Surface Mapping One. CS7GV3 Real-time Rendering

Size: px
Start display at page:

Download "Surface Mapping One. CS7GV3 Real-time Rendering"

Transcription

1 Surface Mappng One CS7GV3 Real-tme Renderng

2 Textures Add complexty to scenes wthout addtonal geometry Textures store ths nformaton, can be any dmenson Many dfferent types: Dffuse most common Ambent, specular, gloss maps Bump, normal, dsplacement maps Reflecton, refracton maps

3 Textures and Renderng Recall the Renderng Equaton: I( x, x') g( x, x')[ e( x, x') ( x, x', x") I( x', x") dx"] I(x, x ) : ntensty of lght passng from x to x g(x, x ) = (geometry factor) e (x, x ) : ntensty of lght emtted by x and passng to x r (x, x, x ) : b-drectonal reflectance scalng factor for lght passng from x to x by reflectng off x Based on last few lectures, lets smplfy ths as: I g e L df df s n.l L h.n s s L a a

4 Dffuse Map Smplest texturng drectly apples a colour to object In basc llumnaton colour s mostly based on dffuse component I g e L df df n.l L h.n s s L a a

5 Emsson Map A..a. Glow map Models lght sources on a surface Does not depend on surface normal or lght sources. I g e L df df n.l L h.n s s L a a

6 Specular Map Specular color : Gloss map Shnness Control the specular exponent n Phong lght model Or roughness n other lght models I g e L df df n.l L h.n s s L a a

7 Specular Map + Specular Exp. Map Dffuse Color Specular Color Specular Exponent Shny Dull

8 Normal Map Use texture as a nput to perturb geometrc representaton I g e L df df n.l L h.n s s L a a

9 Vsblty Mappngs Parallax mappng Shft n texture looup based on vew-ray ntersecton wth heghtfeld Can account for occlusons Alpha Mappng: Transparency mappng across prmtve Shadow mappng I g e L df df n.l L h.n s s L a a

10 Lght & Envronment Mappng Approxmaton of ncomng radance Lght maps: pre-computed ncdent flux across 2D surfaces Envronment Maps: more complex 3D loo up of ncomng flux n scene Can combne wth other maps Texture d envronment Lght Maps Merged Scene I g e L df df n.l L h.n s s L a a

11 Texture Mappng For 2D textures, we need a 3D to 2D mappng Sometmes called a projector functon Each vertex n the model wll need a (u,v) co-ordnate Normally defned by the artst and added to the vertex stream

12 Texture Mappng Components XYZ UV [0,1] U [0-wdth] V [0-heght] RGB K d? N, From: Aenne-Moller, Hanes, Hoffman Real-tme Renderng 3 rd Ed.

13 UV Mappngs

14 Example: Cylndrcal

15 Tlng, Wrappng etc. Can specfy rules for (u, v) behavour outsde [0, 1] Tlng: number of repettons of texture wthn space Tlng Mode: normal, mrror, no-tlng (clamp) The (u, v) co-ordnate can be manpulated by shader Just another nput e.g. could rotate texture co-ordnate

16 Bump Mappng Add surface geometrc detal wthout addtonal vertces A real bump dstorts the drectons of the normals (ths effects calculatons of lght reflectance) Fae bumps created by dstortng the normals although the model geometry s stll flat. e.g. A bump-map texture appled to a flat polygon.

17 Bump Mappng Use a texture map to perturb the normal to the surface Tradtonally represent ths as ether: d stored n 2 separate scalar textures (for d u and d v ) store a heghtfeld and compute or approxmate d from the surface dfferentals

18 Bump/Normal Mappng Gve the lluson of geometrc detal Shape percepton depends on lghtng cues Wthout normal mappng Wth bump mappng

19

20

21 Normal Mappng A more commonly used method s normal mappng Also nown as dot3 bump mappng Image taen from Wpeda avalable at

22 Object Space Normal Mappng Basc Idea: Store the actual surface normal n the texture (RGB = nx, ny, nz) At each pxel, loo up the normal map, and use ths nstead of the nterpolated normal Tool support requred f generatng normals from hgh-res surfaces

23 Per-vertex Lghtng Only Normal Maps e.g. Combne wth Mesh Smplfcaton Cohen, Olano, Manocha, Appearance-preservng smplfcaton, SIGGRAPH,

24 Object Space Normal Mappng Object space has some problems: Not very flexble Strongly ted to specfc object Can t tle map or use symmetry Don t wor so well wth MIP maps or sharp edges Image from

25 Tangent Space Normal Mappng Normal s stored relatve to the tangent space of the object Sort of le a local normal Defne a local co-ordnate frame Form a co-ordnate system from normal n and tangent t and bnormal b Then defne dsplaced normal n n ths space n t b z y x z y x z y x T n n n b b b t t t n b t M t n n' b

26 Shader Setup Applcaton must send normal and tangent vector to the shader The normal s straghtforward avalable as bult n attrbute The tangent s slghtly trcy (for polygonal objects) Pass ths down as a custom attrbute B-tangent can be calculated n the shader Must be consstent wth the tangent vector to avod nterpolaton problems

27 Lghtng wth the bump map Transform lght and vew vectors nto tangent space (per vertex) Vertex Shader: varyng vec3 v; varyng vec3 l; unform vec4 L; //drectonal lght n eye space attrbute vec3 rm_tangent; attrbute vec3 rm_btangent; //here we get the btangent from applcaton //but we could calculate ths n the shader vod man(vod) { gl_poston = ftransform(); gl_texcoord[0] = gl_texturematrx[0]*gl_multtexcoord0; vec4 camera = gl_modelvewmatrxinverse*vec4(0.0, 0.0, 0.0, 1.0); vec3 vew = normalze(camera.xyz-gl_vertex.xyz); //object space vew and lght vector vec3 lght = normalze(gl_modelvewmatrxtranspose*l).xyz; } //TBNnv transforms vectors from object space to tangent space mat3 TBNnv(rm_Tangent, rm_btangent, gl_normal); l = TBNnv*lght; v = TBNnv*vew;

28 Lghtng wth the bump map Fragment Shader unform vec4 ambentcolor; unform vec4 dffusecolor; unform vec4 specularcolor; unform sampler2d dffusetex; unform sampler2d normaltex; unform float shnness; varyng vec3 v; varyng vec3 l; vod man(vod) { l = normalze(l); v = normalze(v); } vec3 n = 2.0*texture2D( normaltex, gl_texcoord[0].st ).xyz - 1.0; //tangent-space normal vec4 dffuseterm = texture2d( dffusetex, gl_texcoord[0].st)* dffusecolor *(max( 0.0, dot(n, l))); vec3 r = reflect(-l, n); //tangent-space reflecton vector vec4 specularterm = specularcolor*pow(max(0.0, dot(r, v)), shnness); gl_fragcolor = ambentcolor + dffuseterm + specularterm;

29 Tangent Space Normal Mappng

30 Tangent Space Normal Mappng Predomnantly blue: Why? No dsplacement means normal = n n tangent space n = [0 0 1] whch maps to RGB blue Dsplaced normals are relatvely close to ths Storage: Record 255*(n +1)/2 n normal map (to map to [0,255] range)

Color in OpenGL Polygonal Shading Light Source in OpenGL Material Properties Normal Vectors Phong model

Color in OpenGL Polygonal Shading Light Source in OpenGL Material Properties Normal Vectors Phong model Color n OpenGL Polygonal Shadng Lght Source n OpenGL Materal Propertes Normal Vectors Phong model 2 We know how to rasterze - Gven a 3D trangle and a 3D vewpont, we know whch pxels represent the trangle

More information

Lighting. Dr. Scott Schaefer

Lighting. Dr. Scott Schaefer Lghtng Dr. Scott Schaefer 1 Lghtng/Illumnaton Color s a functon of how lght reflects from surfaces to the eye Global llumnaton accounts for lght from all sources as t s transmtted throughout the envronment

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphcs Jeng-Sheng Yeh 葉正聖 Mng Chuan Unversty (modfed from Bng-Yu Chen s sldes) llumnaton and Shadng llumnaton Models Shadng Models for Polygons Surface Detal Shadows Transparency Global llumnaton

More information

Some Tutorial about the Project. Computer Graphics

Some Tutorial about the Project. Computer Graphics Some Tutoral about the Project Lecture 6 Rastersaton, Antalasng, Texture Mappng, I have already covered all the topcs needed to fnsh the 1 st practcal Today, I wll brefly explan how to start workng on

More information

Real-time. Shading of Folded Surfaces

Real-time. Shading of Folded Surfaces Rhensche Fredrch-Wlhelms-Unverstät Bonn Insttute of Computer Scence II Computer Graphcs Real-tme Shadng of Folded Surfaces B. Ganster, R. Klen, M. Sattler, R. Sarlette Motvaton http://www www.vrtualtryon.de

More information

Scan Conversion & Shading

Scan Conversion & Shading Scan Converson & Shadng Thomas Funkhouser Prnceton Unversty C0S 426, Fall 1999 3D Renderng Ppelne (for drect llumnaton) 3D Prmtves 3D Modelng Coordnates Modelng Transformaton 3D World Coordnates Lghtng

More information

Scan Conversion & Shading

Scan Conversion & Shading 1 3D Renderng Ppelne (for drect llumnaton) 2 Scan Converson & Shadng Adam Fnkelsten Prnceton Unversty C0S 426, Fall 2001 3DPrmtves 3D Modelng Coordnates Modelng Transformaton 3D World Coordnates Lghtng

More information

Interactive Rendering of Translucent Objects

Interactive Rendering of Translucent Objects Interactve Renderng of Translucent Objects Hendrk Lensch Mchael Goesele Phlppe Bekaert Jan Kautz Marcus Magnor Jochen Lang Hans-Peter Sedel 2003 Presented By: Mark Rubelmann Outlne Motvaton Background

More information

Monte Carlo Rendering

Monte Carlo Rendering Monte Carlo Renderng Last Tme? Modern Graphcs Hardware Cg Programmng Language Gouraud Shadng vs. Phong Normal Interpolaton Bump, Dsplacement, & Envronment Mappng Cg Examples G P R T F P D Today Does Ray

More information

Diffuse and specular interreflections with classical, deterministic ray tracing

Diffuse and specular interreflections with classical, deterministic ray tracing Dffuse and specular nterreflectons wth classcal, determnstc ray tracng Gergely Vass gergely_vass@sggraph.org Dept. of Control Engneerng and Informaton Technology Techncal Unversty of Budapest Budapest,

More information

Discussion. History and Outline. Smoothness of Indirect Lighting. Irradiance Caching. Irradiance Calculation. Advanced Computer Graphics (Fall 2009)

Discussion. History and Outline. Smoothness of Indirect Lighting. Irradiance Caching. Irradiance Calculation. Advanced Computer Graphics (Fall 2009) Advanced Computer Graphcs (Fall 2009 CS 29, Renderng Lecture 6: Recent Advances n Monte Carlo Offlne Renderng Rav Ramamoorth http://nst.eecs.berkeley.edu/~cs29-13/fa09 Dscusson Problems dfferent over years.

More information

Discussion. History and Outline. Smoothness of Indirect Lighting. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Fall 2009)

Discussion. History and Outline. Smoothness of Indirect Lighting. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Fall 2009) Advanced Computer Graphcs (Fall 2009 CS 283, Lecture 13: Recent Advances n Monte Carlo Offlne Renderng Rav Ramamoorth http://nst.eecs.berkeley.edu/~cs283/fa10 Dscusson Problems dfferent over years. Intally,

More information

Global Illumination: Radiosity

Global Illumination: Radiosity Last Tme? Global Illumnaton: Radosty Planar Shadows Shadow Maps An early applcaton of radatve heat transfer n stables. Projectve Texture Shadows (Texture Mappng) Shadow Volumes (Stencl Buffer) Schedule

More information

Lab 9 - Metal and Glass

Lab 9 - Metal and Glass Lab 9 - Metal and Glass Let the form of an object be what it may, light, shade, and perspective will always make it beautiful. -John Constable Prologue Support code: /course/cs1230/src/labs/lab09 This

More information

Global Illumination and Radiosity

Global Illumination and Radiosity Global Illumnaton and Radosty CS535 Danel G. Alaga Department of Computer Scence Purdue Unversty Recall: Lghtng and Shadng Lght sources Pont lght Models an omndrectonal lght source (e.g., a bulb) Drectonal

More information

Realistic and Detail Rendering of Village Virtual Scene Based on Pixel Offset

Realistic and Detail Rendering of Village Virtual Scene Based on Pixel Offset Appl. Math. Inf. Sc. 6-3S, 769-775 (2012) 769 Realstc and Detal Renderng of llage rtual Scene Based on Pxel Offset Chunjang Zhao, Huaru Wu and Ronghua Gao Natonal Engneerng Research Center for Informaton

More information

CSE 4431/ M Advanced Topics in 3D Computer Graphics. TA: Margarita Vinnikov

CSE 4431/ M Advanced Topics in 3D Computer Graphics. TA: Margarita Vinnikov CSE 4431/5331.03M Advanced Topics in 3D Computer Graphics TA: Margarita Vinnikov mvinni@cse.yorku.ca Debugging Shaders Can't print a number from a shader, but you can "print" a colour, most of our value-checking

More information

Global Illumination and Radiosity

Global Illumination and Radiosity Global Illumnaton and Radosty CS535 Danel G. Alaga Department of Computer Scence Purdue Unversty Recall: Lghtng and Shadng Lght sources Pont lght Models an omndrectonal lght source (e.g., a bulb) Drectonal

More information

Monte Carlo 1: Integration

Monte Carlo 1: Integration Monte Carlo : Integraton Prevous lecture: Analytcal llumnaton formula Ths lecture: Monte Carlo Integraton Revew random varables and probablty Samplng from dstrbutons Samplng from shapes Numercal calculaton

More information

PBRT core. Announcements. pbrt. pbrt plug-ins

PBRT core. Announcements. pbrt. pbrt plug-ins Announcements PBRT core Dgtal Image Synthess Yung-Yu Chuang 9/27/2007 Please subscrbe the malng lst. Wndows complaton Debuggng n Wndows Doxygen (onlne, download or doxygen by yourself) HW#1 wll be assgned

More information

TN348: Openlab Module - Colocalization

TN348: Openlab Module - Colocalization TN348: Openlab Module - Colocalzaton Topc The Colocalzaton module provdes the faclty to vsualze and quantfy colocalzaton between pars of mages. The Colocalzaton wndow contans a prevew of the two mages

More information

Plane Sampling for Light Paths from the Environment Map

Plane Sampling for Light Paths from the Environment Map jgt 2009/5/27 16:42 page 1 #1 Vol. [VOL], No. [ISS]: 1 6 Plane Samplng for Lght Paths from the Envronment Map Holger Dammertz and Johannes Hanka Ulm Unversty Abstract. We present a method to start lght

More information

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes SPH3UW Unt 7.3 Sphercal Concave Mrrors Page 1 of 1 Notes Physcs Tool box Concave Mrror If the reflectng surface takes place on the nner surface of the sphercal shape so that the centre of the mrror bulges

More information

Global Illumination and Radiosity

Global Illumination and Radiosity Global Illumnaton and Radosty CS535 Danel lg. Alaga Department of Computer Scence Purdue Unversty Recall: Lghtng and Shadng Lght sources Pont lght Models an omndrectonal lght source (e.g., a bulb) Drectonal

More information

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data

Type-2 Fuzzy Non-uniform Rational B-spline Model with Type-2 Fuzzy Data Malaysan Journal of Mathematcal Scences 11(S) Aprl : 35 46 (2017) Specal Issue: The 2nd Internatonal Conference and Workshop on Mathematcal Analyss (ICWOMA 2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

Computer Graphics (CS 543) Lecture 8a: Per-Vertex lighting, Shading and Per-Fragment lighting

Computer Graphics (CS 543) Lecture 8a: Per-Vertex lighting, Shading and Per-Fragment lighting Computer Graphics (CS 543) Lecture 8a: Per-Vertex lighting, Shading and Per-Fragment lighting Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Computation of Vectors To calculate

More information

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation

Lecture 17: Shading in OpenGL. CITS3003 Graphics & Animation Lecture 17: Shading in OpenGL CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Introduce the OpenGL shading methods - per vertex shading

More information

Monte Carlo 1: Integration

Monte Carlo 1: Integration Monte Carlo : Integraton Prevous lecture: Analytcal llumnaton formula Ths lecture: Monte Carlo Integraton Revew random varables and probablty Samplng from dstrbutons Samplng from shapes Numercal calculaton

More information

Global Illumination. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/26/07 1

Global Illumination. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/26/07 1 Global Illumnaton Computer Graphcs COMP 770 (236) Sprng 2007 Instructor: Brandon Lloyd 3/26/07 1 From last tme Robustness ssues Code structure Optmzatons Acceleraton structures Dstrbuton ray tracng ant-alasng

More information

Consistent Illumination within Optical See-Through Augmented Environments

Consistent Illumination within Optical See-Through Augmented Environments Consstent Illumnaton wthn Optcal See-Through Augmented Envronments Olver Bmber, Anselm Grundhöfer, Gordon Wetzsten and Sebastan Knödel Bauhaus Unversty Bauhausstraße 11, 99423 Wemar, Germany, {olver.bmber,

More information

Radial Basis Functions

Radial Basis Functions Radal Bass Functons Mesh Reconstructon Input: pont cloud Output: water-tght manfold mesh Explct Connectvty estmaton Implct Sgned dstance functon estmaton Image from: Reconstructon and Representaton of

More information

Light Factorization for Mixed-Frequency Shadows in Augmented Reality

Light Factorization for Mixed-Frequency Shadows in Augmented Reality Lght Factorzaton for Mxed-Frequency Shadows n Augmented Realty Dere Nowrouzezahra 1 Stefan Geger 2 Kenny Mtchell 3 Robert Sumner 1 Wojcech Jarosz 1 Marus Gross 1,2 1 Dsney Research Zurch 2 ETH Zurch 3

More information

Today. Texture mapping in OpenGL. Texture mapping. Basic shaders for texturing. Today. Computergrafik

Today. Texture mapping in OpenGL. Texture mapping. Basic shaders for texturing. Today. Computergrafik Computergrafik Today Basic shader for texture mapping Texture coordinate assignment Antialiasing Fancy textures Matthias Zwicker Universität Bern Herbst 2009 Texture mapping Glue textures (images) onto

More information

Interactive Virtual Relighting of Real Scenes

Interactive Virtual Relighting of Real Scenes Frst submtted: October 1998 (#846). Edtor/revewers please consult accompanyng document wth detaled responses to revewer comments. Interactve Vrtual Relghtng of Real Scenes Célne Loscos, George Drettaks,

More information

Analysis of 3D Cracks in an Arbitrary Geometry with Weld Residual Stress

Analysis of 3D Cracks in an Arbitrary Geometry with Weld Residual Stress Analyss of 3D Cracks n an Arbtrary Geometry wth Weld Resdual Stress Greg Thorwald, Ph.D. Ted L. Anderson, Ph.D. Structural Relablty Technology, Boulder, CO Abstract Materals contanng flaws lke nclusons

More information

Simplification of 3D Meshes

Simplification of 3D Meshes Smplfcaton of 3D Meshes Addy Ngan /4/00 Outlne Motvaton Taxonomy of smplfcaton methods Hoppe et al, Mesh optmzaton Hoppe, Progressve meshes Smplfcaton of 3D Meshes 1 Motvaton Hgh detaled meshes becomng

More information

Fast, Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics

Fast, Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics Thrteenth Eurographcs Workshop on Renderng (2002) P. Debevec and S. Gbson (Edtors) Fast, Arbtrary BRDF Shadng for Low-Frequency Lghtng Usng Sphercal Harmoncs Jan Kautz 1, Peter-Pke Sloan 2 and John Snyder

More information

Introduction to Radiosity

Introduction to Radiosity EECS 487: Interactve Computer Graphcs EECS 487: Interactve Computer Graphcs Renderng a Scene Introducton to Radosty John. Hughes and ndres van Dam rown Unversty The scene conssts of a geometrc arrangement

More information

CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:

More information

Motivation. Motivation. Monte Carlo. Example: Soft Shadows. Outline. Monte Carlo Algorithms. Advanced Computer Graphics (Fall 2009)

Motivation. Motivation. Monte Carlo. Example: Soft Shadows. Outline. Monte Carlo Algorithms. Advanced Computer Graphics (Fall 2009) Advanced Comuter Grahcs Fall 29 CS 294, Renderng Lecture 4: Monte Carlo Integraton Rav Ramamoorth htt://nst.eecs.berkeley.edu/~cs294-3/a9 Motvaton Renderng = ntegraton Relectance equaton: Integrate over

More information

Slide 1 SPH3UW: OPTICS I. Slide 2. Slide 3. Introduction to Mirrors. Light incident on an object

Slide 1 SPH3UW: OPTICS I. Slide 2. Slide 3. Introduction to Mirrors. Light incident on an object Slde 1 SPH3UW: OPTICS I Introducton to Mrrors Slde 2 Lght ncdent on an object Absorpton Relecton (bounces)** See t Mrrors Reracton (bends) Lenses Oten some o each Everythng true or wavelengths

More information

Parallax Bumpmapping. Whitepaper

Parallax Bumpmapping. Whitepaper Public Imagination Technologies Parallax Bumpmapping Whitepaper Copyright Imagination Technologies Limited. All Rights Reserved. This publication contains proprietary information which is subject to change

More information

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading Objectives Shading in OpenGL Introduce the OpenGL shading methods - per vertex shading vs per fragment shading - Where to carry out Discuss polygonal shading - Flat - Smooth - Gouraud CITS3003 Graphics

More information

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping

Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping Computer Graphics (CS 543) Lecture 10: Soft Shadows (Maps and Volumes), Normal and Bump Mapping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Shadow Buffer Theory Observation:

More information

A DATA ANALYSIS CODE FOR MCNP MESH AND STANDARD TALLIES

A DATA ANALYSIS CODE FOR MCNP MESH AND STANDARD TALLIES Supercomputng n uclear Applcatons (M&C + SA 007) Monterey, Calforna, Aprl 15-19, 007, on CD-ROM, Amercan uclear Socety, LaGrange Par, IL (007) A DATA AALYSIS CODE FOR MCP MESH AD STADARD TALLIES Kenneth

More information

Array transposition in CUDA shared memory

Array transposition in CUDA shared memory Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

Topic 13: Radiometry. The Basic Light Transport Path

Topic 13: Radiometry. The Basic Light Transport Path Topc 3: Raometry The bg pcture Measurng lght comng from a lght source Measurng lght fallng onto a patch: Irraance Measurng lght leavng a patch: Raance The Lght Transport Cycle The BrecAonal Reflectance

More information

Rail-Track Viewer An Image-Based Virtual Walkthrough System

Rail-Track Viewer An Image-Based Virtual Walkthrough System Eghth Eurographcs Workshop on rtual Envronments (00) S. Müller, W. Stürzlnger (Edtors) Ral-Track ewer An Image-Based rtual Walkthrough System Lnng Yang, Roger Crawfs Department of Computer and Informaton

More information

Computer Graphics (CS 543) Lecture 10: Normal Maps, Parametrization, Tone Mapping

Computer Graphics (CS 543) Lecture 10: Normal Maps, Parametrization, Tone Mapping Computer Graphics (CS 543) Lecture 10: Normal Maps, Parametrization, Tone Mapping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Normal Mapping Store normals in texture

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

EDAF80 Introduction to Computer Graphics. Seminar 3. Shaders. Michael Doggett. Slides by Carl Johan Gribel,

EDAF80 Introduction to Computer Graphics. Seminar 3. Shaders. Michael Doggett. Slides by Carl Johan Gribel, EDAF80 Introduction to Computer Graphics Seminar 3 Shaders Michael Doggett 2017 Slides by Carl Johan Gribel, 2010-13 Today OpenGL Shader Language (GLSL) Shading theory Assignment 3: (you guessed it) writing

More information

Realistic Rendering. Traditional Computer Graphics. Traditional Computer Graphics. Production Pipeline. Appearance in the Real World

Realistic Rendering. Traditional Computer Graphics. Traditional Computer Graphics. Production Pipeline. Appearance in the Real World Advanced Computer Graphcs (Fall 2009 CS 294, Renderng Lecture 11 Representatons of Vsual Appearance Rav Ramamoorth Realstc Renderng Geometry Renderng Algorthm http://nst.eecs.berkeley.edu/~cs294-13/fa09

More information

Computer Sciences Department

Computer Sciences Department Computer Scences Department Populaton Monte Carlo Path Tracng Yu-Ch La Charles Dyer Techncal Report #1614 September 2007 Populaton Monte Carlo Path Tracng Yu-Ch La Unversty of Wsconsn at Madson Graphcs-Vson

More information

COMP250: Computer Graphics

COMP250: Computer Graphics COMP250: Computer Graphics Jérôme Waldispühl School of Computer Science McGill University Slides assembled from M. BlancheGe (McGill), T. Thorne (U. of Edinburgh) Slide by M. BlancheGe (McGill) Computer

More information

Introduction to Shaders for Visualization. The Basic Computer Graphics Pipeline

Introduction to Shaders for Visualization. The Basic Computer Graphics Pipeline Introduction to Shaders for Visualization Mike Bailey The Basic Computer Graphics Pipeline Model Transform View Transform Per-vertex Lighting Projection Transform Homogeneous Division Viewport Transform

More information

2.2 Photometric Image Formation

2.2 Photometric Image Formation 2.2 Photometrc Image Formaton mage plane n source sensor plane optcs!1 Illumnaton Computer son ory s ten deeloped wth assumpton a pont source at nfnty. But een sun has a fnte extent (about 0.5 deg sual

More information

Corner-Based Image Alignment using Pyramid Structure with Gradient Vector Similarity

Corner-Based Image Alignment using Pyramid Structure with Gradient Vector Similarity Journal of Sgnal and Informaton Processng, 013, 4, 114-119 do:10.436/jsp.013.43b00 Publshed Onlne August 013 (http://www.scrp.org/journal/jsp) Corner-Based Image Algnment usng Pyramd Structure wth Gradent

More information

An efficient method to build panoramic image mosaics

An efficient method to build panoramic image mosaics An effcent method to buld panoramc mage mosacs Pattern Recognton Letters vol. 4 003 Dae-Hyun Km Yong-In Yoon Jong-Soo Cho School of Electrcal Engneerng and Computer Scence Kyungpook Natonal Unv. Abstract

More information

Computer graphics III Light reflection, BRDF. Jaroslav Křivánek, MFF UK

Computer graphics III Light reflection, BRDF. Jaroslav Křivánek, MFF UK Computer graphcs III Lght reflecton, BRDF Jaroslav Křvánek, MFF UK Jaroslav.Krvanek@mff.cun.cz Basc radometrc quanttes Image: Wojcech Jarosz CG III (NPGR010) - J. Křvánek 2015 Interacton of lght wth a

More information

Input Nodes. Surface Input. Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking

Input Nodes. Surface Input. Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking Input Nodes Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking The different Input nodes, where they can be found, what their outputs are. Surface Input When editing a surface,

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 What We ve Covered So Far z x y z x y (0, 0) (w, h) Position objects and the camera in the world

More information

Hermite Splines in Lie Groups as Products of Geodesics

Hermite Splines in Lie Groups as Products of Geodesics Hermte Splnes n Le Groups as Products of Geodescs Ethan Eade Updated May 28, 2017 1 Introducton 1.1 Goal Ths document defnes a curve n the Le group G parametrzed by tme and by structural parameters n the

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Computer Graphics Coursework 1

Computer Graphics Coursework 1 Computer Graphics Coursework 1 Deadline Deadline: 4pm, 24/10/2016 4pm 23/10/2015 Outline The aim of the coursework is to modify the vertex and fragment shaders in the provided OpenGL framework to implement

More information

Shading 1: basics Christian Miller CS Fall 2011

Shading 1: basics Christian Miller CS Fall 2011 Shading 1: basics Christian Miller CS 354 - Fall 2011 Picking colors Shading is finding the right color for a pixel This color depends on several factors: The material of the surface itself The color and

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

Simulation and Animation of Fire

Simulation and Animation of Fire Smulaton and Anmaton of Fre Overvew Presentaton n Semnar on Motvaton Methods for smulaton of fre Physcally-based Methods for 3D-Games and Medcal Applcatons Dens Stenemann partcle-based flud-based flame-based

More information

Rendering of Complex Materials for Driving Simulators

Rendering of Complex Materials for Driving Simulators Renderng of Complex Materals for Drvng Smulators Therry Lefebvre 1,2 +33 (0)1.76.85.06.64 therry.t.lefebvre@renault.com Andras Kemeny 1 +33 (0)1.76.85.19.85 andras.kemeny@renault.com Dder Arquès 2 +33

More information

Technical Game Development II. Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS 4731 Computer Graphics

Technical Game Development II. Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS 4731 Computer Graphics Shader Programming Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS

More information

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1)

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting & shading? Sphere

More information

What are the camera parameters? Where are the light sources? What is the mapping from radiance to pixel color? Want to solve for 3D geometry

What are the camera parameters? Where are the light sources? What is the mapping from radiance to pixel color? Want to solve for 3D geometry Today: Calbraton What are the camera parameters? Where are the lght sources? What s the mappng from radance to pel color? Why Calbrate? Want to solve for D geometry Alternatve approach Solve for D shape

More information

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting

More information

Shape Representation Robust to the Sketching Order Using Distance Map and Direction Histogram

Shape Representation Robust to the Sketching Order Using Distance Map and Direction Histogram Shape Representaton Robust to the Sketchng Order Usng Dstance Map and Drecton Hstogram Department of Computer Scence Yonse Unversty Kwon Yun CONTENTS Revew Topc Proposed Method System Overvew Sketch Normalzaton

More information

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification Introducton to Artfcal Intellgence V22.0472-001 Fall 2009 Lecture 24: Nearest-Neghbors & Support Vector Machnes Rob Fergus Dept of Computer Scence, Courant Insttute, NYU Sldes from Danel Yeung, John DeNero

More information

Technical Game Development II. Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS 4731 Computer Graphics

Technical Game Development II. Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS 4731 Computer Graphics Shader Programming Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS

More information

Computer Graphics with OpenGL ES (J. Han) Chapter 6 Fragment shader

Computer Graphics with OpenGL ES (J. Han) Chapter 6 Fragment shader Computer Graphics with OpenGL ES (J. Han) Chapter 6 Fragment shader Vertex and Fragment Shaders The inputs to the fragment shader Varyings: The per-vertex output variables produced by the vertex shader

More information

Recall: Indexing into Cube Map

Recall: Indexing into Cube Map Recall: Indexing into Cube Map Compute R = 2(N V)N-V Object at origin Use largest magnitude component of R to determine face of cube Other 2 components give texture coordinates V R Cube Map Layout Example

More information

Real-time Rendering of Enhanced Shallow Water Fluid Simulations

Real-time Rendering of Enhanced Shallow Water Fluid Simulations Real-tme Renderng of Enhanced Shallow Water Flud Smulatons Jesús Ojeda a, Antono Susín b a Dept. LSI, Unverstat Poltècnca de Catalunya b Dept. MA1, Unverstat Poltècnca de Catalunya Abstract The vsualzaton

More information

Repetition of TDA361. Misc. GEOMETRY Summary. Lecture 2: Transforms. Homogeneous notation. Ulf Assarsson

Repetition of TDA361. Misc. GEOMETRY Summary. Lecture 2: Transforms. Homogeneous notation. Ulf Assarsson Repetton of TDA361 Ulf Assarsson Msc Eng translaton: All your answers on exam must be wrtten n Englsh Tll alla lärare på masternvån, Undervsnngen på Chalmers masterprogram sker på engelska. Vcerektor Sven

More information

Form-factors Josef Pelikán CGG MFF UK Praha.

Form-factors Josef Pelikán CGG MFF UK Praha. Form-factors 1996-2016 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ FormFactor 2016 Josef Pelkán, http://cgg.mff.cun.cz/~pepca 1 / 23 Form-factor F It ndcates the proporton

More information

Wishing you all a Total Quality New Year!

Wishing you all a Total Quality New Year! Total Qualty Management and Sx Sgma Post Graduate Program 214-15 Sesson 4 Vnay Kumar Kalakband Assstant Professor Operatons & Systems Area 1 Wshng you all a Total Qualty New Year! Hope you acheve Sx sgma

More information

The stream cipher MICKEY-128 (version 1) Algorithm specification issue 1.0

The stream cipher MICKEY-128 (version 1) Algorithm specification issue 1.0 The stream cpher MICKEY-128 (verson 1 Algorthm specfcaton ssue 1. Steve Babbage Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com Matthew Dodd Independent consultant matthew@mdodd.net www.mdodd.net

More information

Multiblock method for database generation in finite element programs

Multiblock method for database generation in finite element programs Proc. of the 9th WSEAS Int. Conf. on Mathematcal Methods and Computatonal Technques n Electrcal Engneerng, Arcachon, October 13-15, 2007 53 Multblock method for database generaton n fnte element programs

More information

Advanced Lighting Techniques Due: Monday November 2 at 10pm

Advanced Lighting Techniques Due: Monday November 2 at 10pm CMSC 23700 Autumn 2015 Introduction to Computer Graphics Project 3 October 20, 2015 Advanced Lighting Techniques Due: Monday November 2 at 10pm 1 Introduction This assignment is the third and final part

More information

LEAST SQUARES. RANSAC. HOUGH TRANSFORM.

LEAST SQUARES. RANSAC. HOUGH TRANSFORM. LEAS SQUARES. RANSAC. HOUGH RANSFORM. he sldes are from several sources through James Has (Brown); Srnvasa Narasmhan (CMU); Slvo Savarese (U. of Mchgan); Bll Freeman and Antono orralba (MI), ncludng ther

More information

Physics 132 4/24/17. April 24, 2017 Physics 132 Prof. E. F. Redish. Outline

Physics 132 4/24/17. April 24, 2017 Physics 132 Prof. E. F. Redish. Outline Aprl 24, 2017 Physcs 132 Prof. E. F. Redsh Theme Musc: Justn Tmberlake Mrrors Cartoon: Gary Larson The Far Sde 1 Outlne Images produced by a curved mrror Image equatons for a curved mrror Lght n dense

More information

Comparison of calculation methods and models in software for computer graphics and radiative heat exchange

Comparison of calculation methods and models in software for computer graphics and radiative heat exchange Comparson of calculaton methods and models n software for computer graphcs and radatve heat exchange Insttute of Electrcal and Electroncs Engneerng Poznan Unversty of Technology ul. Potrowo 3A, 60-950

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

INFOGR Computer Graphics

INFOGR Computer Graphics INFOGR Computer Graphics Jacco Bikker & Debabrata Panja - April-July 2017 Lecture 10: Shaders Welcome! INFOGR2016/17 Today s Agenda: Recap: Diffuse Materials The Phong Shading Model Environment

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today More shading Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection and refraction Toon shading

More information

Geometric Primitive Refinement for Structured Light Cameras

Geometric Primitive Refinement for Structured Light Cameras Self Archve Verson Cte ths artcle as: Fuersattel, P., Placht, S., Maer, A. Ress, C - Geometrc Prmtve Refnement for Structured Lght Cameras. Machne Vson and Applcatons 2018) 29: 313. Geometrc Prmtve Refnement

More information

Outline. Seamless Image Stitching in the Gradient Domain. Related Approaches. Image Stitching. Introduction Related Work

Outline. Seamless Image Stitching in the Gradient Domain. Related Approaches. Image Stitching. Introduction Related Work Outlne Seamless Image Sttchng n the Gradent Doman Anat Levn, Assaf Zomet, Shmuel Peleg and Yar Wess ECCV 004 Presenter: Pn Wu Oct 007 Introducton Related Work GIST: Gradent-doman Image Sttchng GIST GIST

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

APPLICATION OF AN AUGMENTED REALITY SYSTEM FOR DISASTER RELIEF

APPLICATION OF AN AUGMENTED REALITY SYSTEM FOR DISASTER RELIEF APPLICATION OF AN AUGMENTED REALITY SYSTEM FOR DISASTER RELIEF Johannes Leebmann Insttute of Photogrammetry and Remote Sensng, Unversty of Karlsruhe (TH, Englerstrasse 7, 7618 Karlsruhe, Germany - leebmann@pf.un-karlsruhe.de

More information

Monte Carlo Integration

Monte Carlo Integration Introducton Monte Carlo Integraton Dgtal Image Synthess Yung-Yu Chuang 11/9/005 The ntegral equatons generally don t have analytc solutons, so we must turn to numercal methods. L ( o p,ωo) = L e ( p,ωo)

More information

DIFFRACTION SHADING MODELS FOR IRIDESCENT SURFACES

DIFFRACTION SHADING MODELS FOR IRIDESCENT SURFACES DIFFRACTION SHADING MODELS FOR IRIDESCENT SURFACES Emmanuel Agu Department of Computer Scence Worcester Polytechnc Insttute, Worcester, MA 01609, USA emmanuel@cs.wp.edu Francs S.Hll Jr Department of Electrcal

More information

Object centered stereo: displacement map estimation using texture and shading

Object centered stereo: displacement map estimation using texture and shading Object centered stereo: dsplacement map estmaton usng texture and shadng Nel Brkbeck Dana Cobzas Martn Jagersand Computng Scence Unversty of Alberta Edmonton, AB T6G2E8, Canada Abstract Input Data Output

More information

Dependence of the Color Rendering Index on the Luminance of Light Sources and Munsell Samples

Dependence of the Color Rendering Index on the Luminance of Light Sources and Munsell Samples Australan Journal of Basc and Appled Scences, 4(10): 4609-4613, 2010 ISSN 1991-8178 Dependence of the Color Renderng Index on the Lumnance of Lght Sources and Munsell Samples 1 A. EL-Bally (Physcs Department),

More information