Automatic Performance Tuning. Jeremy Johnson Dept. of Computer Science Drexel University

Size: px
Start display at page:

Download "Automatic Performance Tuning. Jeremy Johnson Dept. of Computer Science Drexel University"

Transcription

1 Automatic Performance Tuning Jeremy Johnson Dept. of Computer Science Drexel University

2 Outline Scientific Computation Kernels Matrix Multiplication Fast Fourier Transform (FFT) Automated Performance Tuning (IEEE Proc. Vol. 93, No., Feb. 5) ATLAS FFTW SPIRAL

3 Matrix Multiplication and the FFT Matrix Multiplication and the FFT n k kj ik ij B A C ,, R l S R S l kl N S l N l kl N k x y l l k k x y k k l k l k S k k R l S k RS N ω ω ω ω

4 Basic Linear Algebra Subprograms (BLAS) Level vector vector, O(n) data, O(n) operations Level matrix vector, O(n ) data, O(n ) operations Level 3 matrix matrix, O(n ) data, O(n 3 ) operations data reuse locality! LAPACK built on top of BLAS (level 3) Blocking (for the memory hierarchy) is the single most important optimization for linear algebra algorithms GEMM General Matrix Multiplication SUBROUTINE DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) C : alpha*op( A )*op( B ) + beta*c, where op(x) X or X

5 DGEMM * Form C : alpha*a*b + beta*c. * DO 9, J, N IF( BETA.EQ.ZERO )THEN DO 5, I, M C( I, J ) ZERO 5 CONTINUE ELSE IF( BETA.NE.ONE )THEN DO 6, I, M C( I, J ) BETA*C( I, J ) 6 CONTINUE END IF DO 8, L, K IF( B( L, J ).NE.ZERO )THEN TEMP ALPHA*B( L, J ) DO 7, I, M C( I, J ) C( I, J ) + TEMP*A( I, L ) 7 CONTINUE END IF 8 CONTINUE 9 CONTINUE

6 Matrix Multiplication Performance

7 Matrix Multiplication Performance

8 Numeric Recipes Numeric Recipes in C The Art of Scientific Computing, nd Ed. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Cambridge University Press, 99. This book is unique, we think, in offering, for each topic considered, a certain amount of general discussion, a certain amount of analytical mathematics, a certain amount of discussion of algorithmics, and (most important) actual implementations of these ideas in the form of working computer routines.. Preliminarys. Solutions of Linear Algebraic Equations. Fast Fourier Transform 9. Partial Differential Equations. Less Numerical Algorithms

9 four

10 four (cont)

11 FFT Performance

12 Atlas Architecture and Search Parameters N B L data cache tile size NCN B L data cache tile size for non copying version M U, N U Register tile size K U Unroll factor for k loop L S Latency for computation scheduling FMA if fused multiply add available, otherwise F F, I F, N F Scheduling of loads Yotov et al., Is Search Really Necessary to Generate High Performance BLAS?, Proc. IEEE, Vol. 93, No., Feb. 5

13 ATLAS Code Generation Optimization for locality Cache tiling, Register tiling

14 ATLAS Code Generation Register Tiling MU + NU + MU NU NR Loop unrolling Scalar replacement Add/mul interleaving NU K mul mul Loop skewing B mul Ls add C i j C i j + A i k *B k j NB mul Ls+ add MU K NB mul Mu Nu add Mu Nu Ls+ A C add Mu Nu

15 ATLAS Search Estimate Machine Parameters (C, N R, FMA, L S ) Used to bound search Orthogonal Line Search (fix all parameters except one and search for the optimal value of this parameter) Search order NB MU, NU KU LS FF, IF, NF NCNB Cleanup codes

16 Using FFTW

17 FFTW Infrastructure Use dynamic programming to find an efficient way to combine code sequences. Combine code sequences using divide and conquer structure in FFT Codelets (optimized code sequences for small FFTs) Plan encodes divide and conquer strategy and stores twiddle factors Right Recursive Executor computes FFT of given data using algorithm described by plan.

18 SPIRAL system user DSP transform specifies goes for a coffee S P I R A L Formula Generator Mathematician fast algorithm as SPL formula C/Fortran/SIMD code Expert SPL Compiler Programmer controls algorithm generation controls implementation options runtime on given platform Search Engine (or an espresso for small transforms) platform adapted implementation comes back

19 DSP DSP Algorithms: Example 4 point DFT Algorithms: Example 4 point DFT Cooley/Tukey FFT (size 4): algorithms reduce arithmetic cost O(n^) O(nlog(n)) product of structured sparse matrices mathematical notation exhibits structure i i i i i ) ( ) ( L DFT I T I DFT DFT Fourier transform Identity Permutation Diagonal matrix (twiddles) Kronecker product

20 Algorithms Ruletrees Formulas DCT R ( II ) 8 DCT ( II ) n ( II ) ( IV ) P ( DCTn / DCTn / ) ( F I n / ) DCT ( II ) 4 DCT ( IV ) 4 R R6 DCT ( IV ) n P DCT ( II ) n S DCT R3 F ( II ) DCT DST R4 F ( IV ) R6 ( II ) DCT II ( ) DCT R3 F F ( II ) DCT R ( II ) 4 DCT DST R4 F ( IV ) R6 ( II )

21 Generated DFT Vector Code: Pentium 4, SSE 7 6 hand tuned vendor assembly code (Pseudo) gflop/s Spiral SSE Intel MKL interl. FFTW..3 Spiral C Spiral C vect SIMD FFT n DFT n single precision, Pentium 4,.53 GHz, using Intel C compiler 6. speedups (to C code) up to factor of 3.

22 Best DFT Trees, size 4 Pentium 4 float Pentium 4 double Pentium III float AthlonXP float scalar C vect SIMD trees platform/datatype dependent

23 Crosstiming of best trees on Pentium 4 5. Slowdown factor w.r.t. best Pentium 4 SSE Pentium 4 SSE AthlonXP SSE PentiumIII SSE Pentium 4 float n DFT n single precision, runtime of best found of other platforms software adaptation is necessary

Parallelism in Spiral

Parallelism in Spiral Parallelism in Spiral Franz Franchetti and the Spiral team (only part shown) Electrical and Computer Engineering Carnegie Mellon University Joint work with Yevgen Voronenko Markus Püschel This work was

More information

SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing Algorithms

SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing Algorithms SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing Algorithms Markus Püschel Faculty José Moura (CMU) Jeremy Johnson (Drexel) Robert Johnson (MathStar Inc.) David Padua (UIUC) Viktor

More information

System Demonstration of Spiral: Generator for High-Performance Linear Transform Libraries

System Demonstration of Spiral: Generator for High-Performance Linear Transform Libraries System Demonstration of Spiral: Generator for High-Performance Linear Transform Libraries Yevgen Voronenko, Franz Franchetti, Frédéric de Mesmay, and Markus Püschel Department of Electrical and Computer

More information

Formal Loop Merging for Signal Transforms

Formal Loop Merging for Signal Transforms Formal Loop Merging for Signal Transforms Franz Franchetti Yevgen S. Voronenko Markus Püschel Department of Electrical & Computer Engineering Carnegie Mellon University This work was supported by NSF through

More information

Joint Runtime / Energy Optimization and Hardware / Software Partitioning of Linear Transforms

Joint Runtime / Energy Optimization and Hardware / Software Partitioning of Linear Transforms Joint Runtime / Energy Optimization and Hardware / Software Partitioning of Linear Transforms Paolo D Alberto, Franz Franchetti, Peter A. Milder, Aliaksei Sandryhaila, James C. Hoe, José M. F. Moura, Markus

More information

Statistical Evaluation of a Self-Tuning Vectorized Library for the Walsh Hadamard Transform

Statistical Evaluation of a Self-Tuning Vectorized Library for the Walsh Hadamard Transform Statistical Evaluation of a Self-Tuning Vectorized Library for the Walsh Hadamard Transform Michael Andrews and Jeremy Johnson Department of Computer Science, Drexel University, Philadelphia, PA USA Abstract.

More information

A Comparison of Empirical and Model-driven Optimization

A Comparison of Empirical and Model-driven Optimization 1 A Comparison of Empirical and Model-driven Optimization Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran, David Padua, Keshav Pingali, Paul Stodghill Abstract A key step in program optimization is

More information

Generating Parallel Transforms Using Spiral

Generating Parallel Transforms Using Spiral Generating Parallel Transforms Using Spiral Franz Franchetti Yevgen Voronenko Markus Püschel Part of the Spiral Team Electrical and Computer Engineering Carnegie Mellon University Sponsors: DARPA DESA

More information

Program Generation, Optimization, and Adaptation: SPIRAL and other efforts

Program Generation, Optimization, and Adaptation: SPIRAL and other efforts Program Generation, Optimization, and Adaptation: SPIRAL and other efforts Markus Püschel Electrical and Computer Engineering University SPIRAL Team: José M. F. Moura (ECE, CMU) James C. Hoe (ECE, CMU)

More information

Is Search Really Necessary to Generate High-Performance BLAS?

Is Search Really Necessary to Generate High-Performance BLAS? 1 Is Search Really Necessary to Generate High-Performance BLAS? Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran, David Padua, Keshav Pingali, Paul Stodghill Abstract A key step in program optimization

More information

Algorithms and Computation in Signal Processing

Algorithms and Computation in Signal Processing Algorithms and Computation in Signal Processing special topic course 8-799B spring 25 24 th and 25 th Lecture Apr. 7 and 2, 25 Instructor: Markus Pueschel TA: Srinivas Chellappa Research Projects Presentations

More information

Dense matrix algebra and libraries (and dealing with Fortran)

Dense matrix algebra and libraries (and dealing with Fortran) Dense matrix algebra and libraries (and dealing with Fortran) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealing with Fortran)

More information

A Few Numerical Libraries for HPC

A Few Numerical Libraries for HPC A Few Numerical Libraries for HPC CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) A Few Numerical Libraries for HPC Spring 2016 1 / 37 Outline 1 HPC == numerical linear

More information

A SIMD Vectorizing Compiler for Digital Signal Processing Algorithms Λ

A SIMD Vectorizing Compiler for Digital Signal Processing Algorithms Λ A SIMD Vectorizing Compiler for Digital Signal Processing Algorithms Λ Franz Franchetti Applied and Numerical Mathematics Technical University of Vienna, Austria franz.franchetti@tuwien.ac.at Markus Püschel

More information

Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok

Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok Texas Learning and Computation Center Department of Computer Science University of Houston Outline Motivation

More information

Tackling Parallelism With Symbolic Computation

Tackling Parallelism With Symbolic Computation Tackling Parallelism With Symbolic Computation Markus Püschel and the Spiral team (only part shown) With: Franz Franchetti Yevgen Voronenko Electrical and Computer Engineering Carnegie Mellon University

More information

Advanced Computing Research Laboratory. Adaptive Scientific Software Libraries

Advanced Computing Research Laboratory. Adaptive Scientific Software Libraries Adaptive Scientific Software Libraries and Texas Learning and Computation Center and Department of Computer Science University of Houston Challenges Diversity of execution environments Growing complexity

More information

Scientific Computing. Some slides from James Lambers, Stanford

Scientific Computing. Some slides from James Lambers, Stanford Scientific Computing Some slides from James Lambers, Stanford Dense Linear Algebra Scaling and sums Transpose Rank-one updates Rotations Matrix vector products Matrix Matrix products BLAS Designing Numerical

More information

Library Generation For Linear Transforms

Library Generation For Linear Transforms Library Generation For Linear Transforms Yevgen Voronenko May RS RS 3 RS RS RS RS 7 RS 5 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical

More information

Faster Code for Free: Linear Algebra Libraries. Advanced Research Compu;ng 22 Feb 2017

Faster Code for Free: Linear Algebra Libraries. Advanced Research Compu;ng 22 Feb 2017 Faster Code for Free: Linear Algebra Libraries Advanced Research Compu;ng 22 Feb 2017 Outline Introduc;on Implementa;ons Using them Use on ARC systems Hands on session Conclusions Introduc;on 3 BLAS Level

More information

SPIRAL Overview: Automatic Generation of DSP Algorithms & More *

SPIRAL Overview: Automatic Generation of DSP Algorithms & More * SPIRAL Overview: Automatic Generation of DSP Algorithms & More * Jeremy Johnson (& SPIRAL Team) Drexel University * The work is supported by DARPA DESA, NSF, and Intel. Material for presentation provided

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Dense linear algebra, LAPACK, MMM optimizations in ATLAS Instructor: Markus Püschel TA: Daniele Spampinato & Alen Stojanov Today Linear algebra software: history,

More information

SPIRAL Generated Modular FFTs *

SPIRAL Generated Modular FFTs * SPIRAL Generated Modular FFTs * Jeremy Johnson Lingchuan Meng Drexel University * The work is supported by DARPA DESA, NSF, and Intel. Material for SPIRAL overview provided by Franz Francheti, Yevgen Voronenko,,

More information

Resources for parallel computing

Resources for parallel computing Resources for parallel computing BLAS Basic linear algebra subprograms. Originally published in ACM Toms (1979) (Linpack Blas + Lapack). Implement matrix operations upto matrix-matrix multiplication and

More information

BLAS. Christoph Ortner Stef Salvini

BLAS. Christoph Ortner Stef Salvini BLAS Christoph Ortner Stef Salvini The BLASics Basic Linear Algebra Subroutines Building blocks for more complex computations Very widely used Level means number of operations Level 1: vector-vector operations

More information

INTEL MKL Vectorized Compact routines

INTEL MKL Vectorized Compact routines INTEL MKL Vectorized Compact routines Mesut Meterelliyoz, Peter Caday, Timothy B. Costa, Kazushige Goto, Louise Huot, Sarah Knepper, Arthur Araujo Mitrano, Shane Story 2018 BLIS RETREAT 09/17/2018 OUTLINE

More information

How to Write Fast Code , spring rd Lecture, Apr. 9 th

How to Write Fast Code , spring rd Lecture, Apr. 9 th How to Write Fast Code 18-645, spring 2008 23 rd Lecture, Apr. 9 th Instructor: Markus Püschel TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred) Research Project Current status Today Papers due

More information

Automatic Performance Tuning and Machine Learning

Automatic Performance Tuning and Machine Learning Automatic Performance Tuning and Machine Learning Markus Püschel Computer Science, ETH Zürich with: Frédéric de Mesmay PhD, Electrical and Computer Engineering, Carnegie Mellon PhD and Postdoc openings:

More information

Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments

Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra SIAM Conference on Computational Science and Engineering

More information

Advanced School in High Performance and GRID Computing November Mathematical Libraries. Part I

Advanced School in High Performance and GRID Computing November Mathematical Libraries. Part I 1967-10 Advanced School in High Performance and GRID Computing 3-14 November 2008 Mathematical Libraries. Part I KOHLMEYER Axel University of Pennsylvania Department of Chemistry 231 South 34th Street

More information

Algorithms and Computation in Signal Processing

Algorithms and Computation in Signal Processing Algorithms and Computation in Signal Processing special topic course 18-799B spring 2005 14 th Lecture Feb. 24, 2005 Instructor: Markus Pueschel TA: Srinivas Chellappa Course Evaluation Email sent out

More information

Optimizing MMM & ATLAS Library Generator

Optimizing MMM & ATLAS Library Generator Optimizing MMM & ATLAS Library Generator Recall: MMM miss ratios L1 Cache Miss Ratio for Intel Pentium III MMM with N = 1 1300 16 32/lock 4-way 8-byte elements IJ version (large cache) DO I = 1, N//row-major

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Autotuning and Machine Learning Instructor: Markus Püschel TA: Gagandeep Singh, Daniele Spampinato, Alen Stojanov Overview Rough classification of autotuning efforts

More information

Sarah Knepper. Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018

Sarah Knepper. Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018 Sarah Knepper Intel Math Kernel Library (Intel MKL) 25 May 2018, iwapt 2018 Outline Motivation Problem statement and solutions Simple example Performance comparison 2 Motivation Partial differential equations

More information

Overcoming the Barriers to Sustained Petaflop Performance. William D. Gropp Mathematics and Computer Science

Overcoming the Barriers to Sustained Petaflop Performance. William D. Gropp Mathematics and Computer Science Overcoming the Barriers to Sustained Petaflop Performance William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp But First Are we too CPU-centric? What about I/O? What do applications

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing W. P. Petersen Seminar for Applied Mathematics Department of Mathematics, ETHZ, Zurich wpp@math. ethz.ch P. Arbenz Institute for Scientific Computing Department Informatik,

More information

Fastest and most used math library for Intel -based systems 1

Fastest and most used math library for Intel -based systems 1 Fastest and most used math library for Intel -based systems 1 Speaker: Alexander Kalinkin Contributing authors: Peter Caday, Kazushige Goto, Louise Huot, Sarah Knepper, Mesut Meterelliyoz, Arthur Araujo

More information

FFT ALGORITHMS FOR MULTIPLY-ADD ARCHITECTURES

FFT ALGORITHMS FOR MULTIPLY-ADD ARCHITECTURES FFT ALGORITHMS FOR MULTIPLY-ADD ARCHITECTURES FRANCHETTI Franz, (AUT), KALTENBERGER Florian, (AUT), UEBERHUBER Christoph W. (AUT) Abstract. FFTs are the single most important algorithms in science and

More information

SPIRAL: Code Generation for DSP Transforms

SPIRAL: Code Generation for DSP Transforms PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION 1 SPIRAL: Code Generation for DSP Transforms Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela

More information

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager

Intel Math Kernel Library (Intel MKL) BLAS. Victor Kostin Intel MKL Dense Solvers team manager Intel Math Kernel Library (Intel MKL) BLAS Victor Kostin Intel MKL Dense Solvers team manager Intel MKL BLAS/Sparse BLAS Original ( dense ) BLAS available from www.netlib.org Additionally Intel MKL provides

More information

How to Write Fast Numerical Code Spring 2012 Lecture 9. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato

How to Write Fast Numerical Code Spring 2012 Lecture 9. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato How to Write Fast Numerical Code Spring 2012 Lecture 9 Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato Today Linear algebra software: history, LAPACK and BLAS Blocking (BLAS 3): key

More information

printf("\n\nx = "); for(i=0;i<5;i++) printf("\n%f %f", X[i],X[i+5]); printf("\n\ny = "); for(i=0;i<5;i++) printf("\n%f", Y[i]);

printf(\n\nx = ); for(i=0;i<5;i++) printf(\n%f %f, X[i],X[i+5]); printf(\n\ny = ); for(i=0;i<5;i++) printf(\n%f, Y[i]); OLS.c / / #include #include #include int main(){ int i,info, ipiv[2]; char trans = 't', notrans ='n'; double alpha = 1.0, beta=0.0; int ncol=2; int nrow=5; int

More information

A Standard for Batching BLAS Operations

A Standard for Batching BLAS Operations A Standard for Batching BLAS Operations Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester 5/8/16 1 API for Batching BLAS Operations We are proposing, as a community

More information

Intel Performance Libraries

Intel Performance Libraries Intel Performance Libraries Powerful Mathematical Library Intel Math Kernel Library (Intel MKL) Energy Science & Research Engineering Design Financial Analytics Signal Processing Digital Content Creation

More information

Adaptive Scientific Software Libraries

Adaptive Scientific Software Libraries Adaptive Scientific Software Libraries Lennart Johnsson Advanced Computing Research Laboratory Department of Computer Science University of Houston Challenges Diversity of execution environments Growing

More information

Automated Empirical Optimizations of Software and the ATLAS project* Software Engineering Seminar Pascal Spörri

Automated Empirical Optimizations of Software and the ATLAS project* Software Engineering Seminar Pascal Spörri Automated Empirical Optimizations of Software and the ATLAS project* Software Engineering Seminar Pascal Spörri *R. Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-2):3-35, 2001.

More information

Cache-oblivious Programming

Cache-oblivious Programming Cache-oblivious Programming Story so far We have studied cache optimizations for array programs Main transformations: loop interchange, loop tiling Loop tiling converts matrix computations into block matrix

More information

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core Tuning on a single core 1 From models to practice In lecture 2, we discussed features such as instruction-level parallelism and cache hierarchies that we need to understand in order to have a reasonable

More information

Parallelism V. HPC Profiling. John Cavazos. Dept of Computer & Information Sciences University of Delaware

Parallelism V. HPC Profiling. John Cavazos. Dept of Computer & Information Sciences University of Delaware Parallelism V HPC Profiling John Cavazos Dept of Computer & Information Sciences University of Delaware Lecture Overview Performance Counters Profiling PAPI TAU HPCToolkit PerfExpert Performance Counters

More information

Linear Algebra Libraries: BLAS, LAPACK, ScaLAPACK, PLASMA, MAGMA

Linear Algebra Libraries: BLAS, LAPACK, ScaLAPACK, PLASMA, MAGMA Linear Algebra Libraries: BLAS, LAPACK, ScaLAPACK, PLASMA, MAGMA Shirley Moore svmoore@utep.edu CPS5401 Fall 2012 svmoore.pbworks.com November 8, 2012 1 Learning ObjecNves AOer complenng this lesson, you

More information

Scientific Computing with GPUs Autotuning GEMMs Fermi GPUs

Scientific Computing with GPUs Autotuning GEMMs Fermi GPUs Parallel Processing and Applied Mathematics September 11-14, 2011 Toruń, Poland Scientific Computing with GPUs Autotuning GEMMs Fermi GPUs Innovative Computing Laboratory Electrical Engineering and Computer

More information

Algorithms and Computation in Signal Processing

Algorithms and Computation in Signal Processing Algorithms and Computation in Signal Processing special topic course 18-799B spring 2005 22 nd lecture Mar. 31, 2005 Instructor: Markus Pueschel Guest instructor: Franz Franchetti TA: Srinivas Chellappa

More information

Automatically Tuned FFTs for BlueGene/L s Double FPU

Automatically Tuned FFTs for BlueGene/L s Double FPU Automatically Tuned FFTs for BlueGene/L s Double FPU Franz Franchetti, Stefan Kral, Juergen Lorenz, Markus Püschel, and Christoph W. Ueberhuber Institute for Analysis and Scientific Computing, Vienna University

More information

BLASFEO. Gianluca Frison. BLIS retreat September 19, University of Freiburg

BLASFEO. Gianluca Frison. BLIS retreat September 19, University of Freiburg University of Freiburg BLIS retreat September 19, 217 Basic Linear Algebra Subroutines For Embedded Optimization performance dgemm_nt 5 4 Intel Core i7 48MQ HP OpenBLAS.2.19 MKL 217.2.174 ATLAS 3.1.3 BLIS.1.6

More information

Automatically Tuned Linear Algebra Software (ATLAS) R. Clint Whaley Innovative Computing Laboratory University of Tennessee.

Automatically Tuned Linear Algebra Software (ATLAS) R. Clint Whaley Innovative Computing Laboratory University of Tennessee. Automatically Tuned Linear Algebra Software (ATLAS) R. Clint Whaley Innovative Computing Laboratory University of Tennessee Outline Pre-intro: BLAS Motivation What is ATLAS Present release How ATLAS works

More information

Introduction to the Xeon Phi programming model. Fabio AFFINITO, CINECA

Introduction to the Xeon Phi programming model. Fabio AFFINITO, CINECA Introduction to the Xeon Phi programming model Fabio AFFINITO, CINECA What is a Xeon Phi? MIC = Many Integrated Core architecture by Intel Other names: KNF, KNC, Xeon Phi... Not a CPU (but somewhat similar

More information

An Experimental Comparison of Cache-oblivious and Cache-aware Programs DRAFT: DO NOT DISTRIBUTE

An Experimental Comparison of Cache-oblivious and Cache-aware Programs DRAFT: DO NOT DISTRIBUTE An Experimental Comparison of Cache-oblivious and Cache-aware Programs DRAFT: DO NOT DISTRIBUTE Kamen Yotov IBM T. J. Watson Research Center kyotov@us.ibm.com Tom Roeder, Keshav Pingali Cornell University

More information

Intel MIC Architecture. Dr. Momme Allalen, LRZ, PRACE PATC: Intel MIC&GPU Programming Workshop

Intel MIC Architecture. Dr. Momme Allalen, LRZ, PRACE PATC: Intel MIC&GPU Programming Workshop Intel MKL @ MIC Architecture Dr. Momme Allalen, LRZ, allalen@lrz.de PRACE PATC: Intel MIC&GPU Programming Workshop 1 2 Momme Allalen, HPC with GPGPUs, Oct. 10, 2011 What is the Intel MKL? Math library

More information

Autotuning (1/2): Cache-oblivious algorithms

Autotuning (1/2): Cache-oblivious algorithms Autotuning (1/2): Cache-oblivious algorithms Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA: Parallel Numerical Algorithms [L.17] Tuesday, March 4, 2008 1 Today s sources CS 267 (Demmel

More information

Introduction to HPC. Lecture 21

Introduction to HPC. Lecture 21 443 Introduction to HPC Lecture Dept of Computer Science 443 Fast Fourier Transform 443 FFT followed by Inverse FFT DIF DIT Use inverse twiddles for the inverse FFT No bitreversal necessary! 443 FFT followed

More information

Double-precision General Matrix Multiply (DGEMM)

Double-precision General Matrix Multiply (DGEMM) Double-precision General Matrix Multiply (DGEMM) Parallel Computation (CSE 0), Assignment Andrew Conegliano (A0) Matthias Springer (A00) GID G-- January, 0 0. Assumptions The following assumptions apply

More information

How to Write Fast Numerical Code Spring 2012 Lecture 13. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato

How to Write Fast Numerical Code Spring 2012 Lecture 13. Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato How to Write Fast Numerical Code Spring 2012 Lecture 13 Instructor: Markus Püschel TAs: Georg Ofenbeck & Daniele Spampinato ATLAS Mflop/s Compile Execute Measure Detect Hardware Parameters L1Size NR MulAdd

More information

PRACE PATC Course: Intel MIC Programming Workshop, MKL LRZ,

PRACE PATC Course: Intel MIC Programming Workshop, MKL LRZ, PRACE PATC Course: Intel MIC Programming Workshop, MKL LRZ, 27.6-29.6.2016 1 Agenda A quick overview of Intel MKL Usage of MKL on Xeon Phi - Compiler Assisted Offload - Automatic Offload - Native Execution

More information

Issues In Implementing The Primal-Dual Method for SDP. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM

Issues In Implementing The Primal-Dual Method for SDP. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM Issues In Implementing The Primal-Dual Method for SDP Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Outline 1. Cache and shared memory parallel computing concepts.

More information

Overcoming the Barriers to Sustained Petaflop Performance

Overcoming the Barriers to Sustained Petaflop Performance Overcoming the Barriers to Sustained Petaflop Performance William D. Gropp Mathematics and Computer Science www.mcs.anl.gov/~gropp Argonne National Laboratory A Laboratory Operated by The University of

More information

Achieve Better Performance with PEAK on XSEDE Resources

Achieve Better Performance with PEAK on XSEDE Resources Achieve Better Performance with PEAK on XSEDE Resources Haihang You, Bilel Hadri, Shirley Moore XSEDE 12 July 18 th 2012 Motivations FACTS ALTD ( Automatic Tracking Library Database ) ref Fahey, Jones,

More information

Automatic Performance Programming?

Automatic Performance Programming? A I n Automatic Performance Programming? Markus Püschel Computer Science m128i t3 = _mm_unpacklo_epi16(x[0], X[1]); m128i t4 = _mm_unpackhi_epi16(x[0], X[1]); m128i t7 = _mm_unpacklo_epi16(x[2], X[3]);

More information

An Adaptive Framework for Scientific Software Libraries. Ayaz Ali Lennart Johnsson Dept of Computer Science University of Houston

An Adaptive Framework for Scientific Software Libraries. Ayaz Ali Lennart Johnsson Dept of Computer Science University of Houston An Adaptive Framework for Scientific Software Libraries Ayaz Ali Lennart Johnsson Dept of Computer Science University of Houston Diversity of execution environments Growing complexity of modern microprocessors.

More information

Formal Loop Merging for Signal Transforms

Formal Loop Merging for Signal Transforms Formal Loop Merging for Signal Transforms Franz Franchetti Yevgen Voronenko Markus Püschel Department of Electrical and Computer Engineering Carnegie Mellon University {franzf, yvoronen, pueschel}@ece.cmu.edu

More information

A Fast Fourier Transform Compiler

A Fast Fourier Transform Compiler RETROSPECTIVE: A Fast Fourier Transform Compiler Matteo Frigo Vanu Inc., One Porter Sq., suite 18 Cambridge, MA, 02140, USA athena@fftw.org 1. HOW FFTW WAS BORN FFTW (the fastest Fourier transform in the

More information

Performance Modeling for Ranking Blocked Algorithms

Performance Modeling for Ranking Blocked Algorithms Performance Modeling for Ranking Blocked Algorithms Elmar Peise Aachen Institute for Advanced Study in Computational Engineering Science 27.4.2012 Elmar Peise (AICES) Performance Modeling 27.4.2012 1 Blocked

More information

Algorithms and Computation in Signal Processing

Algorithms and Computation in Signal Processing Algorithms and Computation in Signal Processing special topic course 18-799B spring 2005 20 th Lecture Mar. 24, 2005 Instructor: Markus Pueschel TA: Srinivas Chellappa Assignment 3 - Feedback Peak Performance

More information

Cell Processor and Playstation 3

Cell Processor and Playstation 3 Cell Processor and Playstation 3 Guillem Borrell i Nogueras February 24, 2009 Cell systems Bad news More bad news Good news Q&A IBM Blades QS21 Cell BE based. 8 SPE 460 Gflops Float 20 GFLops Double QS22

More information

Linear Algebra for Modern Computers. Jack Dongarra

Linear Algebra for Modern Computers. Jack Dongarra Linear Algebra for Modern Computers Jack Dongarra Tuning for Caches 1. Preserve locality. 2. Reduce cache thrashing. 3. Loop blocking when out of cache. 4. Software pipelining. 2 Indirect Addressing d

More information

Achieving Peak Performance on Intel Hardware. Intel Software Developer Conference London, 2017

Achieving Peak Performance on Intel Hardware. Intel Software Developer Conference London, 2017 Achieving Peak Performance on Intel Hardware Intel Software Developer Conference London, 2017 Welcome Aims for the day You understand some of the critical features of Intel processors and other hardware

More information

Automatically Optimized FFT Codes for the BlueGene/L Supercomputer

Automatically Optimized FFT Codes for the BlueGene/L Supercomputer Automatically Optimized FFT Codes for the BlueGene/L Supercomputer Franz Franchetti, Stefan Kral, Juergen Lorenz, Markus Püschel, Christoph W. Ueberhuber, and Peter Wurzinger Institute for Analysis and

More information

How To Write Fast Numerical Code: A Small Introduction

How To Write Fast Numerical Code: A Small Introduction How To Write Fast Numerical Code: A Small Introduction Srinivas Chellappa, Franz Franchetti, and Markus Püschel Electrical and Computer Engineering Carnegie Mellon University {schellap, franzf, pueschel}@ece.cmu.edu

More information

9. Linear Algebra Computation

9. Linear Algebra Computation 9. Linear Algebra Computation Basic Linear Algebra Subprograms (BLAS) Routines that provide standard, low-level, building blocks for performing basic vector and matrix operations. Originally developed

More information

A Matrix--Matrix Multiplication methodology for single/multi-core architectures using SIMD

A Matrix--Matrix Multiplication methodology for single/multi-core architectures using SIMD A Matrix--Matrix Multiplication methodology for single/multi-core architectures using SIMD KELEFOURAS, Vasileios , KRITIKAKOU, Angeliki and GOUTIS, Costas Available

More information

c 2013 Alexander Jih-Hing Yee

c 2013 Alexander Jih-Hing Yee c 2013 Alexander Jih-Hing Yee A FASTER FFT IN THE MID-WEST BY ALEXANDER JIH-HING YEE THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

More information

A High Performance C Package for Tridiagonalization of Complex Symmetric Matrices

A High Performance C Package for Tridiagonalization of Complex Symmetric Matrices A High Performance C Package for Tridiagonalization of Complex Symmetric Matrices Guohong Liu and Sanzheng Qiao Department of Computing and Software McMaster University Hamilton, Ontario L8S 4L7, Canada

More information

1 Motivation for Improving Matrix Multiplication

1 Motivation for Improving Matrix Multiplication CS170 Spring 2007 Lecture 7 Feb 6 1 Motivation for Improving Matrix Multiplication Now we will just consider the best way to implement the usual algorithm for matrix multiplication, the one that take 2n

More information

NAG Fortran Library Routine Document F01CTF.1

NAG Fortran Library Routine Document F01CTF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Memory bound computation, sparse linear algebra, OSKI Instructor: Markus Püschel TA: Alen Stojanov, Georg Ofenbeck, Gagandeep Singh ATLAS Mflop/s Compile Execute

More information

Intel Math Kernel Library (Intel MKL) Team - Presenter: Murat Efe Guney Workshop on Batched, Reproducible, and Reduced Precision BLAS Georgia Tech,

Intel Math Kernel Library (Intel MKL) Team - Presenter: Murat Efe Guney Workshop on Batched, Reproducible, and Reduced Precision BLAS Georgia Tech, Intel Math Kernel Library (Intel MKL) Team - Presenter: Murat Efe Guney Workshop on Batched, Reproducible, and Reduced Precision BLAS Georgia Tech, Atlanta February 24, 2017 Acknowledgements Benoit Jacob

More information

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1 LAPACK Linear Algebra PACKage 1 Janice Giudice David Knezevic 1 Motivating Question Recalling from last week... Level 1 BLAS: vectors ops Level 2 BLAS: matrix-vectors ops 2 2 O( n ) flops on O( n ) data

More information

Empirical Auto-tuning Code Generator for FFT and Trigonometric Transforms

Empirical Auto-tuning Code Generator for FFT and Trigonometric Transforms Empirical Auto-tuning Code Generator for FFT and Trigonometric Transforms Ayaz Ali and Lennart Johnsson Texas Learning and Computation Center University of Houston, Texas {ayaz,johnsson}@cs.uh.edu Dragan

More information

Code optimization techniques

Code optimization techniques & Alberto Bertoldo Advanced Computing Group Dept. of Information Engineering, University of Padova, Italy cyberto@dei.unipd.it May 19, 2009 The Four Commandments 1. The Pareto principle 80% of the effects

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

NAG Fortran Library Routine Document F01CWF.1

NAG Fortran Library Routine Document F01CWF.1 NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

*Yuta SAWA and Reiji SUDA The University of Tokyo

*Yuta SAWA and Reiji SUDA The University of Tokyo Auto Tuning Method for Deciding Block Size Parameters in Dynamically Load-Balanced BLAS *Yuta SAWA and Reiji SUDA The University of Tokyo iwapt 29 October 1-2 *Now in Central Research Laboratory, Hitachi,

More information

Think Globally, Search Locally

Think Globally, Search Locally Think Globally, Search Locally Kamen Yotov, Keshav Pingali, Paul Stodghill, {kyotov,pingali,stodghil}@cs.cornell.edu Department of Computer Science, Cornell University, Ithaca, NY 853. ABSTRACT A key step

More information

Automatic Derivation and Implementation of Signal Processing Algorithms

Automatic Derivation and Implementation of Signal Processing Algorithms Automatic Derivation and Implementation of Signal Processing Algorithms Sebastian Egner Philips Research Laboratories Prof. Hostlaan 4, WY21 5656 AA Eindhoven, The Netherlands sebastian.egner@philips.com

More information

Intel Math Kernel Library

Intel Math Kernel Library Intel Math Kernel Library Release 7.0 March 2005 Intel MKL Purpose Performance, performance, performance! Intel s scientific and engineering floating point math library Initially only basic linear algebra

More information

Learning to Construct Fast Signal Processing Implementations

Learning to Construct Fast Signal Processing Implementations Journal of Machine Learning Research 3 (2002) 887-919 Submitted 12/01; Published 12/02 Learning to Construct Fast Signal Processing Implementations Bryan Singer Manuela Veloso Department of Computer Science

More information

How to Write Fast Numerical Code Spring 2011 Lecture 22. Instructor: Markus Püschel TA: Georg Ofenbeck

How to Write Fast Numerical Code Spring 2011 Lecture 22. Instructor: Markus Püschel TA: Georg Ofenbeck How to Write Fast Numerical Code Spring 2011 Lecture 22 Instructor: Markus Püschel TA: Georg Ofenbeck Schedule Today Lecture Project presentations 10 minutes each random order random speaker 10 Final code

More information

Automatic Generation of the HPC Challenge's Global FFT Benchmark for BlueGene/P

Automatic Generation of the HPC Challenge's Global FFT Benchmark for BlueGene/P Automatic Generation of the HPC Challenge's Global FFT Benchmark for BlueGene/P Franz Franchetti 1, Yevgen Voronenko 2, Gheorghe Almasi 3 1 University and SpiralGen, Inc. 2 AccuRay, Inc., 3 IBM Research

More information

An Experimental Study of Self-Optimizing Dense Linear Algebra Software

An Experimental Study of Self-Optimizing Dense Linear Algebra Software INVITED PAPER An Experimental Study of Self-Optimizing Dense Linear Algebra Software Analytical models of the memory hierarchy are used to explain the performance of self-optimizing software. By Milind

More information

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline:

AMath 483/583 Lecture 22. Notes: Another Send/Receive example. Notes: Notes: Another Send/Receive example. Outline: AMath 483/583 Lecture 22 Outline: MPI Master Worker paradigm Linear algebra LAPACK and the BLAS References: $UWHPSC/codes/mpi class notes: MPI section class notes: Linear algebra Another Send/Receive example

More information