Output Interval entered through Output Start and Output End. These input fields tell BOSfluids when to start and stop writing time data to the output data file. This start-stop option for writing time history data is used when the transient phenomena of interest occurs several seconds or minutes into the simulation. An example where this option could be used is when vapor columns form over pipe bridges. In this case it may take several minutes for the vapor column to form, and then only a few more seconds for the bubble to collapse. There is no need to store the solution before the bubble forms. The only interesting part of the simulation occurs when the high pressure spike appears on collapse of the vapor column. The Start and End time can be used to restrict the output to only the time period of interest. The output contains only results for the time window specified. Specifying these parameters is therefore also useful when a start-up transient must be allowed to die-out before the real transient of interest is started. Page 8 of 9 Copyright Dynaflow Research Group.

10 3.2. Defining the Output Parameters for the Hammer Model For the hammer model, a transient analysis is performed to determine the effect of the water hammer. Select Water as the fluid type and define the Simulation Time to 4 seconds, see Figure 4. Since we are interested in exporting the unbalanced forces, we need to define the node pairs of interest. Double click the Force Pair input field and the Force Pairs window appears. In the table, enter the nodes for which the unbalanced force will be calculated, these should be bends. BOSfluids automatically checks whether there is a bend in between the two node pairs entered and will display an error if this is the case, since unbalanced forces should only be calculated for straight sections. Figure 5 Force Pairs window Enter node 45 to 75 and 90 to 110 as displayed in Figure 5. All other analysis settings can be left as default Starting the Simulation All analysis parameters are set and the simulation can be started. Go to the Run tab and click the Run button. (Note that there is only 1 scenario, namely the main model, shown in Scenarios. This is automatically selected. If more scenarios are available, the user can select which scenario to simulate). While the analysis is performed, errors and warnings are displayed in the Messages window. After successful completion of the analysis run, the scenario Main will appear in the list Completed. Proceed to part 2 of the tutorial for the post-processing of the results. Copyright Dynaflow Research Group. Page 9 of 9

Tutorial. BOSfluids. Water hammer (part 3) Dynamic Analysis using Caesar II

Tutorial. BOSfluids. Water hammer (part 3) Dynamic Analysis using Caesar II BOSfluids Tutorial Water hammer (part 3) Dynamic Analysis using Caesar II The Water hammer tutorial is a 3 part tutorial describing the phenomena of water hammer in a piping system and how BOSfluids can

More information

Transient Groundwater Analysis

Transient Groundwater Analysis Transient Groundwater Analysis 18-1 Transient Groundwater Analysis A transient groundwater analysis may be important when there is a time-dependent change in pore pressure. This will occur when groundwater

More information

Tutorial for Steam Hammer Analysis using CAEPIPE

Tutorial for Steam Hammer Analysis using CAEPIPE Tutorial for Steam Hammer Analysis using CAEPIPE The following are the Steps for performing the Steam Hammer Analysis using CAEPIPE. General Tutorial Step 1: Fluid Transient analysis is first carried out

More information

Using the Eulerian Multiphase Model for Granular Flow

Using the Eulerian Multiphase Model for Granular Flow Tutorial 21. Using the Eulerian Multiphase Model for Granular Flow Introduction Mixing tanks are used to maintain solid particles or droplets of heavy fluids in suspension. Mixing may be required to enhance

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT Introduction This tutorial provides instructions for meshing two internal flows. Pointwise software will be used

More information

Modeling Submerged Structures Loaded by Underwater Explosions with ABAQUS/Explicit

Modeling Submerged Structures Loaded by Underwater Explosions with ABAQUS/Explicit Modeling Submerged Structures Loaded by Underwater Explosions with ABAQUS/Explicit David B. Woyak ABAQUS Solutions Northeast, LLC Abstract: Finite element analysis can be used to predict the transient

More information

RT3D Instantaneous Aerobic Degradation

RT3D Instantaneous Aerobic Degradation GMS TUTORIALS RT3D Instantaneous Aerobic Degradation This tutorial illustrates the steps involved in performing a reactive transport simulation using the RT3D model. Several types of contaminant reactions

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing

Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing Tutorial: Simulating a 3D Check Valve Using Dynamic Mesh 6DOF Model And Diffusion Smoothing Introduction The purpose of this tutorial is to demonstrate how to simulate a ball check valve with small displacement

More information

Use 6DOF solver to calculate motion of the moving body. Create TIFF files for graphic visualization of the solution.

Use 6DOF solver to calculate motion of the moving body. Create TIFF files for graphic visualization of the solution. Introduction The purpose of this tutorial is to provide guidelines and recommendations for setting up and solving a moving deforming mesh (MDM) case along with the six degree of freedom (6DOF) solver and

More information

Solution Recording and Playback: Vortex Shedding

Solution Recording and Playback: Vortex Shedding STAR-CCM+ User Guide 6663 Solution Recording and Playback: Vortex Shedding This tutorial demonstrates how to use the solution recording and playback module for capturing the results of transient phenomena.

More information

Slug Induced Vibrations in Pipeline and Jumper Spans Enhanced industry design and analysis methods enabled by the SLARP JIP

Slug Induced Vibrations in Pipeline and Jumper Spans Enhanced industry design and analysis methods enabled by the SLARP JIP Slugfest Slug Induced Vibrations in Pipeline and Jumper Spans Enhanced industry design and analysis methods enabled by the SLARP JIP Kieran Kavanagh Technology & Engineering Director, Wood Group Kenny

More information

Tutorial on Modeling of Expansion Joints using CAEPIPE

Tutorial on Modeling of Expansion Joints using CAEPIPE Tutorial on Modeling of Expansion Joints using CAEPIPE The following examples illustrate the modeling of various types of expansion joints in CAEPIPE stress models. Example 1: Tied Bellow (without gaps)

More information

Dynamics Add-On User s Manual For WinGEMS 5.3

Dynamics Add-On User s Manual For WinGEMS 5.3 Dynamics Add-On User s Manual For WinGEMS 5.3 1. Dynamics 1.1. Introduction An optional feature of WinGEMS is the ability to simulate the transient response of a model with respect to time. The key dynamic

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS

VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS 10 th International Conference 409 VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS Stefan Grochowalski, Polish Register of Shipping, S.Grochowalski@prs.pl Jan Jankowski,

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

GASWorkS 9.0. Demonstration Guide

GASWorkS 9.0. Demonstration Guide 419 East Columbia Street Colorado Springs, Colorado 80907 USA Toll Free: 1-800-391-9391! Telephone: (719) 578-9391! Fax: (719) 578-9394 Thank you for your interest in our products, and for taking the time

More information

PD2CAEPIPE - Plant Design-to-CAEPIPE Translator

PD2CAEPIPE - Plant Design-to-CAEPIPE Translator PD2CAEPIPE - Plant Design-to-CAEPIPE Translator (for converting PCF files) 1.0 Installing Program To install PD2CAEPIPE on Windows NT, load the product CD supplied by InfoPlant and run the program "SETUP.EXE"

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

GMS 10.4 Tutorial RT3D Instantaneous Aerobic Degradation

GMS 10.4 Tutorial RT3D Instantaneous Aerobic Degradation v. 10.4 GMS 10.4 Tutorial Objectives Simulate the reaction for instantaneous aerobic degradation of hydrocarbons using a predefined user reaction package. Prerequisite Tutorials MT2DMS Grid Approach Required

More information

Load Case Definition in CAESAR II

Load Case Definition in CAESAR II Load Case Definition in CAESAR II The CAESAR II Load Case Editor is a very versatile instrument for combining native and combination loads in nearly any manner required by the various piping codes supported

More information

Coustyx Tutorial Indirect Model

Coustyx Tutorial Indirect Model Coustyx Tutorial Indirect Model 1 Introduction This tutorial is created to outline the steps required to compute radiated noise from a gearbox housing using Coustyx software. Detailed steps are given on

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

Tutorial: Hydrodynamics of Bubble Column Reactors

Tutorial: Hydrodynamics of Bubble Column Reactors Tutorial: Introduction The purpose of this tutorial is to provide guidelines and recommendations for solving a gas-liquid bubble column problem using the multiphase mixture model, including advice on solver

More information

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible.

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. CAM MECHANISMS Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. Cams can provide unusual and irregular motions

More information

EPANET Tutorial. Project Setup Our first task is to create a new project in EPANET and make sure that certain default options are selected.

EPANET Tutorial. Project Setup Our first task is to create a new project in EPANET and make sure that certain default options are selected. EPANET Tutorial Example Network In this tutorial we will analyze the simple distribution network shown below. It consists of a source reservoir (e.g., a treatment plant clearwell) from which water is pumped

More information

What Is EPANET. Introduction to EPANET 2.0. EPANET Hydraulic Modeling Capabilities. EPANET Operational Definitions

What Is EPANET. Introduction to EPANET 2.0. EPANET Hydraulic Modeling Capabilities. EPANET Operational Definitions What Is EPANET Introduction to EPANET 2.0 Shirley Clark, Penn State Harrisburg Robert Pitt, University of Alabama Performs extended period simulation of hydraulic and water quality behavior within pressurized

More information

Introduction to EPANET 2.0. What Is EPANET

Introduction to EPANET 2.0. What Is EPANET Introduction to EPANET 2.0 Shirley Clark, Penn State Harrisburg Robert Pitt, University of Alabama What Is EPANET Performs extended period simulation of hydraulic and water quality behavior within pressurized

More information

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File C H A P T E R 9 Viewing Results After the model has finished the steady or unsteady flow computations the user can begin to view the output. Output is available in a graphical and tabular format. The current

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

1.4. Comparing Graphs of Linear Motion. Acceleration Time Graphs

1.4. Comparing Graphs of Linear Motion. Acceleration Time Graphs Comparing Graphs of Linear Motion Cheetahs are adapted for speed they are the fastest land animals. They can accelerate at faster rates than most sports cars (Figure 1). Cheetahs have been measured accelerating

More information

A BEND GEOTHERMALTWO-PHASE PRESSURE LOSS 1. INTRODUCTION. Geothermal Institute, University of Auckland

A BEND GEOTHERMALTWO-PHASE PRESSURE LOSS 1. INTRODUCTION. Geothermal Institute, University of Auckland GEOTHERMALTWO-PHASE PRESSURE LOSS A BEND A. K.C. Geothermal Institute, University of Auckland Jakarta, Indonesia SUMMARY When a two-phase fluid flows through a bend, its flow pattern is disturbed. The

More information

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the Fluid Dynamics Models : Flow Past a Cylinder Flow Past a Cylinder Introduction The flow of fluid behind a blunt body such as an automobile is difficult to compute due to the unsteady flows. The wake behind

More information

Data Visualization SURFACE WATER MODELING SYSTEM. 1 Introduction. 2 Data sets. 3 Open the Geometry and Solution Files

Data Visualization SURFACE WATER MODELING SYSTEM. 1 Introduction. 2 Data sets. 3 Open the Geometry and Solution Files SURFACE WATER MODELING SYSTEM Data Visualization 1 Introduction It is useful to view the geospatial data utilized as input and generated as solutions in the process of numerical analysis. It is also helpful

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Tutorial: Heat and Mass Transfer with the Mixture Model

Tutorial: Heat and Mass Transfer with the Mixture Model Tutorial: Heat and Mass Transfer with the Mixture Model Purpose The purpose of this tutorial is to demonstrate the use of mixture model in FLUENT 6.0 to solve a mixture multiphase problem involving heat

More information

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3,

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3, Problem description Problem 30: Analysis of fluid-structure interaction within a pipe constriction It is desired to analyze the flow and structural response within the following pipe constriction: 1 1

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion

Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion James F. Price Woods Hole Oceanographic Institution Woods Hole, MA, 02543 July 31, 2006 Summary: This essay

More information

v SMS 11.1 Tutorial Data Visualization Requirements Map Module Mesh Module Time minutes Prerequisites None Objectives

v SMS 11.1 Tutorial Data Visualization Requirements Map Module Mesh Module Time minutes Prerequisites None Objectives v. 11.1 SMS 11.1 Tutorial Data Visualization Objectives It is useful to view the geospatial data utilized as input and generated as solutions in the process of numerical analysis. It is also helpful to

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 17. Modeling Evaporating Liquid Spray Introduction In this tutorial, the air-blast atomizer model in ANSYS FLUENT is used to predict the behavior of an evaporating methanol spray. Initially, the

More information

Autodesk Simulation Multiphysics

Autodesk Simulation Multiphysics Autodesk Simulation Multiphysics Course Length: 2 days This course will introduce you to performing computational fluid dynamics (CFD) analyses on 3-D models. All of the available load and constraint options

More information

DYNAMIC ANALYSIS OF A GENERATOR ON AN ELASTIC FOUNDATION

DYNAMIC ANALYSIS OF A GENERATOR ON AN ELASTIC FOUNDATION DYNAMIC ANALYSIS OF A GENERATOR ON AN ELASTIC FOUNDATION 7 DYNAMIC ANALYSIS OF A GENERATOR ON AN ELASTIC FOUNDATION In this tutorial the influence of a vibrating source on its surrounding soil is studied.

More information

An Introduction to SolidWorks Flow Simulation 2010

An Introduction to SolidWorks Flow Simulation 2010 An Introduction to SolidWorks Flow Simulation 2010 John E. Matsson, Ph.D. SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation Chapter 2 Flat Plate Boundary Layer Objectives Creating

More information

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis

Tutorial 7 Finite Element Groundwater Seepage. Steady state seepage analysis Groundwater analysis mode Slope stability analysis Tutorial 7 Finite Element Groundwater Seepage Steady state seepage analysis Groundwater analysis mode Slope stability analysis Introduction Within the Slide program, Slide has the capability to carry out

More information

Case Study 5: Langevin Transducer

Case Study 5: Langevin Transducer Case Study 5: Langevin Transducer PROBLEM Langevin Transducer, 2D Axisymmetric with ½ portion, PZT 8 (50mm x 1mm Thick) sandwiched between Steel blocks (50mm x 19mm thick), Fluid is Water. GOAL The first

More information

252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties

252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties 252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties Objectives To become familiar with the computer programs and utilities that will be used throughout the semester. You will learn

More information

November c Fluent Inc. November 8,

November c Fluent Inc. November 8, MIXSIM 2.1 Tutorial November 2006 c Fluent Inc. November 8, 2006 1 Copyright c 2006 by Fluent Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without

More information

Engineering Analysis

Engineering Analysis Engineering Analysis with SOLIDWORKS Simulation 2018 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

SolidWorks Flow Simulation 2014

SolidWorks Flow Simulation 2014 An Introduction to SolidWorks Flow Simulation 2014 John E. Matsson, Ph.D. SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

Tutorial 01 Quick Start Tutorial

Tutorial 01 Quick Start Tutorial Tutorial 01 Quick Start Tutorial Homogeneous single material slope No water pressure (dry) Circular slip surface search (Grid Search) Intro to multi scenario modeling Introduction Model This quick start

More information

CAEPIPE. Tutorial for Modeling and Results Review Problem 1

CAEPIPE. Tutorial for Modeling and Results Review Problem 1 CAEPIPE Tutorial for Modeling and Results Review Problem 1 CAEPIPE Tutorial, 2018, SST Systems, Inc. All Rights Reserved. Disclaimer Please read the following carefully: This software and this manual have

More information

Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester

Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Content ANSYS CFD Introduction ANSYS, the company Simulation

More information

Water Sloshing Tutorial (Particleworks)

Water Sloshing Tutorial (Particleworks) Water Sloshing Tutorial (Particleworks) Copyright 2018 FunctionBay, Inc. All rights reserved. User and training documentation from FunctionBay, Inc. is subjected to the copyright laws of the Republic of

More information

Contents. Critical Analysis Assessing Vulnerability October, Overview/Purpose of Criticality Analysis Criticality Analysis

Contents. Critical Analysis Assessing Vulnerability October, Overview/Purpose of Criticality Analysis Criticality Analysis Critical Analysis Assessing Vulnerability October, 2016 Murray, Smith & Associates, Inc. Washington APWA Conference Spokane, WA 1 Contents Overview/Purpose of Criticality Analysis Criticality Analysis

More information

Modeling Supersonic Jet Screech Noise Using Direct Computational Aeroacoustics (CAA) 14.5 Release

Modeling Supersonic Jet Screech Noise Using Direct Computational Aeroacoustics (CAA) 14.5 Release Modeling Supersonic Jet Screech Noise Using Direct Computational Aeroacoustics (CAA) 14.5 Release 2011 ANSYS, Inc. November 7, 2012 1 Workshop Advanced ANSYS FLUENT Acoustics Introduction This tutorial

More information

Using a Single Rotating Reference Frame

Using a Single Rotating Reference Frame Tutorial 9. Using a Single Rotating Reference Frame Introduction This tutorial considers the flow within a 2D, axisymmetric, co-rotating disk cavity system. Understanding the behavior of such flows is

More information

Cold Flow Simulation Inside an SI Engine

Cold Flow Simulation Inside an SI Engine Tutorial 12. Cold Flow Simulation Inside an SI Engine Introduction The purpose of this tutorial is to illustrate the case setup and solution of the two dimensional, four stroke spark ignition (SI) engine

More information

Flow in an Intake Manifold

Flow in an Intake Manifold Tutorial 2. Flow in an Intake Manifold Introduction The purpose of this tutorial is to model turbulent flow in a simple intake manifold geometry. An intake manifold is a system of passages which carry

More information

SimWise. 3D Dynamic Motion, and Stress Analysis. integrated with Alibre Design

SimWise. 3D Dynamic Motion, and Stress Analysis. integrated with Alibre Design SimWise 3D Dynamic Motion, and Stress Analysis integrated with Alibre Design SimWise 4D for Alibre Integrated Motion Simulation and Stress Analysis SimWise 4D is a software tool that allows the functional

More information

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( )

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( ) Using LoggerPro Nothing is more terrible than to see ignorance in action. J. W. Goethe (1749-1832) LoggerPro is a general-purpose program for acquiring, graphing and analyzing data. It can accept input

More information

Andrew Carter. Vortex shedding off a back facing step in laminar flow.

Andrew Carter. Vortex shedding off a back facing step in laminar flow. Flow Visualization MCEN 5151, Spring 2011 Andrew Carter Team Project 2 4/6/11 Vortex shedding off a back facing step in laminar flow. Figure 1, Vortex shedding from a back facing step in a laminar fluid

More information

v Data Visualization SMS 12.3 Tutorial Prerequisites Requirements Time Objectives Learn how to import, manipulate, and view solution data.

v Data Visualization SMS 12.3 Tutorial Prerequisites Requirements Time Objectives Learn how to import, manipulate, and view solution data. v. 12.3 SMS 12.3 Tutorial Objectives Learn how to import, manipulate, and view solution data. Prerequisites None Requirements GIS Module Map Module Time 30 60 minutes Page 1 of 16 Aquaveo 2017 1 Introduction...

More information

Tutorial 17. Using the Mixture and Eulerian Multiphase Models

Tutorial 17. Using the Mixture and Eulerian Multiphase Models Tutorial 17. Using the Mixture and Eulerian Multiphase Models Introduction: This tutorial examines the flow of water and air in a tee junction. First you will solve the problem using the less computationally-intensive

More information

Tutorial: Riser Simulation Using Dense Discrete Phase Model

Tutorial: Riser Simulation Using Dense Discrete Phase Model Introduction The purpose of this tutorial is to demonstrate the setup of a dense discrete phase model (DDPM) with the example of 2D riser. DDPM is used for the secondary phase that has a particle size

More information

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER CHAPTER 4 ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER 4.1 INTRODUCTION Combustion analysis and optimization of any reciprocating internal combustion engines is too complex and intricate activity. It

More information

Effect of suction pipe leaning angle and water level on the internal flow of pump sump

Effect of suction pipe leaning angle and water level on the internal flow of pump sump IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Effect of suction pipe leaning angle and water level on the internal flow of pump sump To cite this article: Z-M Chen et al 216

More information

Eng Ship Structures 1 L E C T U R E 1 0 : F I N I T E E L E M E N T T E C H N I Q U E S I N S H I P S T R U C T U R A L D E S I G N

Eng Ship Structures 1 L E C T U R E 1 0 : F I N I T E E L E M E N T T E C H N I Q U E S I N S H I P S T R U C T U R A L D E S I G N Eng. 6002 Ship Structures 1 L E C T U R E 1 0 : F I N I T E E L E M E N T T E C H N I Q U E S I N S H I P S T R U C T U R A L D E S I G N Contents Introduction Linear Analysis Static Non-linear Analysis

More information

16 SW Simulation design resources

16 SW Simulation design resources 16 SW Simulation design resources 16.1 Introduction This is simply a restatement of the SW Simulation online design scenarios tutorial with a little more visual detail supplied on the various menu picks

More information

Abaqus/CAE Axisymmetric Tutorial (Version 2016)

Abaqus/CAE Axisymmetric Tutorial (Version 2016) Abaqus/CAE Axisymmetric Tutorial (Version 2016) Problem Description A round bar with tapered diameter has a total load of 1000 N applied to its top face. The bottom of the bar is completely fixed. Determine

More information

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke

EN1740 Computer Aided Visualization and Design Spring /26/2012 Brian C. P. Burke EN1740 Computer Aided Visualization and Design Spring 2012 4/26/2012 Brian C. P. Burke Last time: More motion analysis with Pro/E Tonight: Introduction to external analysis products ABAQUS External Analysis

More information

Version 1.1. COPYRIGHT 1999 Tufts University and Vernier Software. ISBN (Windows) ISBN (Macintosh)

Version 1.1. COPYRIGHT 1999 Tufts University and Vernier Software. ISBN (Windows) ISBN (Macintosh) Logger Pro Tutorials Version 1.1 COPYRIGHT 1999 Tufts University and Vernier Software ISBN 0-918731-92-5 (Windows) ISBN 0-918731-91-7 (Macintosh) Distributed by Vernier Software 8565 S.W. Beaverton-Hillsdale

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Flow Simulation How to Handle a Vortex Across a Pressure Boundary

Flow Simulation How to Handle a Vortex Across a Pressure Boundary Flow Simulation How to Handle a Vortex Across a Pressure Boundary Overview This document describes why Flow Simulation will give a warning while solving stating that there is a vortex occurring across

More information

Simulation of Laminar Pipe Flows

Simulation of Laminar Pipe Flows Simulation of Laminar Pipe Flows 57:020 Mechanics of Fluids and Transport Processes CFD PRELAB 1 By Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing and Fred Stern IIHR-Hydroscience & Engineering

More information

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following:

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Tutorial 22. Modeling Solidification Introduction This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Define a

More information

The Great Mystery of Theoretical Application to Fluid Flow in Rotating Flow Passage of Axial Flow Pump, Part I: Theoretical Analysis

The Great Mystery of Theoretical Application to Fluid Flow in Rotating Flow Passage of Axial Flow Pump, Part I: Theoretical Analysis Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 20-22, 2006 228 The Great Mystery of Theoretical Application to Fluid Flow in Rotating Flow Passage

More information

Solid design. Reliable pipelines. Simulation results can be viewed and printed in different formats in tables, graphs and in 3D illustrations.

Solid design. Reliable pipelines. Simulation results can be viewed and printed in different formats in tables, graphs and in 3D illustrations. Bringing added value to pipeline engineers worldwide SAGE Profile has been specifically designed to assist pipeline engineers in the design, installation and analysis of offshore pipelines. The powerful

More information

Introduction to Engineering Analysis

Introduction to Engineering Analysis Chapter 1 Introduction to Engineering Analysis This chapter introduces you to the Stress Analysis and Dynamic Simulation environments. You learn how digital prototyping can be used to simulate your designs

More information

Autodesk Moldflow Insight AMI Analysis Overview Tutorial

Autodesk Moldflow Insight AMI Analysis Overview Tutorial Autodesk Moldflow Insight 2012 AMI Analysis Overview Tutorial Revision 1, 30 March 2012. This document contains Autodesk and third-party software license agreements/notices and/or additional terms and

More information

Co-Simulation von Flownex und ANSYS CFX am Beispiel einer Verdrängermaschine

Co-Simulation von Flownex und ANSYS CFX am Beispiel einer Verdrängermaschine Co-Simulation von Flownex und ANSYS CFX am Beispiel einer Verdrängermaschine Benoit Bosc-Bierne, Dr. Andreas Spille-Kohoff, Farai Hetze CFX Berlin Software GmbH, Berlin Contents Positive displacement compressors

More information

SAAM II Version 2.1 Basic Tutorials. Working with Parameters Basic

SAAM II Version 2.1 Basic Tutorials. Working with Parameters Basic SAAM II Version 2.1 Basic Tutorials Basic Introduction Parameters 2 Part 1a. Work with the Parameters dialog box Parameters 3 Part 1b. Hand-fit a model to data Parameters 12 Changing Parameters Manually

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

Lesson: Adjust the Length of a Tuning Fork to Achieve the Target Pitch

Lesson: Adjust the Length of a Tuning Fork to Achieve the Target Pitch Lesson: Adjust the Length of a Tuning Fork to Achieve the Target Pitch In this tutorial, we determine the frequency (musical pitch) of the first fundamental vibration mode of a tuning fork. We then adjust

More information

Experimental Data Confirms CFD Models of Mixer Performance

Experimental Data Confirms CFD Models of Mixer Performance The Problem Over the years, manufacturers of mixing systems have presented computational fluid dynamics (CFD) calculations to claim that their technology can achieve adequate mixing in water storage tanks

More information

Figure I. Transducer Types.

Figure I. Transducer Types. CLAMP-ON ULTRASONIC FLOW METER OPERATION AND APPLICATION WILLIAM E. FRASIER SENOIR STAFF ENGINEER-FIELD SERVICES CEESI MEASUREMENT SOLUTIONS, INC. This paper is directed to ultrasonic natural gas meters

More information

SUBMERGED CONSTRUCTION OF AN EXCAVATION

SUBMERGED CONSTRUCTION OF AN EXCAVATION 2 SUBMERGED CONSTRUCTION OF AN EXCAVATION This tutorial illustrates the use of PLAXIS for the analysis of submerged construction of an excavation. Most of the program features that were used in Tutorial

More information

PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION

PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION 3 SUBMERGED CONSTRUCTION OF AN EXCAVATION This tutorial illustrates the use of PLAXIS for the analysis of submerged construction of an excavation. Most

More information

Pipeline engineer competency standards list: onshore sector

Pipeline engineer competency standards list: onshore sector Pipeline engineer competency standards list: onshore sector ID Competency area/competency Gen Des Cons Ops Level General engineering GE001 Engineering degree in a relevant discipline x Core GE002 Pipeline

More information

How to view details for your project and view the project map

How to view details for your project and view the project map Tutorial How to view details for your project and view the project map Objectives This tutorial shows how to access EPANET model details and visualize model results using the Map page. Prerequisites Login

More information

This transmits information through streams and store the calculated results. It can plan the sequence in which calculation are to be done.

This transmits information through streams and store the calculated results. It can plan the sequence in which calculation are to be done. Simulation: Key words : Executive Program, unit computation and Information flow Diagram. The Executive Program This transmits information through streams and store the calculated results. It can plan

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference FEM AND FSI SIMULATIONS OF IMPACT LOADS ON GRP SUBSEA COMPOSITE COVERS Kjetil Rognlien, MSc Technical Consultant EDR AS, Norway 2008 ANSYS, Inc. All rights reserved.

More information

Module D: Laminar Flow over a Flat Plate

Module D: Laminar Flow over a Flat Plate Module D: Laminar Flow over a Flat Plate Summary... Problem Statement Geometry and Mesh Creation Problem Setup Solution. Results Validation......... Mesh Refinement.. Summary This ANSYS FLUENT tutorial

More information

Vibration Analysis with SOLIDWORKS Simulation and SOLIDWORKS. Before you start 7

Vibration Analysis with SOLIDWORKS Simulation and SOLIDWORKS. Before you start 7 i Table of contents Before you start 7 Notes on hands-on exercises and functionality of Simulation Prerequisites Selected terminology 1: Introduction to vibration analysis 10 Differences between a mechanism

More information

SolidWorks. An Overview of SolidWorks and Its Associated Analysis Programs

SolidWorks. An Overview of SolidWorks and Its Associated Analysis Programs An Overview of SolidWorks and Its Associated Analysis Programs prepared by Prof. D. Xue University of Calgary SolidWorks - a solid modeling CAD tool. COSMOSWorks - a design analysis system fully integrated

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 16. Modeling Evaporating Liquid Spray Introduction In this tutorial, FLUENT s air-blast atomizer model is used to predict the behavior of an evaporating methanol spray. Initially, the air flow

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Introduction to ANSYS SOLVER FLUENT 12-1

Introduction to ANSYS SOLVER FLUENT 12-1 Introduction to ANSYS SOLVER FLUENT 12-1 Breadth of Technologies 10-2 Simulation Driven Product Development 10-3 Windshield Defroster Optimized Design 10-4 How Does CFD Work? 10-5 Step 1. Define Your Modeling

More information