Adaptive Caching Algorithms with Optimality Guarantees for NDN Networks. Stratis Ioannidis and Edmund Yeh

Size: px
Start display at page:

Download "Adaptive Caching Algorithms with Optimality Guarantees for NDN Networks. Stratis Ioannidis and Edmund Yeh"

Transcription

1 Adaptive Caching Algorithms with Optimality Guarantees for NDN Networks Stratis Ioannidis and Edmund Yeh

2 A Caching Network Nodes in the network store content items (e.g., files, file chunks) 1

3 A Caching Network? Nodes generate requests for content items 2

4 A Caching Network? Requests are routed towards a content source 3

5 A Caching Network Responses routed over reverse path 4

6 A Caching Network? Nodes have caches with finite capacities 5

7 A Caching Network? Nodes have caches with finite capacities 6

8 A Caching Network? Requests terminate early upon a cache hit 7

9 Example: Named Data Networks Webserver? cache-enabled routers User 8

10 Optimal Content Allocation Q: How should items be allocated to caches so that routing costs are minimized? 9

11 Optimal Content Allocation Challenge: Caching algorithm should be adaptive, and distributed. 10

12 A Simple Algorithm: Path-Replication [Cohen and Shenker 2002] [Jacobson et al. 2009]? Distributed Adaptive Popular! Cache item on every node in the reverse path Evict using a simple policy, e.g., LRU, LFU, FIFO etc. 11

13 But Path Replication combined with traditional eviction policies (LRU, LFU, FIFO, etc.) is arbitrarily suboptimal. 12

14 Path Replication + LRU is Arbitrarily Suboptimal Cost when caching : Cost of PR+LRU: When M is large, PR+LRU is arbitrarily suboptimal!?? requests per sec True for any strategy (LRU,LFU,FIFO,RR) that ignores upstream costs 13

15 Our Contributions Formal statement of offline problem NP-Hard [Shanmugam et al. IT 2013] Path Replication +LRU, LFU, FIFO, etc. is arbitrarily suboptimal Distributed, adaptive algorithm, within a constant approximation from optimal offline allocation Path Replication+novel eviction policy Great performance under 20+ network topologies 14

16 Overview Problem Formulation Distributed Adaptive Algorithms Evaluation 15

17 Overview Problem Formulation Distributed Adaptive Algorithms Evaluation 16

18 Model: Network Network represented as a directed, bi-directional graph 17

19 Model: Edge Costs Edge costs: 5 Each edge has a cost/weight 18

20 Model: Node Caches Edge costs: Node capacities: Node has a cache with capacity 19

21 Model: Cache Contents Edge costs: Node capacities: Items stored and requested form the item catalog 20

22 Model: Cache Contents Edge costs: Node capacities: For and, let if o.w. stores Then, for all, 21

23 Model: Designated Sources Edge costs: Node capacities:, for all For each and, there exists a set of nodes (the designated sources of ) that permanently store. I.e., if then 22

24 Model: Demand Edge costs: Node capacities:, for all? A request is a pair such that: Requests are always satisfied! is an item in is a simple path in such that. 23

25 Model: Demand Edge costs: Node capacities:, for all : demand Request rates:? Demand : set of all requests Request arrival process is Poisson with rate 24

26 Model: Routing Costs & Caching Gain Edge costs: Node capacities:, for all : demand 6 Request rates: Request? Worst case routing cost: 25

27 Model: Routing Costs & Caching Gain Edge costs: Node capacities:, for all : demand 6 Request rates: Request? Worst case routing cost: Cost due to intermediate caching: 26

28 Model: Routing Costs & Caching Gain Edge costs: Node capacities:, for all : demand 6 Request rates: Request? Worst case routing cost: Cost due to intermediate caching: Caching Gain: 27

29 Caching Gain Maximization Edge costs: : demand?? Node capacities: Request rates: Caching Gain:, for all The global allocation strategy is the binary matrix 28

30 Caching Gain Maximization Edge costs: : demand? Node capacities: Request rates: Caching Gain:, for all Maximize: Subject to:, for all, for all and, for all and 29

31 Offline Problem Maximize: Subject to:, for all, for all and, for all and Shanmugam, Golrezaei, Dimakis, Molisch, and Caire. Femtocaching: Wireless Content Delivery Through Distributed Caching Helpers. IT, 2013 NP-hard Submodular objective, matroid constraints Greedy algorithm gives ½-approximation ratio 1-1/e ratio can be achieved through pipage rounding method [Ageev and Sviridenko, J. of Comb. Opt., 2004] 30

32 Pipage Rounding [Ageev & Sviridenko 2004] Maximize: Subject to:, for all, for all and, for all and 31

33 Pipage Rounding [Ageev & Sviridenko 2004] Maximize: Subject to: Satisfied in expectation Think: All for all, for all and, for all and are independent Bernoulli random variables. Expected CG 32

34 Pipage Rounding [Ageev & Sviridenko 2004] Maximize: Subject to: for all, for all and, for all and Key idea: There exists a concave function such that 33

35 Pipage Rounding [Ageev & Sviridenko 2004] Maximize: Subject to: for all, for all and, for all and Key idea: There exists a concave function such that Algorithm Sketch: Maximize ; round solution to obtain discrete solution. 34

36 Overview Problem Formulation Distributed Adaptive Algorithms Evaluation 35

37 Projected Gradient Ascent Time is divided into slots 36

38 Projected Gradient Ascent Each node keeps track of its own marginal distribution 37

39 Projected Gradient Ascent During a slot, estimates by collecting measurements through passing packets. 38

40 Projected Gradient Ascent At the conclusion of the -th slot, updates its marginals through: 39

41 Projected Gradient Ascent After updating, node places random items in its cache, independently of other nodes, so that:, for all 40

42 Gradient Estimation How can estimate in a distributed fashion? 41

43 Gradient Estimation ? When request is generated, create a new control message 42

44 Gradient Estimation ? Forward control message over path until: 43

45 Gradient Estimation Forward until: ? +8 Send control message over reverse path, collecting sum of edge costs. Each node on reverse path, sniffs upstream costs, and maintains average per item. Average at end of slot is estimate of 44

46 Randomized Placement How can place exactly items in its cache, so that marginals are satisfied? 45

47 Randomized Placement = 0.82 = 0.77 = 0.64 = 0.77 Suppose that I give you a such that. Is there a way to select exactly that item is selected is? items at random, so that the probability 46

48 Randomized Placement: Sketch of Algorithm Triplets: 47

49 Convergence Theorem: For leads to an allocation, Projected Gradient Ascent such that where an optimal solution to the offline problem. 48

50 Projected Gradient Ascent (vs. Path Replication) Distributed Adaptive Constant Approximation to Optimal? Overhead for control traffic Overhead to retrieve content at end of timeslot Not so simple 49

51 Path-Replication + Greedy Eviction Policy Each node maintains an estimate for the (sub)gradient At any point in time, caches top items, with highest gradients 50

52 Path-Replication + Greedy Eviction Intuition: Greedily cache item with best upstream gain Frank-Wolfe Algorithm, PSEPHOS Algorithm [I.,Chaintreau, Massoulie,SIGMETRICS 2010] 6? A response carrying the item adds weights on the reverse path, and reports them to intermediate nodes. Weights are used to update estimate of. Greedy Eviction: if becomes one of the top items, evict item with smallest gradient, and cache. 51

53 Overview Problem Formulation Distributed Algorithms Evaluation 52

54 Multiple Topologies y-axis: ratio to offline solution 53

55 Open Questions Joint caching & routing PR+Greedy Eviction guarantees Delay vs. Throughput Optimality Broader resource management applications 54

56 Reference S. Ioannidis and E. Yeh, Adaptive Caching Networks with Optimality Guarantees. Proc. ACM SIGMETRICS, Antibes Juan-les-Pins, June 14-18, 2016, pp

57 Thank you!

Jointly Optimal Routing and Caching for Arbitrary Network Topologies

Jointly Optimal Routing and Caching for Arbitrary Network Topologies IEEE JSAC SPECIAL ISSUE ON CACHING FOR COMMUNICATION SYSTEMS AND NETWORKS 1 Jointly Optimal Routing and Caching for Arbitrary Network Topologies Stratis Ioannidis Member, IEEE, and Edmund Yeh Senior Member,

More information

Jointly Optimal Routing and Caching for Arbitrary Network Topologies

Jointly Optimal Routing and Caching for Arbitrary Network Topologies for Arbitrary Network Topologies ABSTRACT Stratis Ioannidis Northeastern University Electrical and Computer Engineering 360 Huntington Avenue, 409DA Boston, MA, USA ioannidis@ece.neu.edu We study a problem

More information

UtilCache: Effectively and Practicably Reducing Link Cost in Information-Centric Network

UtilCache: Effectively and Practicably Reducing Link Cost in Information-Centric Network UtilCache: Effectively and Practicably Reducing Link Cost in Information-Centric Network Lemei Huang, Yu Guan, Xinggong Zhang and Zongming Guo Institute of Computer Science Technology, Peking University,

More information

Scaled VIP Algorithms for Joint Dynamic Forwarding and Caching in Named Data Networks

Scaled VIP Algorithms for Joint Dynamic Forwarding and Caching in Named Data Networks 1896 1920 1987 2006 Scaled VIP Algorithms for Joint Dynamic Forwarding and Caching in Named Data Networks Ying Cui Shanghai Jiao Tong University, Shanghai, China Joint work with Fan Lai, Feng Qiu, Wenjie

More information

Content Placement and Service Scheduling in Femtocell Caching Networks

Content Placement and Service Scheduling in Femtocell Caching Networks Published in: IEEE Global Communications Conference (GLOBECOM, 2016 Content Placement and Service Scheduling in Femtocell Caching Networks Teng Liu and Alhussein A Abouzeid Department of Electrical, Computer

More information

Online Algorithms. - Lecture 4 -

Online Algorithms. - Lecture 4 - Online Algorithms - Lecture 4 - Outline Quick recap.. The Cashing Problem Randomization in Online Algorithms Other views to Online Algorithms The Ski-rental problem The Parking Permit Problem 2 The Caching

More information

Optimal Cache Allocation for Content-Centric Networking

Optimal Cache Allocation for Content-Centric Networking Optimal Cache Allocation for Content-Centric Networking Yonggong Wang, Zhenyu Li, Gaogang Xie Chinese Academy of Sciences Gareth Tyson, Steve Uhlig QMUL Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig,

More information

Named Data Networking for 5G Wireless

Named Data Networking for 5G Wireless Named Data Networking for 5G Wireless Edmund Yeh Electrical and Computer Engineering Northeastern University New York University January 27, 2017 Overview NDN: a major information-centric networking architecture

More information

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017

Lecture 2. 1 Introduction. 2 The Set Cover Problem. COMPSCI 632: Approximation Algorithms August 30, 2017 COMPSCI 632: Approximation Algorithms August 30, 2017 Lecturer: Debmalya Panigrahi Lecture 2 Scribe: Nat Kell 1 Introduction In this lecture, we examine a variety of problems for which we give greedy approximation

More information

Wireless Caching: learning time- varying popularity

Wireless Caching: learning time- varying popularity Wireless Caching: learning time- varying popularity Georgios Paschos Joint work with M. Leconte, L. Gkatzikis, M. Draief, S. Vassilaras, S. Chouvardas Huawei Technologies, Paris Tyrrhenian workshop - Livorno

More information

Cache Less for More in Information- Centric Networks W. K. Chai, D. He, I. Psaras and G. Pavlou (presenter)

Cache Less for More in Information- Centric Networks W. K. Chai, D. He, I. Psaras and G. Pavlou (presenter) Cache Less for More in Information- Centric Networks W. K. Chai, D. He, I. Psaras and G. Pavlou (presenter) Department of Electronic & Electrical Engineering University College London London WC1E 6EA United

More information

Optimal Caching and Routing in Hybrid Networks

Optimal Caching and Routing in Hybrid Networks Caching and Routing in Hybrid Networks Mostafa Dehghan, Anand Seetharam, Ting He, Theodoros Salonidis, Jim Kurose, and Don Towsley School of Computer Science, University of Massachusetts Amherst, IBM T.J.

More information

048866: Packet Switch Architectures

048866: Packet Switch Architectures 048866: Packet Switch Architectures Output-Queued Switches Deterministic Queueing Analysis Fairness and Delay Guarantees Dr. Isaac Keslassy Electrical Engineering, Technion isaac@ee.technion.ac.il http://comnet.technion.ac.il/~isaac/

More information

Distributed Submodular Maximization in Massive Datasets. Alina Ene. Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward

Distributed Submodular Maximization in Massive Datasets. Alina Ene. Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward Distributed Submodular Maximization in Massive Datasets Alina Ene Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward Combinatorial Optimization Given A set of objects V A function f on subsets

More information

A Light-weight Content Distribution Scheme for Cooperative Caching in Telco-CDNs

A Light-weight Content Distribution Scheme for Cooperative Caching in Telco-CDNs A Light-weight Content Distribution Scheme for Cooperative Caching in Telco-CDNs Takuma Nakajima, Masato Yoshimi, Celimuge Wu, Tsutomu Yoshinaga The University of Electro-Communications 1 Summary Proposal:

More information

A Generalized Replica Placement Strategy to Optimize Latency in a Wide Area Distributed Storage System

A Generalized Replica Placement Strategy to Optimize Latency in a Wide Area Distributed Storage System A Generalized Replica Placement Strategy to Optimize Latency in a Wide Area Distributed Storage System John A. Chandy Department of Electrical and Computer Engineering Distributed Storage Local area network

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University HW2 Q1.1 parts (b) and (c) cancelled. HW3 released. It is long. Start early. CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/26/17 Jure Leskovec, Stanford

More information

Application aware access and distribution of digital objects using Named Data Networking (NDN)

Application aware access and distribution of digital objects using Named Data Networking (NDN) Application aware access and distribution of digital objects using Named Data Networking (NDN) July 4, 2017 Rahaf Mousa Supervisor: dr.zhiming Zhao University of Amsterdam System and Network Engineering

More information

Efficient Content Verification in Named Data Networking

Efficient Content Verification in Named Data Networking Efficient Content Verification in Named Data Networking 2015. 10. 2. Dohyung Kim 1, Sunwook Nam 2, Jun Bi 3, Ikjun Yeom 1 mr.dhkim@gmail.com 1 Sungkyunkwan University 2 Korea Financial Telecommunications

More information

Cache Management for TelcoCDNs. Daphné Tuncer Department of Electronic & Electrical Engineering University College London (UK)

Cache Management for TelcoCDNs. Daphné Tuncer Department of Electronic & Electrical Engineering University College London (UK) Cache Management for TelcoCDNs Daphné Tuncer Department of Electronic & Electrical Engineering University College London (UK) d.tuncer@ee.ucl.ac.uk 06/01/2017 Agenda 1. Internet traffic: trends and evolution

More information

CHAPTER 6 Memory. CMPS375 Class Notes Page 1/ 16 by Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes Page 1/ 16 by Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 233 6.2 Types of Memory 233 6.3 The Memory Hierarchy 235 6.3.1 Locality of Reference 237 6.4 Cache Memory 237 6.4.1 Cache Mapping Schemes 239 6.4.2 Replacement Policies 247

More information

Content Caching and Scheduling in Wireless Networks with Elastic and Inelastic Traffic B.Muniswamy, Dr. N. Geethanjali

Content Caching and Scheduling in Wireless Networks with Elastic and Inelastic Traffic B.Muniswamy, Dr. N. Geethanjali www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 5 May 2016, Page No. 16679-16679 Content Caching and Scheduling in Wireless Networks with Elastic and

More information

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online 1 CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online Solutions 1. General Networking a. In traditional client-server communication using TCP, a new socket is created.

More information

Memory. Objectives. Introduction. 6.2 Types of Memory

Memory. Objectives. Introduction. 6.2 Types of Memory Memory Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured. Master the concepts

More information

On the Analysis of Caches with Pending Interest Tables

On the Analysis of Caches with Pending Interest Tables On the Analysis of Caches with Pending Interest Tables Mostafa Dehghan 1, Bo Jiang 1 Ali Dabirmoghaddam 2, Don Towsley 1 1 University of Massachusetts Amherst 2 University of California Santa Cruz ICN,

More information

Lightweight caching strategy for wireless content delivery networks

Lightweight caching strategy for wireless content delivery networks Lightweight caching strategy for wireless content delivery networks Jihoon Sung 1, June-Koo Kevin Rhee 1, and Sangsu Jung 2a) 1 Department of Electrical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon,

More information

Submodular Utility Maximization for Deadline Constrained Data Collection in Sensor Networks

Submodular Utility Maximization for Deadline Constrained Data Collection in Sensor Networks Submodular Utility Maximization for Deadline Constrained Data Collection in Sensor Networks Zizhan Zheng, Member, IEEE and Ness B. Shroff, Fellow, IEEE Abstract We study the utility maximization problem

More information

Operating Systems. Memory: replacement policies

Operating Systems. Memory: replacement policies Operating Systems Memory: replacement policies Last time caching speeds up data lookups if the data is likely to be re-requested again data structures for O(1)-lookup data source set-associative (hardware)

More information

Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web

Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web Surveying Formal and Practical Approaches for Optimal Placement of Replicas on the Web TR020701 April 2002 Erbil Yilmaz Department of Computer Science The Florida State University Tallahassee, FL 32306

More information

First-In-First-Out (FIFO) Algorithm

First-In-First-Out (FIFO) Algorithm First-In-First-Out (FIFO) Algorithm Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 3 frames (3 pages can be in memory at a time per process) 15 page faults Can vary by reference string:

More information

A Distributed Algorithm for the Replica Placement Problem

A Distributed Algorithm for the Replica Placement Problem IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS A Distributed Algorithm for the Replica Placement Problem Sharrukh Zaman, Student Member, IEEE, and Daniel Grosu, Senior Member, IEEE Abstract Caching

More information

Lecture 9: Pipage Rounding Method

Lecture 9: Pipage Rounding Method Recent Advances in Approximation Algorithms Spring 2015 Lecture 9: Pipage Rounding Method Lecturer: Shayan Oveis Gharan April 27th Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II.

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II. Schulz, Gog, Sanders: Algorithmen II - 31. Januar 2017 Algorithmen II Peter Sanders, Christian Schulz, Simon Gog Übungen: Michael Axtmann Institut für Theoretische Informatik, Algorithmik II Web: http://algo2.iti.kit.edu/algorithmenii_ws16.php

More information

Chapter 6 Objectives

Chapter 6 Objectives Chapter 6 Memory Chapter 6 Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

CHAPTER 5 PROPAGATION DELAY

CHAPTER 5 PROPAGATION DELAY 98 CHAPTER 5 PROPAGATION DELAY Underwater wireless sensor networks deployed of sensor nodes with sensing, forwarding and processing abilities that operate in underwater. In this environment brought challenges,

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

EL Wireless and Mobile Networking Spring 2002 Mid-Term Exam Solution - March 6, 2002

EL Wireless and Mobile Networking Spring 2002 Mid-Term Exam Solution - March 6, 2002 Instructions: EL 604 - Wireless and Mobile Networking Spring 2002 Mid-Term Exam Solution - March 6, 2002 Be sure to write your name on your submission. This is an open book test. Use your class notes,

More information

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I)

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I) ECE453 Introduction to Computer Networks Lecture 7 Multiple Access Control (I) 1 Broadcast vs. PPP Broadcast channel = multiaccess channel = random access channel Broadcast LAN Satellite network PPP WAN

More information

Optimal Geographic Caching In Cellular Networks

Optimal Geographic Caching In Cellular Networks Optimal Geographic Caching In Cellular Networks Bartłomiej Błaszczyszyn and Anastasios Giovanidis arxiv:409.7626v [cs.ni] 26 Sep 204 Abstract In this work we consider the problem of an optimal geographic

More information

Effect of memory latency

Effect of memory latency CACHE AWARENESS Effect of memory latency Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns. Assume that the processor has two ALU units and it is capable

More information

MPC: Popularity-based Caching Strategy for Content Centric Networks

MPC: Popularity-based Caching Strategy for Content Centric Networks MPC: Popularity-based Caching Strategy for Content Centric Networks César Bernardini Thomas Silverston Olivier Festor INRIA Nancy Université de Lorraine, France cesar.bernardini@inria.fr ICC 2013 - June

More information

Inferring Military Activity in Hybrid Networks through Cache Behavior

Inferring Military Activity in Hybrid Networks through Cache Behavior Inferring Military Activity in Hybrid Networks through Cache Behavior Mostafa Dehghan, Dennis L. Goeckel, Ting He, and Don Towsley School of Computer Science, University of Massachusetts Amherst, Emails:

More information

13 Sensor networks Gathering in an adversarial environment

13 Sensor networks Gathering in an adversarial environment 13 Sensor networks Wireless sensor systems have a broad range of civil and military applications such as controlling inventory in a warehouse or office complex, monitoring and disseminating traffic conditions,

More information

Online Facility Location

Online Facility Location Online Facility Location Adam Meyerson Abstract We consider the online variant of facility location, in which demand points arrive one at a time and we must maintain a set of facilities to service these

More information

Toward the joint design of electronic and optical layer protection

Toward the joint design of electronic and optical layer protection Toward the joint design of electronic and optical layer protection Massachusetts Institute of Technology Slide 1 Slide 2 CHALLENGES: - SEAMLESS CONNECTIVITY - MULTI-MEDIA (FIBER,SATCOM,WIRELESS) - HETEROGENEOUS

More information

Queuing. Congestion Control and Resource Allocation. Resource Allocation Evaluation Criteria. Resource allocation Drop disciplines Queuing disciplines

Queuing. Congestion Control and Resource Allocation. Resource Allocation Evaluation Criteria. Resource allocation Drop disciplines Queuing disciplines Resource allocation Drop disciplines Queuing disciplines Queuing 1 Congestion Control and Resource Allocation Handle congestion if and when it happens TCP Congestion Control Allocate resources to avoid

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 018 D/Q Greed SP s DP LP, Flow B&B, Backtrack Metaheuristics P, NP Design and Analysis of Algorithms Lecture 8: Greed Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Optimization

More information

Collaborative Caching for Multicell-Coordinated Systems

Collaborative Caching for Multicell-Coordinated Systems Caching for Multicell-Coordinated Systems Abdallah Khreishah Electrical and Computer Engineering Department New Jersey Institute of Technology Newark, NJ 07102 abdallah@njit.edu Jacob Chakareski Electrical

More information

Submodular Optimization

Submodular Optimization Submodular Optimization Nathaniel Grammel N. Grammel Submodular Optimization 1 / 28 Submodularity Captures the notion of Diminishing Returns Definition Suppose U is a set. A set function f :2 U! R is submodular

More information

FairRide: Near-Optimal Fair Cache Sharing

FairRide: Near-Optimal Fair Cache Sharing UC BERKELEY FairRide: Near-Optimal Fair Cache Sharing Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, Ion Stoica 1 Caches are crucial 2 Caches are crucial 2 Caches are crucial 2 Caches are crucial 2 Cache

More information

Com S 321 Problem Set 3

Com S 321 Problem Set 3 Com S 321 Problem Set 3 1. A computer has a main memory of size 8M words and a cache size of 64K words. (a) Give the address format for a direct mapped cache with a block size of 32 words. (b) Give the

More information

A Survey on Congestion Control and Maximization of Throughput in Wireless Networks

A Survey on Congestion Control and Maximization of Throughput in Wireless Networks A Survey on Congestion Control and Maximization of Throughput in Wireless Networks K.Ravindra Babu Post graduate student V.R.Siddhartha Engineering College ravindra.bec2008@gmail.com J.Ranga Rao Assistant

More information

Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes

Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes Kehang Wu Douglas S. Reeves Capacity Planning for QoS DiffServ + MPLS QoS in core networks DiffServ provides

More information

Comparative Study of blocking mechanisms for Packet Switched Omega Networks

Comparative Study of blocking mechanisms for Packet Switched Omega Networks Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19, 2007 18 Comparative Study of blocking mechanisms for Packet

More information

Throughput of Random Access without Message Passing

Throughput of Random Access without Message Passing Throughput of Random Access without Message Passing Alexandre Proutiere Microsoft Research Joint work with Yung Yi and Mung Chiang CISS 2008, March 2008 Outline 1. Throughput optimality via distributed

More information

Perform page replacement. (Fig 8.8 [Stal05])

Perform page replacement. (Fig 8.8 [Stal05]) Virtual memory Operations and policies Chapters 3.4. 3.7 1 Policies and methods Fetch policy (Noutopolitiikka) When to load page to memory? Placement policy (Sijoituspolitiikka ) Where to place the new

More information

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 341 6.2 Types of Memory 341 6.3 The Memory Hierarchy 343 6.3.1 Locality of Reference 346 6.4 Cache Memory 347 6.4.1 Cache Mapping Schemes 349 6.4.2 Replacement Policies 365

More information

Wireless Device-to-Device Communications with Distributed Caching

Wireless Device-to-Device Communications with Distributed Caching Wireless Device-to-Device Communications with Distributed Caching Negin Golrezaei, Alexandros G. Dimakis, Andreas F. Molisch Dept. of Electrical Eng. University of Southern California Los Angeles, CA,

More information

Proactive Small Cell Networks

Proactive Small Cell Networks Proactive Small Cell Networks Ejder Bastug, Jean-Louis Guénégo, Mérouane Debbah To cite this version: Ejder Bastug, Jean-Louis Guénégo, Mérouane Debbah Proactive Small Cell Networks ICT 23, May 23, Casablanca,

More information

Low Latency via Redundancy

Low Latency via Redundancy Low Latency via Redundancy Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, Scott Shenker Presenter: Meng Wang 2 Low Latency Is Important Injecting just 400 milliseconds

More information

Managing Storage: Above the Hardware

Managing Storage: Above the Hardware Managing Storage: Above the Hardware 1 Where we are Last time: hardware HDDs and SSDs Today: how the DBMS uses the hardware to provide fast access to data 2 How DBMS manages storage "Bottom" two layers

More information

Batch Scheduling Algorithms for Optical Burst Switching Networks

Batch Scheduling Algorithms for Optical Burst Switching Networks Batch Scheduling Algorithms for Optical Burst Switching Networks Ayman Kaheel and Hussein Alnuweiri University of British Columbia, Vancouver BC V6T 1Z4, Canada, {aymank,hussein}@ece.ubc.ca Abstract. Previously

More information

Distributed Caching in Device-to-Device Networks: A Stochastic Geometry Perspective

Distributed Caching in Device-to-Device Networks: A Stochastic Geometry Perspective Distributed Caching in Device-to-Device Networks: A Stochastic Geometry Perspective Shankar Krishnan and Harpreet S. Dhillon Abstract Increasing spatio-temporal correlation in the data demand makes it

More information

Optimization of submodular functions

Optimization of submodular functions Optimization of submodular functions Law Of Diminishing Returns According to the Law of Diminishing Returns (also known as Diminishing Returns Phenomenon), the value or enjoyment we get from something

More information

Coverage Approximation Algorithms

Coverage Approximation Algorithms DATA MINING LECTURE 12 Coverage Approximation Algorithms Example Promotion campaign on a social network We have a social network as a graph. People are more likely to buy a product if they have a friend

More information

Personal Content Caching for Mobiles

Personal Content Caching for Mobiles Personal Content Caching for Mobiles Roy Yates Shweta Jain () Ryoichi Shinkuma (Kyoto University) CNF Network Architecture Opportunistic Transmission & Storage Routing Store Cache popular content Movie1.

More information

Wireless Mesh Networks

Wireless Mesh Networks Wireless Mesh Networks COS 463: Wireless Networks Lecture 6 Kyle Jamieson [Parts adapted from I. F. Akyildiz, B. Karp] Wireless Mesh Networks Describes wireless networks in which each node can communicate

More information

Content Dissemination in Mobile Wireless Networks. Chadi Barakat

Content Dissemination in Mobile Wireless Networks. Chadi Barakat Content Dissemination in Mobile Wireless Networks Email: Chadi.Barakat@inria.fr http://planete.inria.fr/chadi/ Context / Objectives q An activity running for couple of years, involving several people -

More information

A Hybrid Load Balance Mechanism for Distributed Home Agents in Mobile IPv6

A Hybrid Load Balance Mechanism for Distributed Home Agents in Mobile IPv6 A Hybrid Load Balance Mechanism for Distributed Home Agents in Mobile IPv6 1 Hui Deng 2Xiaolong Huang 3Kai Zhang 3 Zhisheng Niu 1Masahiro Ojima 1R&D Center Hitachi (China) Ltd. Beijing 100004, China 2Dept.

More information

Advanced Algorithms. On-line Algorithms

Advanced Algorithms. On-line Algorithms Advanced Algorithms On-line Algorithms 1 Introduction Online Algorithms are algorithms that need to make decisions without full knowledge of the input. They have full knowledge of the past but no (or partial)

More information

Web Caching and Content Delivery

Web Caching and Content Delivery Web Caching and Content Delivery Caching for a Better Web Performance is a major concern in the Web Proxy caching is the most widely used method to improve Web performance Duplicate requests to the same

More information

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction

Chapter 6 Memory 11/3/2015. Chapter 6 Objectives. 6.2 Types of Memory. 6.1 Introduction Chapter 6 Objectives Chapter 6 Memory Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

IN recent years, the amount of traffic has rapidly increased

IN recent years, the amount of traffic has rapidly increased , March 15-17, 2017, Hong Kong Content Download Method with Distributed Cache Management Masamitsu Iio, Kouji Hirata, and Miki Yamamoto Abstract This paper proposes a content download method with distributed

More information

Smart Caching in Wireless Small Cell Networks via Contextual Multi-Armed Bandits

Smart Caching in Wireless Small Cell Networks via Contextual Multi-Armed Bandits Sabrina Müller, Onur Atan, Mihaela van der Schaar and Anja Klein, Smart Caching in Wireless Small Cell Networks via Contextual Multi-Armed Bandits, in Proc. of the IEEE International Conference on Communications

More information

5 MST and Greedy Algorithms

5 MST and Greedy Algorithms 5 MST and Greedy Algorithms One of the traditional and practically motivated problems of discrete optimization asks for a minimal interconnection of a given set of terminals (meaning that every pair will

More information

TCP START-UP BEHAVIOR UNDER THE PROPORTIONAL FAIR SCHEDULING POLICY

TCP START-UP BEHAVIOR UNDER THE PROPORTIONAL FAIR SCHEDULING POLICY TCP START-UP BEHAVIOR UNDER THE PROPORTIONAL FAIR SCHEDULING POLICY J. H. CHOI,J.G.CHOI, AND C. YOO Department of Computer Science and Engineering Korea University Seoul, Korea E-mail: {jhchoi, hxy}@os.korea.ac.kr

More information

A Personalized Preference Learning Framework for Caching in Mobile Networks

A Personalized Preference Learning Framework for Caching in Mobile Networks 1 A Personalized Preference Learning Framework for Caching in Mobile Networks Adeel Malik, Joongheon Kim, Senior Member, IEEE, and Won-Yong Shin, Senior Member, IEEE Abstract arxiv:1904.06744v1 [cs.ni]

More information

Competitive and Deterministic Embeddings of Virtual Networks

Competitive and Deterministic Embeddings of Virtual Networks Competitive and Deterministic Embeddings of Virtual Networks Guy Even (Tel Aviv Uni) Moti Medina (Tel Aviv Uni) Gregor Schaffrath (T-Labs Berlin) Stefan Schmid (T-Labs Berlin) The Virtual Network Embedding

More information

The hierarchical model for load balancing on two machines

The hierarchical model for load balancing on two machines The hierarchical model for load balancing on two machines Orion Chassid Leah Epstein Abstract Following previous work, we consider the hierarchical load balancing model on two machines of possibly different

More information

Link Scheduling in Multi-Transmit-Receive Wireless Networks

Link Scheduling in Multi-Transmit-Receive Wireless Networks Macau University of Science and Technology From the SelectedWorks of Hong-Ning Dai 2011 Link Scheduling in Multi-Transmit-Receive Wireless Networks Hong-Ning Dai, Macau University of Science and Technology

More information

Multicast-aware Caching for Small Cell Networks

Multicast-aware Caching for Small Cell Networks Multicast-aware Caching for Small Cell Networks Konstantinos Poularakis, George Iosifidis, Vasilis Sourlas and Leandros Tassiulas arxiv:142.7314v1 [cs.ni] 28 Feb 214 Abstract The deployment of small cells

More information

CS 483. Jana Kosecka CS Dept Eng. Building

CS 483. Jana Kosecka CS Dept Eng. Building CS 483 Jana Kosecka CS Dept. 4444 Eng. Building kosecka@gmu.edu Course Info Course webpage: from the syllabus on http://cs.gmu.edu/courses/ Information you will find course syllabus, time table office

More information

On Modularity Clustering. Group III (Ying Xuan, Swati Gambhir & Ravi Tiwari)

On Modularity Clustering. Group III (Ying Xuan, Swati Gambhir & Ravi Tiwari) On Modularity Clustering Presented by: Presented by: Group III (Ying Xuan, Swati Gambhir & Ravi Tiwari) Modularity A quality index for clustering a graph G=(V,E) G=(VE) q( C): EC ( ) EC ( ) + ECC (, ')

More information

5 MST and Greedy Algorithms

5 MST and Greedy Algorithms 5 MST and Greedy Algorithms One of the traditional and practically motivated problems of discrete optimization asks for a minimal interconnection of a given set of terminals (meaning that every pair will

More information

CSE 202: Design and Analysis of Algorithms Lecture 4

CSE 202: Design and Analysis of Algorithms Lecture 4 CSE 202: Design and Analysis of Algorithms Lecture 4 Instructor: Kamalika Chaudhuri Announcements HW 1 due in class on Tue Jan 24 Email me your homework partner name, or if you need a partner today Greedy

More information

Distributed File Systems Part II. Distributed File System Implementation

Distributed File Systems Part II. Distributed File System Implementation s Part II Daniel A. Menascé Implementation File Usage Patterns File System Structure Caching Replication Example: NFS 1 Implementation: File Usage Patterns Static Measurements: - distribution of file size,

More information

Routing over Parallel Queues with Time Varying Channels with Application to Satellite and Wireless Networks

Routing over Parallel Queues with Time Varying Channels with Application to Satellite and Wireless Networks 2002 Conference on Information Sciences and Systems, Princeton University, March 20-22, 2002 Routing over Parallel Queues with Time Varying Channels with Application to Satellite and Wireless Networks

More information

Incentive Compatibility and Dynamics of Congestion Control

Incentive Compatibility and Dynamics of Congestion Control Incentive Compatibility and Dynamics of Congestion Control ABSTRACT P. Brighten Godfrey Department of Computer Science University of Illinois at Urbana-Champaign IL, USA pbg@illinois.edu Aviv Zohar School

More information

CMPSC 311- Introduction to Systems Programming Module: Caching

CMPSC 311- Introduction to Systems Programming Module: Caching CMPSC 311- Introduction to Systems Programming Module: Caching Professor Patrick McDaniel Fall 2014 Lecture notes Get caching information form other lecture http://hssl.cs.jhu.edu/~randal/419/lectures/l8.5.caching.pdf

More information

Improving VoD System Efficiency with Multicast and Caching

Improving VoD System Efficiency with Multicast and Caching Improving VoD System Efficiency with Multicast and Caching Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong Contents 1. Introduction 2. Previous Works 3. UVoD

More information

Primality Testing. Public-Key Cryptography needs large prime numbers How can you tell if p is prime? Try dividing p by all smaller integers

Primality Testing. Public-Key Cryptography needs large prime numbers How can you tell if p is prime? Try dividing p by all smaller integers Primality Testing Public-Key Cryptography needs large prime numbers How can you tell if p is prime? Try dividing p by all smaller integers Exponential in p (number of bits to represent p) Improvement:

More information

Algorithm 23 works. Instead of a spanning tree, one can use routing.

Algorithm 23 works. Instead of a spanning tree, one can use routing. Chapter 5 Shared Objects 5.1 Introduction Assume that there is a common resource (e.g. a common variable or data structure), which different nodes in a network need to access from time to time. If the

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Replicate It! Scalable Content Delivery: Why? Scalable Content Delivery: How? Scalable Content Delivery: How? Scalable Content Delivery: What?

Replicate It! Scalable Content Delivery: Why? Scalable Content Delivery: How? Scalable Content Delivery: How? Scalable Content Delivery: What? Accelerating Internet Streaming Media Delivery using Azer Bestavros and Shudong Jin Boston University http://www.cs.bu.edu/groups/wing Scalable Content Delivery: Why? Need to manage resource usage as demand

More information

Applied Algorithm Design Lecture 3

Applied Algorithm Design Lecture 3 Applied Algorithm Design Lecture 3 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 3 1 / 75 PART I : GREEDY ALGORITHMS Pietro Michiardi (Eurecom) Applied Algorithm

More information

PRESENTED BY SARAH KWAN NETWORK CODING

PRESENTED BY SARAH KWAN NETWORK CODING PRESENTED BY SARAH KWAN NETWORK CODING NETWORK CODING PRESENTATION OUTLINE What is Network Coding? Motivation and Approach Network Coding with Lossless Networks Challenges in Developing Coding Algorithms

More information

Cost-based cache replacement and server selection for multimedia proxy across wireless Internet

Cost-based cache replacement and server selection for multimedia proxy across wireless Internet University of Massachusetts Amherst From the SelectedWorks of Lixin Gao January 1, 2004 Cost-based cache replacement and server selection for multimedia proxy across wireless Internet Q Zhang Z Xiang WW

More information

(INTERFERENCE AND CONGESTION AWARE ROUTING PROTOCOL)

(INTERFERENCE AND CONGESTION AWARE ROUTING PROTOCOL) Qos of Network Using Advanced Hybrid Routing in WMN, Abstract - Maximizing the network throughput in a multichannel multiradio wireless mesh network various efforts have been devoted. The recent solutions

More information

Design of Parallel Algorithms. Models of Parallel Computation

Design of Parallel Algorithms. Models of Parallel Computation + Design of Parallel Algorithms Models of Parallel Computation + Chapter Overview: Algorithms and Concurrency n Introduction to Parallel Algorithms n Tasks and Decomposition n Processes and Mapping n Processes

More information

A Distributed CSMA Algorithm for Maximizing Throughput in Wireless Networks

A Distributed CSMA Algorithm for Maximizing Throughput in Wireless Networks International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 2, Number 2 (2012), pp. 125-132 International Research Publications House http://www. ripublication.com A Distributed

More information