Tolerating Latency in Replicated State Machines through Client Speculation

Size: px
Start display at page:

Download "Tolerating Latency in Replicated State Machines through Client Speculation"

Transcription

1 Tolerating Latency in Replicated State Machines through Client Speculation April 22, , James Cowling 2, Edmund B. Nightingale 3, Peter M. Chen 1, Jason Flinn 1, Barbara Liskov 2 University of Michigan 1, MIT CSAIL 2, Microsoft Research 3

2 Simple Service Configuration 1 ++x x=1 2

3 Replicated State Machines (RSM) 2 ++x x=1 x=2 2 ++x x=1 x=2 Agree on request 2 ++x x=1 x=2 All non-faulty replies are identical 2 ++x x=1 x=2 3

4 RSMs have high latency 2 1. Need many replies 2. Agreement 3. Geographic Distribution 4

5 Hide the Latency Use speculative execution inside RSM Speculate before consensus is reached Without faults, any reply predicts consensus value Let client continue after receiving one reply 5

6 Overview Introduction Improving RSMs with speculation Application to PBFT Performance Conclusion 6

7 Speculative Execution in RSM Take Checkpoint Blocked Predict: 1 Speculate! Commit x=1 x=1 Continue processing while waiting 7

8 Critical path: first reply 1 1 Completion latency less relevant First reply latency sets critical path Speed Accuracy Other desirable properties Throughput Stability under contention Smaller number of replicas 8

9 Requests while speculative while!check_lottery(): submit_tps() buy_corvette() Predict win? = yes yes 1. Hold request Bad performance buy 2. Distributed commit/rollback State tracking complex win? What do we do with this? 9

10 Resolve speculations on the replicas while!check_lottery(): submit_tps() buy_corvette() Predict win? = yes win? = yes yes yes win? if win?=yes: buy Explicitly encode dependencies as predicates No special request handling needed Replicas need to log past replies Local decision at replicas matches client 10

11 Overview Introduction Improving RSMs with speculation Application to PBFT Performance Conclusion 11

12 Practical BFT-CS [Castro and Liskov 1999] client primary f=1 12

13 Additional Details Tentative execution PBFT/PBFT-CS complete in 4 phases Read-only optimization Accurate answer from backup replica Failure threshold Bound worst-case failure Correctness 13

14 Overview Introduction Improving RSMs with speculation Application to PBFT Performance Conclusion 14

15 Benchmarks Shared counter Simple checkpoint No computation NFS: Apache httpd build Complex checkpoint Significant computation 15

16 Topology 1. Primary-local 2. Primary-remote 3. Uniform Primary 2.5 or 15 ms 16

17 Base case: no replication 1. Primary-local 2. Primary-remote 3. Uniform 2.5 or 15 ms 17

18 Run Time (sec) Shared Counter Primary-local topology PBFT PBFT-CS No replication Network Delay (ms) 18

19 Run Time (sec) Shared Counter Primary-local topology PBFT PBFT-CS No replication Zyzzyva [Kotla et al. 07] Network Delay (ms) 19

20 Run Time (sec) Shared Counter Uniform & Primary-remote topology PBFT PBFT-CS No replication Network Delay (ms) 20

21 Run Time (sec) Shared Counter Uniform & Primary-remote topology PBFT PBFT-CS No replication Zyzzyva Network Delay (ms) 21

22 Run Time (min) NFS: Apache build Primary-local topology PBFT PBFT-CS No replication Network Delay (ms) 22

23 Run Time (min) NFS: Apache build Uniform topology PBFT PBFT-CS No replication Network Delay (ms) 23

24 Run Time (min) NFS: Apache build Primary-remote topology PBFT PBFT-CS No replication Network Delay (ms) 24

25 Run Time (min) NFS: With Failure Primary-local topology PBFT PBFT-CS No replication PBFT-CS (1% fail) Network Delay (ms) 25

26 KOps/sec Throughput (Shared Counter) LAN topology PBFT PBFT-CS Zyzzyva Number of Clients 26

27 Conclusion Integrate client speculation within RSMs Predicated requests: performance without complexity Clients less sensitive to latency between replicas 5x speedup over non-speculative protocol Makes WAN deployments more practical 27

Tolerating latency in replicated state machines through client speculation

Tolerating latency in replicated state machines through client speculation Tolerating latency in replicated state machines through client speculation Benjamin Wester Peter M. Chen University of Michigan James Cowling Jason Flinn MIT CSAIL Edmund B. Nightingale Barbara Liskov

More information

Zyzzyva. Speculative Byzantine Fault Tolerance. Ramakrishna Kotla. L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin

Zyzzyva. Speculative Byzantine Fault Tolerance. Ramakrishna Kotla. L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin Zyzzyva Speculative Byzantine Fault Tolerance Ramakrishna Kotla L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin The Goal Transform high-performance service into high-performance

More information

Byzantine Fault Tolerance and Consensus. Adi Seredinschi Distributed Programming Laboratory

Byzantine Fault Tolerance and Consensus. Adi Seredinschi Distributed Programming Laboratory Byzantine Fault Tolerance and Consensus Adi Seredinschi Distributed Programming Laboratory 1 (Original) Problem Correct process General goal: Run a distributed algorithm 2 (Original) Problem Correct process

More information

Reducing the Costs of Large-Scale BFT Replication

Reducing the Costs of Large-Scale BFT Replication Reducing the Costs of Large-Scale BFT Replication Marco Serafini & Neeraj Suri TU Darmstadt, Germany Neeraj Suri EU-NSF ICT March 2006 Dependable Embedded Systems & SW Group www.deeds.informatik.tu-darmstadt.de

More information

Byzantine fault tolerance. Jinyang Li With PBFT slides from Liskov

Byzantine fault tolerance. Jinyang Li With PBFT slides from Liskov Byzantine fault tolerance Jinyang Li With PBFT slides from Liskov What we ve learnt so far: tolerate fail-stop failures Traditional RSM tolerates benign failures Node crashes Network partitions A RSM w/

More information

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Practical Byzantine Consensus CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Scenario Asynchronous system Signed messages s are state machines It has to be practical CS 138

More information

Robust BFT Protocols

Robust BFT Protocols Robust BFT Protocols Sonia Ben Mokhtar, LIRIS, CNRS, Lyon Joint work with Pierre Louis Aublin, Grenoble university Vivien Quéma, Grenoble INP 18/10/2013 Who am I? CNRS reseacher, LIRIS lab, DRIM research

More information

Practical Byzantine Fault

Practical Byzantine Fault Practical Byzantine Fault Tolerance Practical Byzantine Fault Tolerance Castro and Liskov, OSDI 1999 Nathan Baker, presenting on 23 September 2005 What is a Byzantine fault? Rationale for Byzantine Fault

More information

Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application Hao Xu Muyun Chen Xin Li

Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application Hao Xu Muyun Chen Xin Li Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application Hao Xu Muyun Chen Xin Li Abstract Along with cryptocurrencies become a great success known to the world, how to

More information

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov Outline 1. Introduction to Byzantine Fault Tolerance Problem 2. PBFT Algorithm a. Models and overview b. Three-phase protocol c. View-change

More information

AS distributed systems develop and grow in size,

AS distributed systems develop and grow in size, 1 hbft: Speculative Byzantine Fault Tolerance With Minimum Cost Sisi Duan, Sean Peisert, Senior Member, IEEE, and Karl N. Levitt Abstract We present hbft, a hybrid, Byzantine fault-tolerant, ted state

More information

Authenticated Agreement

Authenticated Agreement Chapter 18 Authenticated Agreement Byzantine nodes are able to lie about their inputs as well as received messages. Can we detect certain lies and limit the power of byzantine nodes? Possibly, the authenticity

More information

Distributed Algorithms Practical Byzantine Fault Tolerance

Distributed Algorithms Practical Byzantine Fault Tolerance Distributed Algorithms Practical Byzantine Fault Tolerance Alberto Montresor University of Trento, Italy 2017/01/06 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Two New Protocols for Fault Tolerant Agreement

Two New Protocols for Fault Tolerant Agreement Two New Protocols for Fault Tolerant Agreement Poonam Saini 1 and Awadhesh Kumar Singh 2, 1,2 Department of Computer Engineering, National Institute of Technology, Kurukshetra, India nit.sainipoonam@gmail.com,

More information

A definition. Byzantine Generals Problem. Synchronous, Byzantine world

A definition. Byzantine Generals Problem. Synchronous, Byzantine world The Byzantine Generals Problem Leslie Lamport, Robert Shostak, and Marshall Pease ACM TOPLAS 1982 Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov OSDI 1999 A definition Byzantine (www.m-w.com):

More information

Speculative Execution Across Layers

Speculative Execution Across Layers Speculative Execution Across Layers by Benjamin J. Wester A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science and Engineering) in

More information

Distributed Algorithms Practical Byzantine Fault Tolerance

Distributed Algorithms Practical Byzantine Fault Tolerance Distributed Algorithms Practical Byzantine Fault Tolerance Alberto Montresor Università di Trento 2018/12/06 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

More information

Evaluating BFT Protocols for Spire

Evaluating BFT Protocols for Spire Evaluating BFT Protocols for Spire Henry Schuh & Sam Beckley 600.667 Advanced Distributed Systems & Networks SCADA & Spire Overview High-Performance, Scalable Spire Trusted Platform Module Known Network

More information

Proactive and Reactive View Change for Fault Tolerant Byzantine Agreement

Proactive and Reactive View Change for Fault Tolerant Byzantine Agreement Journal of Computer Science 7 (1): 101-107, 2011 ISSN 1549-3636 2011 Science Publications Proactive and Reactive View Change for Fault Tolerant Byzantine Agreement Poonam Saini and Awadhesh Kumar Singh

More information

ByzID: Byzantine Fault Tolerance from Intrusion Detection

ByzID: Byzantine Fault Tolerance from Intrusion Detection : Byzantine Fault Tolerance from Intrusion Detection Sisi Duan UC Davis sduan@ucdavis.edu Karl Levitt UC Davis levitt@ucdavis.edu Hein Meling University of Stavanger, Norway hein.meling@uis.no Sean Peisert

More information

Recovering from a Crash. Three-Phase Commit

Recovering from a Crash. Three-Phase Commit Recovering from a Crash If INIT : abort locally and inform coordinator If Ready, contact another process Q and examine Q s state Lecture 18, page 23 Three-Phase Commit Two phase commit: problem if coordinator

More information

Distributed Consensus: Making Impossible Possible

Distributed Consensus: Making Impossible Possible Distributed Consensus: Making Impossible Possible QCon London Tuesday 29/3/2016 Heidi Howard PhD Student @ University of Cambridge heidi.howard@cl.cam.ac.uk @heidiann360 What is Consensus? The process

More information

Paxos and Replication. Dan Ports, CSEP 552

Paxos and Replication. Dan Ports, CSEP 552 Paxos and Replication Dan Ports, CSEP 552 Today: achieving consensus with Paxos and how to use this to build a replicated system Last week Scaling a web service using front-end caching but what about the

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Backup Two

More information

Distributed Consensus: Making Impossible Possible

Distributed Consensus: Making Impossible Possible Distributed Consensus: Making Impossible Possible Heidi Howard PhD Student @ University of Cambridge heidi.howard@cl.cam.ac.uk @heidiann360 hh360.user.srcf.net Sometimes inconsistency is not an option

More information

Zzyzx: Scalable Fault Tolerance through Byzantine Locking

Zzyzx: Scalable Fault Tolerance through Byzantine Locking Zzyzx: Scalable Fault Tolerance through Byzantine Locking James Hendricks Shafeeq Sinnamohideen Gregory R. Ganger Michael K. Reiter Carnegie Mellon University University of North Carolina at Chapel Hill

More information

Tradeoffs in Byzantine-Fault-Tolerant State-Machine-Replication Protocol Design

Tradeoffs in Byzantine-Fault-Tolerant State-Machine-Replication Protocol Design Tradeoffs in Byzantine-Fault-Tolerant State-Machine-Replication Protocol Design Michael G. Merideth March 2008 CMU-ISR-08-110 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

More information

Trek: Testable Replicated Key-Value Store

Trek: Testable Replicated Key-Value Store Trek: Testable Replicated Key-Value Store Yen-Ting Liu, Wen-Chien Chen Stanford University Abstract This paper describes the implementation of Trek, a testable, replicated key-value store with ZooKeeper-like

More information

ZZ: Cheap Practical BFT using Virtualization

ZZ: Cheap Practical BFT using Virtualization University of Massachusetts, Technical Report TR14-08 1 ZZ: Cheap Practical BFT using Virtualization Timothy Wood, Rahul Singh, Arun Venkataramani, and Prashant Shenoy Department of Computer Science, University

More information

Practical Byzantine Fault Tolerance (The Byzantine Generals Problem)

Practical Byzantine Fault Tolerance (The Byzantine Generals Problem) Practical Byzantine Fault Tolerance (The Byzantine Generals Problem) Introduction Malicious attacks and software errors that can cause arbitrary behaviors of faulty nodes are increasingly common Previous

More information

Byzantine Fault Tolerance

Byzantine Fault Tolerance Byzantine Fault Tolerance CS6450: Distributed Systems Lecture 10 Ryan Stutsman Material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton University.

More information

Application-Aware Byzantine Fault Tolerance

Application-Aware Byzantine Fault Tolerance 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing Application-Aware Byzantine Fault Tolerance Wenbing Zhao Department of Electrical and Computer Engineering Cleveland

More information

Viewstamped Replication to Practical Byzantine Fault Tolerance. Pradipta De

Viewstamped Replication to Practical Byzantine Fault Tolerance. Pradipta De Viewstamped Replication to Practical Byzantine Fault Tolerance Pradipta De pradipta.de@sunykorea.ac.kr ViewStamped Replication: Basics What does VR solve? VR supports replicated service Abstraction is

More information

Failure models. Byzantine Fault Tolerance. What can go wrong? Paxos is fail-stop tolerant. BFT model. BFT replication 5/25/18

Failure models. Byzantine Fault Tolerance. What can go wrong? Paxos is fail-stop tolerant. BFT model. BFT replication 5/25/18 Failure models Byzantine Fault Tolerance Fail-stop: nodes either execute the protocol correctly or just stop Byzantine failures: nodes can behave in any arbitrary way Send illegal messages, try to trick

More information

Enhancing Throughput of

Enhancing Throughput of Enhancing Throughput of NCA 2017 Zhongmiao Li, Peter Van Roy and Paolo Romano Enhancing Throughput of Partially Replicated State Machines via NCA 2017 Zhongmiao Li, Peter Van Roy and Paolo Romano Enhancing

More information

Prophecy: Using History for High Throughput Fault Tolerance

Prophecy: Using History for High Throughput Fault Tolerance Prophecy: Using History for High Throughput Fault Tolerance Siddhartha Sen Joint work with Wyatt Lloyd and Mike Freedman Princeton University Non crash failures happen Non crash failures happen Model as

More information

Zyzzyva: Speculative Byzantine Fault Tolerance

Zyzzyva: Speculative Byzantine Fault Tolerance : Speculative Byzantine Fault Tolerance Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong Dept. of Computer Sciences University of Texas at Austin {kotla,lorenzo,dahlin,aclement,elwong}@cs.utexas.edu

More information

Zyzzyva: Speculative Byzantine Fault Tolerance

Zyzzyva: Speculative Byzantine Fault Tolerance : Speculative Byzantine Fault Tolerance Ramakrishna Kotla Microsoft Research Silicon Valley, USA kotla@microsoft.com Allen Clement, Edmund Wong, Lorenzo Alvisi, and Mike Dahlin Dept. of Computer Sciences

More information

Adapting Byzantine Fault Tolerant Systems

Adapting Byzantine Fault Tolerant Systems Adapting Byzantine Fault Tolerant Systems Miguel Neves Pasadinhas miguel.pasadinhas@tecnico.ulisboa.pt Instituto Superior Técnico (Advisor: Professor Luís Rodrigues) Abstract. Malicious attacks, software

More information

Scrooge: Reducing the Costs of Fast Byzantine Replication in Presence of Unresponsive Replicas

Scrooge: Reducing the Costs of Fast Byzantine Replication in Presence of Unresponsive Replicas Scrooge: Reducing the Costs of Fast Byzantine Replication in Presence of Unresponsive Replicas Marco Serafini, Péter Bokor, Dan Dobre, Matthias Majuntke and Neeraj Suri Dept. of CS, TU Darmstadt, Germany

More information

Practical Byzantine Fault Tolerance. Castro and Liskov SOSP 99

Practical Byzantine Fault Tolerance. Castro and Liskov SOSP 99 Practical Byzantine Fault Tolerance Castro and Liskov SOSP 99 Why this paper? Kind of incredible that it s even possible Let alone a practical NFS implementation with it So far we ve only considered fail-stop

More information

Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography

Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography Appears as Technical Memo MIT/LCS/TM-589, MIT Laboratory for Computer Science, June 999 Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography Miguel Castro and Barbara Liskov Laboratory

More information

Revisiting Fast Practical Byzantine Fault Tolerance

Revisiting Fast Practical Byzantine Fault Tolerance Revisiting Fast Practical Byzantine Fault Tolerance Ittai Abraham, Guy Gueta, Dahlia Malkhi VMware Research with: Lorenzo Alvisi (Cornell), Rama Kotla (Amazon), Jean-Philippe Martin (Verily) December 4,

More information

Byzantine Techniques

Byzantine Techniques November 29, 2005 Reliability and Failure There can be no unity without agreement, and there can be no agreement without conciliation René Maowad Reliability and Failure There can be no unity without agreement,

More information

Byzantine Fault Tolerance

Byzantine Fault Tolerance Byzantine Fault Tolerance CS 240: Computing Systems and Concurrency Lecture 11 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. So far: Fail-stop failures

More information

Paxos Replicated State Machines as the Basis of a High- Performance Data Store

Paxos Replicated State Machines as the Basis of a High- Performance Data Store Paxos Replicated State Machines as the Basis of a High- Performance Data Store William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters and Peng Li March 30, 2011 Q: How to build a

More information

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance Practical Byzantine Fault Tolerance Robert Grimm New York University (Partially based on notes by Eric Brewer and David Mazières) The Three Questions What is the problem? What is new or different? What

More information

Byzantine Fault Tolerance for Distributed Systems

Byzantine Fault Tolerance for Distributed Systems Cleveland State University EngagedScholarship@CSU ETD Archive 2014 Byzantine Fault Tolerance for Distributed Systems Honglei Zhang Cleveland State University How does access to this work benefit you? Let

More information

ZZ and the Art of Practical BFT Execution

ZZ and the Art of Practical BFT Execution To appear in EuroSys 2 and the Art of Practical BFT Execution Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, And Emmanuel Cecchet Department of Computer Science, University of Massachusetts

More information

ZZ and the Art of Practical BFT Execution

ZZ and the Art of Practical BFT Execution and the Art of Practical BFT Execution Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel Cecchet University of Massachusetts Amherst {twood,rahul,arun,shenoy,cecchet}@cs.umass.edu

More information

Key-value store with eventual consistency without trusting individual nodes

Key-value store with eventual consistency without trusting individual nodes basementdb Key-value store with eventual consistency without trusting individual nodes https://github.com/spferical/basementdb 1. Abstract basementdb is an eventually-consistent key-value store, composed

More information

Trustworthy Coordination of Web Services Atomic Transactions

Trustworthy Coordination of Web Services Atomic Transactions 1 Trustworthy Coordination of Web s Atomic Transactions Honglei Zhang, Hua Chai, Wenbing Zhao, Member, IEEE, P. M. Melliar-Smith, Member, IEEE, L. E. Moser, Member, IEEE Abstract The Web Atomic Transactions

More information

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ)

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ) Data Consistency and Blockchain Bei Chun Zhou (BlockChainZ) beichunz@cn.ibm.com 1 Data Consistency Point-in-time consistency Transaction consistency Application consistency 2 Strong Consistency ACID Atomicity.

More information

Byzantine Fault Tolerant Raft

Byzantine Fault Tolerant Raft Abstract Byzantine Fault Tolerant Raft Dennis Wang, Nina Tai, Yicheng An {dwang22, ninatai, yicheng} @stanford.edu https://github.com/g60726/zatt For this project, we modified the original Raft design

More information

MENCIUS: BUILDING EFFICIENT

MENCIUS: BUILDING EFFICIENT MENCIUS: BUILDING EFFICIENT STATE MACHINE FOR WANS By: Yanhua Mao Flavio P. Junqueira Keith Marzullo Fabian Fuxa, Chun-Yu Hsiung November 14, 2018 AGENDA 1. Motivation 2. Breakthrough 3. Rules of Mencius

More information

Replicated State Machine in Wide-area Networks

Replicated State Machine in Wide-area Networks Replicated State Machine in Wide-area Networks Yanhua Mao CSE223A WI09 1 Building replicated state machine with consensus General approach to replicate stateful deterministic services Provide strong consistency

More information

TAPIR. By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton

TAPIR. By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton TAPIR By Irene Zhang, Naveen Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan Ports Presented by Todd Charlton Outline Problem Space Inconsistent Replication TAPIR Evaluation Conclusion Problem

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

Zzyzx: Scalable Fault Tolerance through Byzantine Locking

Zzyzx: Scalable Fault Tolerance through Byzantine Locking Zzyzx: Scalable Fault Tolerance through Byzantine Locking James Hendricks Shafeeq Sinnamohideen Gregory R. Ganger Michael K. Reiter Carnegie Mellon University University of North Carolina at Chapel Hill

More information

The OceanStore Write Path

The OceanStore Write Path The OceanStore Write Path Sean C. Rhea John Kubiatowicz University of California, Berkeley June 11, 2002 Introduction: the OceanStore Write Path Introduction: the OceanStore Write Path The Inner Ring Acts

More information

The Red Belly Blockchain Experiments

The Red Belly Blockchain Experiments The Red Belly Blockchain Experiments Concurrent Systems Research Group, University of Sydney, Data-CSIRO Abstract In this paper, we present the largest experiment of a blockchain system to date. To achieve

More information

Large-Scale Byzantine Fault Tolerance: Safe but Not Always Live

Large-Scale Byzantine Fault Tolerance: Safe but Not Always Live Large-Scale Byzantine Fault Tolerance: Safe but Not Always Live Rodrigo Rodrigues INESC-ID and Technical University of Lisbon Petr Kouznetsov Max Planck Institute for Software Systems Bobby Bhattacharjee

More information

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999 Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov Laboratory

More information

Byzantine Fault-Tolerance with Commutative Commands

Byzantine Fault-Tolerance with Commutative Commands Byzantine Fault-Tolerance with Commutative Commands Pavel Raykov 1, Nicolas Schiper 2, and Fernando Pedone 2 1 Swiss Federal Institute of Technology (ETH) Zurich, Switzerland 2 University of Lugano (USI)

More information

Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines

Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines Separating the WHEAT from the Chaff: An Empirical Design for Geo-Replicated State Machines João Sousa and Alysson Bessani LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal Abstract State

More information

Byzantine Fault Tolerance Can Be Fast

Byzantine Fault Tolerance Can Be Fast Byzantine Fault Tolerance Can Be Fast Miguel Castro Microsoft Research Ltd. 1 Guildhall St., Cambridge CB2 3NH, UK mcastro@microsoft.com Barbara Liskov MIT Laboratory for Computer Science 545 Technology

More information

WICE - A Pragmatic Protocol for Database Replication in Interconnected Clusters

WICE - A Pragmatic Protocol for Database Replication in Interconnected Clusters WICE - A Pragmatic Protocol for Database Replication in Interconnected Clusters Jon Grov 1 Luís Soares 2 Alfrânio Correia Jr. 2 José Pereira 2 Rui Oliveira 2 Fernando Pedone 3 1 University of Oslo, Norway

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Baris Kasikci (Thanks, Harsha Madhyastha and Jason Flinn for the slides!) Distributed file systems Remote storage of data that appears local Examples:

More information

G Distributed Systems: Fall Quiz II

G Distributed Systems: Fall Quiz II Computer Science Department New York University G22.3033-006 Distributed Systems: Fall 2008 Quiz II All problems are open-ended questions. In order to receive credit you must answer the question as precisely

More information

or? Paxos: Fun Facts Quorum Quorum: Primary Copy vs. Majority Quorum: Primary Copy vs. Majority

or? Paxos: Fun Facts Quorum Quorum: Primary Copy vs. Majority Quorum: Primary Copy vs. Majority Paxos: Fun Facts Quorum Why is the algorithm called Paxos? Leslie Lamport described the algorithm as the solution to a problem of the parliament on a fictitious Greek island called Paxos Many readers were

More information

Basic vs. Reliable Multicast

Basic vs. Reliable Multicast Basic vs. Reliable Multicast Basic multicast does not consider process crashes. Reliable multicast does. So far, we considered the basic versions of ordered multicasts. What about the reliable versions?

More information

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout

Exploiting Commutativity For Practical Fast Replication. Seo Jin Park and John Ousterhout Exploiting Commutativity For Practical Fast Replication Seo Jin Park and John Ousterhout Overview Problem: consistent replication adds latency and throughput overheads Why? Replication happens after ordering

More information

PAPER Efficient Randomized Byzantine Fault-Tolerant Replication Based on Special Valued Coin Tossing

PAPER Efficient Randomized Byzantine Fault-Tolerant Replication Based on Special Valued Coin Tossing IEICE TRANS. INF. & SYST., VOL.E97 D, NO.2 FEBRUARY 2014 231 PAPER Efficient Randomized Byzantine Fault-Tolerant Replication Based on Special Valued Coin Tossing Junya NAKAMURA a), Nonmember, Tadashi ARARAGI

More information

ABSTRACT. Web Service Atomic Transaction (WS-AT) is a standard used to implement distributed

ABSTRACT. Web Service Atomic Transaction (WS-AT) is a standard used to implement distributed ABSTRACT Web Service Atomic Transaction (WS-AT) is a standard used to implement distributed processing over the internet. Trustworthy coordination of transactions is essential to ensure proper running

More information

BYZANTINE FAULT TOLERANT SOFTWARE- DEFINED NETWORKING (SDN) CONTROLLERS

BYZANTINE FAULT TOLERANT SOFTWARE- DEFINED NETWORKING (SDN) CONTROLLERS BYZANTINE FAULT TOLERANT SOFTWARE- DEFINED NETWORKING (SDN) CONTROLLERS KARIM ELDEFRAWY* AND TYLER KACZMAREK** * INFORMATION AND SYSTEMS SCIENCES LAB (ISSL), HRL LABORATORIES ** UNIVERSITY OF CALIFORNIA

More information

Distributed Systems. 05. Clock Synchronization. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 05. Clock Synchronization. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 05. Clock Synchronization Paul Krzyzanowski Rutgers University Fall 2017 2014-2017 Paul Krzyzanowski 1 Synchronization Synchronization covers interactions among distributed processes

More information

Towards Recoverable Hybrid Byzantine Consensus

Towards Recoverable Hybrid Byzantine Consensus Towards Recoverable Hybrid Byzantine Consensus Hans P. Reiser 1, Rüdiger Kapitza 2 1 University of Lisboa, Portugal 2 University of Erlangen-Nürnberg, Germany September 22, 2009 Overview 1 Background Why?

More information

The Next 700 BFT Protocols

The Next 700 BFT Protocols The Next 700 BFT Protocols Rachid Guerraoui, Nikola Knežević EPFL rachid.guerraoui@epfl.ch, nikola.knezevic@epfl.ch Vivien Quéma CNRS vivien.quema@inria.fr Marko Vukolić IBM Research - Zurich mvu@zurich.ibm.com

More information

Resource-efficient Byzantine Fault Tolerance. Tobias Distler, Christian Cachin, and Rüdiger Kapitza

Resource-efficient Byzantine Fault Tolerance. Tobias Distler, Christian Cachin, and Rüdiger Kapitza 1 Resource-efficient Byzantine Fault Tolerance Tobias Distler, Christian Cachin, and Rüdiger Kapitza Abstract One of the main reasons why Byzantine fault-tolerant (BFT) systems are currently not widely

More information

Copyright by Ramakrishna Rao Kotla 2008

Copyright by Ramakrishna Rao Kotla 2008 Copyright by Ramakrishna Rao Kotla 2008 The Dissertation Committee for Ramakrishna Rao Kotla certifies that this is the approved version of the following dissertation: xbft: Byzantine Fault Tolerance with

More information

Practical Byzantine Fault Tolerance Using Fewer than 3f+1 Active Replicas

Practical Byzantine Fault Tolerance Using Fewer than 3f+1 Active Replicas Proceedings of the 17th International Conference on Parallel and Distributed Computing Systems San Francisco, California, pp 241-247, September 24 Practical Byzantine Fault Tolerance Using Fewer than 3f+1

More information

ZZ and the Art of Practical BFT

ZZ and the Art of Practical BFT University of Massachusetts, Technical Report 29-24 ZZ and the Art of Practical BFT Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel Cecchet Department of Computer Science,

More information

Security (and finale) Dan Ports, CSEP 552

Security (and finale) Dan Ports, CSEP 552 Security (and finale) Dan Ports, CSEP 552 Today Security: what if parts of your distributed system are malicious? BFT: state machine replication Bitcoin: peer-to-peer currency Course wrap-up Security Too

More information

Low-Latency Multi-Datacenter Databases using Replicated Commit

Low-Latency Multi-Datacenter Databases using Replicated Commit Low-Latency Multi-Datacenter Databases using Replicated Commit Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, Amr El Abbadi UCSB Presented by Ashutosh Dhekne Main Contributions Reduce

More information

ZZ and the Art of Practical BFT Execution

ZZ and the Art of Practical BFT Execution Extended Technical Report for EuroSys 2 Paper and the Art of Practical BFT Execution Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, And Emmanuel Cecchet Department of Computer Science,

More information

BFTCloud: A Byzantine Fault Tolerance Framework for Voluntary-Resource Cloud Computing

BFTCloud: A Byzantine Fault Tolerance Framework for Voluntary-Resource Cloud Computing 2011 IEEE 4th International Conference on Cloud Computing BFTCloud: A Byzantine Fault Tolerance Framework for Voluntary-Resource Cloud Computing Yilei Zhang, Zibin Zheng and Michael R. Lyu Department of

More information

Building Consistent Transactions with Inconsistent Replication

Building Consistent Transactions with Inconsistent Replication DB Reading Group Fall 2015 slides by Dana Van Aken Building Consistent Transactions with Inconsistent Replication Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, Dan R. K. Ports

More information

Why then another BFT protocol? Zyzzyva. Simplify, simplify. Simplify, simplify. Complex decision tree hampers BFT adoption. H.D. Thoreau. H.D.

Why then another BFT protocol? Zyzzyva. Simplify, simplify. Simplify, simplify. Complex decision tree hampers BFT adoption. H.D. Thoreau. H.D. Why then another BFT protool? Yes No Zyzzyva Yes No Yes No Comple deision tree hampers BFT adoption Simplify, simplify H.D. Thoreau Simplify, simplify H.D. Thoreau Yes No Yes No Yes Yes No One protool

More information

Fault Tolerance via the State Machine Replication Approach. Favian Contreras

Fault Tolerance via the State Machine Replication Approach. Favian Contreras Fault Tolerance via the State Machine Replication Approach Favian Contreras Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial Written by Fred Schneider Why a Tutorial? The

More information

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Appears as Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999 A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Miguel Castro and Barbara Liskov

More information

arxiv:cs/ v3 [cs.dc] 1 Aug 2007

arxiv:cs/ v3 [cs.dc] 1 Aug 2007 A Byzantine Fault Tolerant Distributed Commit Protocol arxiv:cs/0612083v3 [cs.dc] 1 Aug 2007 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University, 2121 Euclid Ave,

More information

XFT: Practical Fault Tolerance Beyond Crashes

XFT: Practical Fault Tolerance Beyond Crashes XFT: Practical Fault Tolerance Beyond Crashes Shengyun Liu NUDT Paolo Viotti EURECOM Christian Cachin IBM Research - Zurich Marko Vukolić IBM Research - Zurich Vivien Quéma Grenoble INP Abstract Despite

More information

Tolerating Byzantine Faults in Transaction Processing Systems using Commit Barrier Scheduling

Tolerating Byzantine Faults in Transaction Processing Systems using Commit Barrier Scheduling Tolerating Byzantine Faults in Transaction Processing Systems using Commit Barrier Scheduling Ben Vandiver, Hari Balakrishnan, Barbara Liskov, Sam Madden MIT Computer Science and Artificial Intelligence

More information

XFT: Practical Fault Tolerance beyond Crashes

XFT: Practical Fault Tolerance beyond Crashes XFT: Practical Fault Tolerance beyond Crashes Shengyun Liu, National University of Defense Technology; Paolo Viotti, EURECOM; Christian Cachin, IBM Research Zurich; Vivien Quéma, Grenoble Institute of

More information

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski Distributed Systems 09. State Machine Replication & Virtual Synchrony Paul Krzyzanowski Rutgers University Fall 2016 1 State machine replication 2 State machine replication We want high scalability and

More information

The Next 700 BFT Protocols

The Next 700 BFT Protocols The Next 700 BFT Protocols PIERRE-LOUIS AUBLIN, INSALyon RACHID GUERRAOUI, EPFL NIKOLA KNEŽEVIĆ, IBM Research - Zurich VIVIEN QUÉMA, GrenobleINP MARKO VUKOLIĆ, Eurécom We present Abstract (ABortable STate

More information

Low Overhead Concurrency Control for Partitioned Main Memory Databases

Low Overhead Concurrency Control for Partitioned Main Memory Databases Low Overhead Concurrency Control for Partitioned Main Memory Databases Evan Jones, Daniel Abadi, Samuel Madden, June 2010, SIGMOD CS 848 May, 2016 Michael Abebe Background Motivations Database partitioning

More information

Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions

Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions Byzantine Fault Tolerant Coordination for Web s Atomic Transactions Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University, Cleveland, OH 44115 wenbing@ieee.org Abstract.

More information

Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq

Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq Vincent Rahli, Ivana Vukotic, Marcus Völp, Paulo Esteves-Verissimo SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg firstname.lastname@uni.lu

More information

BFT Selection. Ali Shoker and Jean-Paul Bahsoun. University of Toulouse III, IRIT Lab. Toulouse, France

BFT Selection. Ali Shoker and Jean-Paul Bahsoun. University of Toulouse III, IRIT Lab. Toulouse, France BFT Selection Ali Shoker and Jean-Paul Bahsoun University of Toulouse III, IRIT Lab. Toulouse, France firstname.lastname@irit.fr Abstract. One-size-fits-all protocols are hard to achieve in Byzantine fault

More information