OpenCL / OpenGL Texture Interoperability: An Image Blurring Case Study

Size: px
Start display at page:

Download "OpenCL / OpenGL Texture Interoperability: An Image Blurring Case Study"

Transcription

1 1 OpenCL / OpenGL Texture Interoperability: An Image Blurring Case Study Mike Bailey mjb@cs.oregonstate.edu opencl.opengl.rendertexture.pptx

2 OpenCL / OpenGL Texture Interoperability: The Basic Idea 2 Application Program: 1. Renders to an OpenGL Texture 2. Executes an OpenCL kernel 3. Renders from an OpenGL Texture OpenGL uses GPU to render to a texture OpenCL uses GPU, treating the input and output textures as image2d_t data types OpenGL uses GPU to render from a texture onto a quad Input Texture Output Texture

3 More OpenGL Rendering Context 3 The OpenGL Rendering Context contains all the characteristic information necessary to produce an image from geometry. This includes transformations, colors, lighting, textures, where to send the display, etc. Array Buffer Color Element Array Buffer Lighting Texture0 Texture1 Context Transformation Display Dest. Some of these characteristics have a default value (e.g., lines are white, the display goes to the screen) and some have nothing (e.g., no textures exist)

4 OpenCL Global Variables 4 GLuint GLuint GLuint double int FrameBuffer; DepthBuffer; RenderToTexture, RenderFromTexture; ElapsedTime; ShowPerformance; size_t GlobalWorkSize[3] = { SIZES, SIZET, 1 }; size_t LocalWorkSize[3] = { LOCAL_SIZE, LOCAL_SIZE, 1 }; cl_context cl_command_queue cl_device_id cl_kernel cl_platform_id cl_program cl_platform_id cl_mem cl_mem Context; CmdQueue; Device; Kernel; Platform; Program; PlatformID; ReadFromImage; WriteToImage; Note that the host application calls these cl_mem, but the kernel will call them image2d_t

5 5 How to Create Empty OpenGL Textures and a Non-screen Framebuffer glgenframebuffers( 1, &FrameBuffer ); glgenrenderbuffers( 1, &DepthBuffer ); glgentextures( 1, &RenderToTexture ); glgentextures( 1, &RenderFromTexture ); glbindframebuffer( GL_FRAMEBUFFER, FrameBuffer ); glbindrenderbuffer( GL_RENDERBUFFER, DepthBuffer ); glrenderbufferstorage( GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SIZES, SIZET ); glframebufferrenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, DepthBuffer ); glbindtexture( GL_TEXTURE_2D, RenderFromTexture ); glteximage2d( GL_TEXTURE_2D, 0, 4, SIZES, SIZET, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glbindtexture( GL_TEXTURE_2D, RenderToTexture ); glteximage2d( GL_TEXTURE_2D, 0, 4, SIZES, SIZET, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); gltexparameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glframebuffertexture2d( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, RenderToTexture, 0 ); GLenum status = glcheckframebufferstatus( GL_FRAMEBUFFER ); if( status!= GL_FRAMEBUFFER_COMPLETE ) fprintf( stderr, "FrameBuffer is not complete.\n" ); glbindframebuffer( GL_FRAMEBUFFER, 0 );

6 Turning those Textures into OpenCL Memory Objects 6 ReadFromImage = clcreatefromgltexture2d( Context, CL_MEM_READ_ONLY, GL_TEXTURE_2D, 0, RenderToTexture, &status ); WriteToImage = clcreatefromgltexture2d( Context, CL_MEM_WRITE_ONLY, GL_TEXTURE_2D, 0, RenderFromTexture, &status ); Note that the host application calls these cl_mem, but the kernel will call them image2d_t

7 Either OpenGL or OpenCL Can Use the Textures at a Time, but not Both 7 OpenGL renders to the first texture OpenCL acquires the textures Image Data in two OpenGL Texture Objects Each OpenCL kernel reads a pixel and its surrounding pixels from the first texture Each OpenCL kernel performs the blurring operation Each OpenCL kernel writes its pixel value back to the second texture OpenCL Releases the Textures OpenGL renders using the second texture

8 A Deceptively-Simple Main Program 8 int main( int argc, char *argv[ ] ) { glutinit( &argc, argv ); InitGraphics( ); InitLists( ); InitCL( ); Reset( ); InitGlui( ); glutmainloop( ); return 0; }

9 Setup the Kernel Arguments 9 void InitCL( ) {... // 10. setup the arguments to the Kernel object: status = clsetkernelarg( Kernel, 0, sizeof(cl_mem), &ReadFromImage ); status = clsetkernelarg( Kernel, 1, sizeof(cl_mem), &WriteToImage ); status = clsetkernelarg( Kernel, 2, sizeof(int), &ApplyFilter ); to Match the Kernel s Parameter List kernel void Filter( global read_only image2d_t readfromimage, global write_only image2d_t writetoimage, int applyfilter ) {... }

10 OpenCL Does Its Computing in the Middle of the Display Callback 10 glbindframebuffer( GL_FRAMEBUFFER, FrameBuffer ); glfinish( ); << draw the scene >> // do the opencl computing: cl_int status = clenqueueacquireglobjects( CmdQueue, 1, &ReadFromImage, 0, NULL, NULL ); status = clenqueueacquireglobjects( CmdQueue, 1, &WriteToImage, 0, NULL, NULL ); // 11. enqueue the Kernel object for execution: status = clsetkernelarg( Kernel, 2, sizeof(int), &ApplyFilter ); // because this is from a dynamic checkbox cl_event wait; status = clenqueuendrangekernel( CmdQueue, Kernel, 2, NULL, GlobalWorkSize, LocalWorkSize, 0, NULL, &wait ); clfinish( CmdQueue ); // do the opengl drawing with the computed texture: status = clenqueuereleaseglobjects( CmdQueue, 1, &ReadFromImage, 0, NULL, NULL ); status = clenqueuereleaseglobjects( CmdQueue, 1, &WriteToImage, 0, NULL, NULL ); // render to the real framebuffer :

11 OpenCL Does Its Computing in the Middle of the Display Callback // render to the real framebuffer : 11 glbindframebuffer( GL_FRAMEBUFFER, 0 ); glclear( GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT ); glenable( GL_DEPTH_TEST ); glshademodel( GL_FLAT ); vx = glutget( GLUT_WINDOW_WIDTH ); vy = glutget( GLUT_WINDOW_HEIGHT ); V = vx < vy? vx : vy; // minimum dimension Xl = ( vx - v ) / 2; yb = ( vy - v ) / 2; glviewport( xl, yb, v, v ); gldisable( GL_DEPTH_TEST ); glmatrixmode( GL_PROJECTION ); glloadidentity( ); gluortho2d( 0., 100., 0., 100. ); glmatrixmode( GL_MODELVIEW ); glloadidentity( ); glenable( GL_TEXTURE_2D ); glbindtexture( GL_TEXTURE_2D, RenderFromTexture ); gltexenvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE ); glbegin( GL_QUADS ); gltexcoord2f( 0., 0. ); glvertex2f( 0., 0. ); gltexcoord2f( 1., 0. ); glvertex2f( 100., 0. ); gltexcoord2f( 1., 1. ); glvertex2f( 100., 100. ); gltexcoord2f( 0., 1. ); glvertex2f( 0., 100. ); glend( ); gldisable( GL_TEXTURE_2D );

12 13. Clean-up 12 void Quit( ) { Glui->close( ); glutsetwindow( MainWindow ); glfinish( ); glutdestroywindow( MainWindow ); // 13. clean everything up: clreleasekernel( Kernel ); clreleaseprogram( Program ); clreleasecommandqueue( CmdQueue ); clreleasememobject( ReadFromImage ); clreleasememobject( WriteToImage ); } exit( 0 );

13 typedef float4 color; rendertexture.cl 13 kernel void Filter( global read_only image2d_t readfromimage, global write_only image2d_t writetoimage, int applyfilter ) { const sampler_t SAMPLER = CLK_NORMALIZED_COORDS_FALSE CLK_ADDRESS_CLAMP_TO_EDGE CLK_FILTER_LINEAR; int is = get_global_id( 0 ); int it = get_global_id( 1 ); int2 ist00 = (int2)( is, it ); color c00 = read_imagef( readfromimage, SAMPLER, ist00 ); if( applyfilter == 0 ) { write_imagef( writetoimage, ist00, c00 ); return; } int2 istp0 = ist00 + (int2)( 1, 0 ); int2 istm0 = ist00 - (int2)( 1, 0 ); int2 ist0p = ist00 + (int2)( 0, 1 ); int2 ist0m = ist00 - (int2)( 0, 1 ); int2 istpp = ist00 + (int2)( 1, 1 ); int2 istmm = ist00 - (int2)( 1, 1 ); int2 istpm = ist00 + (int2)( 1, -1 ); int2 istmp = ist00 - (int2)( 1, -1 ); } color cp0 = read_imagef( readfromimage, SAMPLER, istp0 ); color cm0 = read_imagef( readfromimage, SAMPLER, istm0 ); color c0p = read_imagef( readfromimage, SAMPLER, ist0p ); color c0m = read_imagef( readfromimage, SAMPLER, ist0m ); color cpp = read_imagef( readfromimage, SAMPLER, istpp ); color cmm = read_imagef( readfromimage, SAMPLER, istmm ); color cpm = read_imagef( readfromimage, SAMPLER, istpm ); color cmp = read_imagef( readfromimage, SAMPLER, istmp ); color result = ( 4.*c *(cp0 + cm0 + c0p + c0m) + (cpp + cmm + cpm + cmp) ) / 16.; result.w = 1.; // alpha write_imagef( writetoimage, (int2)( is, it ), result ); 3x3 Blur Filter:

14 14 Original 3x3 Blur Filter

15 Jane Parallel s Performance 15 MegaPixels / Second Local Work Group Size

OpenCL / OpenGL Vertex Buffer Interoperability: A Particle System Case Study

OpenCL / OpenGL Vertex Buffer Interoperability: A Particle System Case Study 1 OpenCL / OpenGL Vertex Buffer Interoperability: A Particle System Case Study See the video at: http://cs.oregonstate.edu/~mjb/cs575/projects/particles.mp4 Mike Bailey mjb@cs.oregonstate.edu Oregon State

More information

OpenCL / OpenGL Vertex Buffer Interoperability: A Particle System Case Study

OpenCL / OpenGL Vertex Buffer Interoperability: A Particle System Case Study 1 OpenCL / OpenGL Vertex Buffer Interoperability: A Particle System Case Study See the video at: http://cs.oregonstate.edu/~mjb/cs575/projects/particles.mp4 Mike Bailey mjb@cs.oregonstate.edu Oregon State

More information

Texture Mapping. Mike Bailey.

Texture Mapping. Mike Bailey. Texture Mapping 1 Mike Bailey mjb@cs.oregonstate.edu This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License TextureMapping.pptx The Basic Idea

More information

Lecture 07: Buffers and Textures

Lecture 07: Buffers and Textures Lecture 07: Buffers and Textures CSE 40166 Computer Graphics Peter Bui University of Notre Dame, IN, USA October 26, 2010 OpenGL Pipeline Today s Focus Pixel Buffers: read and write image data to and from

More information

Assignment #5: Scalar Field Visualization 3D: Direct Volume Rendering

Assignment #5: Scalar Field Visualization 3D: Direct Volume Rendering Assignment #5: Scalar Field Visualization 3D: Direct Volume Rendering Goals: Due October 4 th, before midnight This is the continuation of Assignment 4. The goal is to implement a simple DVR -- 2D texture-based

More information

Performing Reductions in OpenCL

Performing Reductions in OpenCL Performing Reductions in OpenCL Mike Bailey mjb@cs.oregonstate.edu opencl.reduction.pptx Recall the OpenCL Model Kernel Global Constant Local Local Local Local Work- ItemWork- ItemWork- Item Here s the

More information

GPGPU IGAD 2014/2015. Lecture 1. Jacco Bikker

GPGPU IGAD 2014/2015. Lecture 1. Jacco Bikker GPGPU IGAD 2014/2015 Lecture 1 Jacco Bikker Today: Course introduction GPGPU background Getting started Assignment Introduction GPU History History 3DO-FZ1 console 1991 History NVidia NV-1 (Diamond Edge

More information

OpenCL Events. Mike Bailey. Oregon State University. OpenCL Events

OpenCL Events. Mike Bailey. Oregon State University. OpenCL Events 1 OpenCL Events Mike Bailey mjb@cs.oregonstate.edu opencl.events.pptx OpenCL Events 2 An event is an object that communicates the status of OpenCL commands Event Read Buffer dc Execute Kernel Write Buffer

More information

OpenCL Events. Mike Bailey. Computer Graphics opencl.events.pptx

OpenCL Events. Mike Bailey. Computer Graphics opencl.events.pptx 1 OpenCL Events This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License Mike Bailey mjb@cs.oregonstate.edu opencl.events.pptx OpenCL Events 2 An

More information

Assignment #3: Scalar Field Visualization 3D: Cutting Plane, Wireframe Iso-surfacing, and Direct Volume Rendering

Assignment #3: Scalar Field Visualization 3D: Cutting Plane, Wireframe Iso-surfacing, and Direct Volume Rendering Assignment #3: Scalar Field Visualization 3D: Cutting Plane, Wireframe Iso-surfacing, and Direct Volume Rendering Goals: Due October 9 th, before midnight With the results from your assignement#2, the

More information

Grafica Computazionale

Grafica Computazionale Grafica Computazionale lezione36 Informatica e Automazione, "Roma Tre" June 3, 2010 Grafica Computazionale: Lezione 33 Textures Introduction Steps in Texture Mapping A Sample Program Texturing algorithms

More information

Heterogeneous Computing

Heterogeneous Computing OpenCL Hwansoo Han Heterogeneous Computing Multiple, but heterogeneous multicores Use all available computing resources in system [AMD APU (Fusion)] Single core CPU, multicore CPU GPUs, DSPs Parallel programming

More information

Textures. Texture Mapping. Bitmap Textures. Basic Texture Techniques

Textures. Texture Mapping. Bitmap Textures. Basic Texture Techniques Texture Mapping Textures The realism of an image is greatly enhanced by adding surface textures to the various faces of a mesh object. In part a) images have been pasted onto each face of a box. Part b)

More information

Graphics. Texture Mapping 고려대학교컴퓨터그래픽스연구실.

Graphics. Texture Mapping 고려대학교컴퓨터그래픽스연구실. Graphics Texture Mapping 고려대학교컴퓨터그래픽스연구실 3D Rendering Pipeline 3D Primitives 3D Modeling Coordinates Model Transformation 3D World Coordinates Lighting 3D World Coordinates Viewing Transformation 3D Viewing

More information

Lecture 22 Sections 8.8, 8.9, Wed, Oct 28, 2009

Lecture 22 Sections 8.8, 8.9, Wed, Oct 28, 2009 s The s Lecture 22 Sections 8.8, 8.9, 8.10 Hampden-Sydney College Wed, Oct 28, 2009 Outline s The 1 2 3 4 5 The 6 7 8 Outline s The 1 2 3 4 5 The 6 7 8 Creating Images s The To create a texture image internally,

More information

CS452/552; EE465/505. Image Processing Frame Buffer Objects

CS452/552; EE465/505. Image Processing Frame Buffer Objects CS452/552; EE465/505 Image Processing Frame Buffer Objects 3-12 15 Outline! Image Processing: Examples! Render to Texture Read: Angel, Chapter 7, 7.10-7.13 Lab3 new due date: Friday, Mar. 13 th Project#1

More information

Lighting and Texturing

Lighting and Texturing Lighting and Texturing Michael Tao Michael Tao Lighting and Texturing 1 / 1 Fixed Function OpenGL Lighting Need to enable lighting Need to configure lights Need to configure triangle material properties

More information

CS 179 GPU Programming

CS 179 GPU Programming CS179: GPU Programming Lecture 7: Render to Texture Lecture originally by Luke Durant, Russell McClellan, Tamas Szalay 1 Today: Render to Texture Render to texture in OpenGL Framebuffers and renderbuffers

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel The Mandelbrot Set Fractals Fractal (fractional geometry) objects generate some of the most complex and beautiful graphics - The mathematics describing

More information

Texturing. Slides done bytomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Texturing. Slides done bytomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Texturing Slides done bytomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology 1 Texturing: Glue n-dimensional images onto geometrical objects l Purpose:

More information

MULTI-PASS VS SINGLE-PASS CUBEMAP

MULTI-PASS VS SINGLE-PASS CUBEMAP Sogang University Computer Graphics Lab. MULTI-PASS VS SINGLE-PASS CUBEMAP 2008.4 1 Contents Purpose Multi-Pass Cubemap Single-Pass Cubemap Reflection Mapping Test Result Conclusion 2 Purpose Implement

More information

Computational Strategies

Computational Strategies Computational Strategies How can the basic ingredients be combined: Image Order Ray casting (many options) Object Order (in world coordinate) splatting, texture mapping Combination (neither) Shear warp,

More information

Lecture 19: OpenGL Texture Mapping. CITS3003 Graphics & Animation

Lecture 19: OpenGL Texture Mapping. CITS3003 Graphics & Animation Lecture 19: OpenGL Texture Mapping CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Introduce the OpenGL texture functions and options

More information

Lecture 2 2D transformations Introduction to OpenGL

Lecture 2 2D transformations Introduction to OpenGL Lecture 2 2D transformations Introduction to OpenGL OpenGL where it fits what it contains how you work with it OpenGL parts: GL = Graphics Library (core lib) GLU = GL Utilities (always present) GLX, AGL,

More information

ECE 574 Cluster Computing Lecture 17

ECE 574 Cluster Computing Lecture 17 ECE 574 Cluster Computing Lecture 17 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 6 April 2017 HW#8 will be posted Announcements HW#7 Power outage Pi Cluster Runaway jobs (tried

More information

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President 4 th Annual Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President Copyright Khronos Group, 2009 - Page 1 CPUs Multiple cores driving performance increases Emerging Intersection GPUs Increasingly

More information

WebCL Overview and Roadmap

WebCL Overview and Roadmap Copyright Khronos Group, 2011 - Page 1 WebCL Overview and Roadmap Tasneem Brutch Chair WebCL Working Group Samsung Electronics Copyright Khronos Group, 2011 - Page 2 WebCL Motivation Enable high performance

More information

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President. Copyright Khronos Group, Page 1

Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President. Copyright Khronos Group, Page 1 Neil Trevett Vice President, NVIDIA OpenCL Chair Khronos President Copyright Khronos Group, 2009 - Page 1 Introduction and aims of OpenCL - Neil Trevett, NVIDIA OpenCL Specification walkthrough - Mike

More information

三維繪圖程式設計 3D Graphics Programming Design 第七章基礎材質張貼技術嘉大資工系盧天麒

三維繪圖程式設計 3D Graphics Programming Design 第七章基礎材質張貼技術嘉大資工系盧天麒 三維繪圖程式設計 3D Graphics Programming Design 第七章基礎材質張貼技術嘉大資工系盧天麒 1 In this chapter, you will learn The basics of texture mapping Texture coordinates Texture objects and texture binding Texture specification

More information

Texturing. Slides done by Tomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Texturing. Slides done by Tomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Texturing Slides done by Tomas Akenine-Möller and Ulf Assarsson Department of Computer Engineering Chalmers University of Technology 1 Texturing: Glue n-dimensional images onto geometrical objects l Purpose:

More information

Multipass Rendering: Rendering to a Texture

Multipass Rendering: Rendering to a Texture Multipass Rendering: Rendering to a Texture Mike Bailey mjb@cs.oregonstate.edu Oregon State University Preliminary Background the OpenGL Rendering Context The OpenGL Rendering Context contains all the

More information

CS452/552; EE465/505. Shadow Mapping in WebGL

CS452/552; EE465/505. Shadow Mapping in WebGL CS452/552; EE465/505 Shadow Mapping in WebGL 4-09 15 Outline! Shadow Mapping in WebGL Switching Shaders Framebuffer Objects (FBO) Read: Angel, Chapter 7: 7.12 Framebuffer Objects WebGL Programming Guide:

More information

Computer Graphics Programming

Computer Graphics Programming Computer Graphics Programming Graphics APIs Using MFC (Microsoft Foundation Class) in Visual C++ Programming in Visual C++ GLUT in Windows and Unix platform Overview and Application Graphics APIs Provide

More information

Introduction to OpenGL. Prof. Dr.-Ing. Lars Linsen

Introduction to OpenGL. Prof. Dr.-Ing. Lars Linsen Introduction to OpenGL Prof. Dr.-Ing. Lars Linsen School of Engineering and Science Bremen 320621: Advanced Visualization Lab 1. What is OpenGL? Graphics Programming Graphical user interface (GUI) Windowing

More information

Page 6 PROCESSOR PROCESSOR FRAGMENT FRAGMENT. texy[1] texx. texy[1] texx. texy[0] texy[0]

Page 6 PROCESSOR PROCESSOR FRAGMENT FRAGMENT. texy[1] texx. texy[1] texx. texy[0] texy[0] This lecture is based on GPGPU::Basic Math Tutorial, Dominik Goeddeke, http:www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html 220 Winter 2009 CMPE A linear algebra application GPGPU: SAXPY stands

More information

Computer graphics MN1

Computer graphics MN1 Computer graphics MN1 http://www.opengl.org Todays lecture What is OpenGL? How do I use it? Rendering pipeline Points, vertices, lines,, polygons Matrices and transformations Lighting and shading Code

More information

OpenCL The Open Standard for Heterogeneous Parallel Programming

OpenCL The Open Standard for Heterogeneous Parallel Programming OpenCL The Open Standard for Heterogeneous Parallel Programming March 2009 Copyright Khronos Group, 2009 - Page 1 Close-to-the-Silicon Standards Khronos creates Foundation-Level acceleration APIs - Needed

More information

Lecture 4 of 41. Lab 1a: OpenGL Basics

Lecture 4 of 41. Lab 1a: OpenGL Basics Lab 1a: OpenGL Basics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://snipurl.com/1y5gc Course web site: http://www.kddresearch.org/courses/cis636 Instructor

More information

OpenGL. Jimmy Johansson Norrköping Visualization and Interaction Studio Linköping University

OpenGL. Jimmy Johansson Norrköping Visualization and Interaction Studio Linköping University OpenGL Jimmy Johansson Norrköping Visualization and Interaction Studio Linköping University Background Software interface to graphics hardware 250+ commands Objects (models) are built from geometric primitives

More information

Data Parallelism. CSCI 5828: Foundations of Software Engineering Lecture 28 12/01/2016

Data Parallelism. CSCI 5828: Foundations of Software Engineering Lecture 28 12/01/2016 Data Parallelism CSCI 5828: Foundations of Software Engineering Lecture 28 12/01/2016 1 Goals Cover the material in Chapter 7 of Seven Concurrency Models in Seven Weeks by Paul Butcher Data Parallelism

More information

FAKULTI TEKNOLOGI MAKLUMAT DAN KOMUNIKASI BITM INTERACTIVE COMPUTER GRAPHICS LAB SESSION 4. C++ - OpenGL

FAKULTI TEKNOLOGI MAKLUMAT DAN KOMUNIKASI BITM INTERACTIVE COMPUTER GRAPHICS LAB SESSION 4. C++ - OpenGL FAKULTI TEKNOLOGI MAKLUMAT DAN KOMUNIKASI BITM 3213 - INTERACTIVE COMPUTER GRAPHICS LAB SESSION 4 C++ - OpenGL Part 1- C++ - Texture Mapping 1. Download texture file and put it into your current folder

More information

Assignment #6 2D Vector Field Visualization Arrow Plot and LIC

Assignment #6 2D Vector Field Visualization Arrow Plot and LIC Assignment #6 2D Vector Field Visualization Arrow Plot and LIC Due Oct.15th before midnight Goal: In this assignment, you will be asked to implement two visualization techniques for 2D steady (time independent)

More information

General Purpose computation on GPUs. Liangjun Zhang 2/23/2005

General Purpose computation on GPUs. Liangjun Zhang 2/23/2005 General Purpose computation on GPUs Liangjun Zhang 2/23/2005 Outline Interpretation of GPGPU GPU Programmable interfaces GPU programming sample: Hello, GPGPU More complex programming GPU essentials, opportunity

More information

ก ก ก.

ก ก ก. 418382 ก ก ก ก 5 pramook@gmail.com TEXTURE MAPPING Textures Texture Object An OpenGL data type that keeps textures resident in memory and provides identifiers

More information

GL_COLOR_BUFFER_BIT, GL_PROJECTION, GL_MODELVIEW

GL_COLOR_BUFFER_BIT, GL_PROJECTION, GL_MODELVIEW OpenGL Syntax Functions have prefix gl and initial capital letters for each word glclearcolor(), glenable(), glpushmatrix() glu for GLU functions glulookat(), gluperspective() constants begin with GL_,

More information

CS 432 Interactive Computer Graphics

CS 432 Interactive Computer Graphics CS 432 Interactive Computer Graphics Lecture 7 Part 2 Texture Mapping in OpenGL Matt Burlick - Drexel University - CS 432 1 Topics Texture Mapping in OpenGL Matt Burlick - Drexel University - CS 432 2

More information

OpenGL. 1 OpenGL OpenGL 1.2 3D. (euske) 1. Client-Server Model OpenGL

OpenGL. 1 OpenGL OpenGL 1.2 3D. (euske) 1. Client-Server Model OpenGL OpenGL (euske) 1 OpenGL - 1.1 OpenGL 1. Client-Server Model 2. 3. 1.2 3D OpenGL (Depth-Buffer Algorithm Z-Buffer Algorithm) (polygon ) ( rendering) Client-Server Model X Window System ( GL ) GL (Indy O

More information

GRAFIKA KOMPUTER. ~ M. Ali Fauzi

GRAFIKA KOMPUTER. ~ M. Ali Fauzi GRAFIKA KOMPUTER ~ M. Ali Fauzi Texture Mapping WHY TEXTURE? Imagine a Chess Floor Or a Brick Wall How to Draw? If you want to draw a chess floor, each tile must be drawn as a separate quad. A large flat

More information

GPGPU IGAD 2014/2015. Lecture 4. Jacco Bikker

GPGPU IGAD 2014/2015. Lecture 4. Jacco Bikker GPGPU IGAD 2014/2015 Lecture 4 Jacco Bikker Today: Demo time! Parallel scan Parallel sort Assignment Demo Time Parallel scan What it is: in: 1 1 6 2 7 3 2 out: 0 1 2 8 10 17 20 C++: out[0] = 0 for ( i

More information

Books, OpenGL, GLUT, GLUI, CUDA, OpenCL, OpenCV, PointClouds, and G3D

Books, OpenGL, GLUT, GLUI, CUDA, OpenCL, OpenCV, PointClouds, and G3D Books, OpenGL, GLUT, GLUI, CUDA, OpenCL, OpenCV, PointClouds, and G3D CS334 Spring 2012 Daniel G. Aliaga Department of Computer Science Purdue University Computer Graphics Pipeline Geometric Primitives

More information

Multipass Rendering: Rendering to a Texture

Multipass Rendering: Rendering to a Texture Multipass Rendering: Rendering to a Texture Mike Bailey mjb@cs.oregonstate.edu Oregon State University Preliminary Background the OpenGL Rendering Context The OpenGL Rendering Context contains all the

More information

Basic Graphics Programming

Basic Graphics Programming 15-462 Computer Graphics I Lecture 2 Basic Graphics Programming Graphics Pipeline OpenGL API Primitives: Lines, Polygons Attributes: Color Example January 17, 2002 [Angel Ch. 2] Frank Pfenning Carnegie

More information

Rock em Graphic Cards

Rock em Graphic Cards Rock em Graphic Cards Agnes Meyder 27.12.2013, 16:00 1 / 61 Layout Motivation Parallelism Old Standards OpenMPI OpenMP Accelerator Cards CUDA OpenCL OpenACC Hardware C++AMP The End 2 / 61 Layout Motivation

More information

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 22: Introduction to OpenCL

CS/EE 217 GPU Architecture and Parallel Programming. Lecture 22: Introduction to OpenCL CS/EE 217 GPU Architecture and Parallel Programming Lecture 22: Introduction to OpenCL Objective To Understand the OpenCL programming model basic concepts and data types OpenCL application programming

More information

CS335 Graphics and Multimedia. Slides adopted from OpenGL Tutorial

CS335 Graphics and Multimedia. Slides adopted from OpenGL Tutorial CS335 Graphics and Multimedia Slides adopted from OpenGL Tutorial Texture Poly. Per Vertex Mapping CPU DL Texture Raster Frag FB Pixel Apply a 1D, 2D, or 3D image to geometric primitives Uses of Texturing

More information

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Texture Mapping CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce Mapping Methods - Texture Mapping - Environment Mapping - Bump Mapping Consider

More information

Objectives. Texture Mapping and NURBS Week 7. The Limits of Geometric Modeling. Modeling an Orange. Three Types of Mapping. Modeling an Orange (2)

Objectives. Texture Mapping and NURBS Week 7. The Limits of Geometric Modeling. Modeling an Orange. Three Types of Mapping. Modeling an Orange (2) CS 480/680 INTERACTIVE COMPUTER GRAPHICS Texture Mapping and NURBS Week 7 David Breen Department of Computer Science Drexel University Objectives Introduce Mapping Methods Texture Mapping Environmental

More information

Introduction to OpenGL

Introduction to OpenGL Introduction to OpenGL Banafsheh Azari http://www.uni-weimar.de/cms/medien/cg.html What You ll See Today What is OpenGL? Related Libraries OpenGL Command Syntax B. Azari http://www.uni-weimar.de/cms/medien/cg.html

More information

Texture Mapping CSCI 4229/5229 Computer Graphics Fall 2016

Texture Mapping CSCI 4229/5229 Computer Graphics Fall 2016 Texture Mapping CSCI 4229/5229 Computer Graphics Fall 2016 What are texture maps? Bitmap images used to assign fine texture to displayed surfaces Used to make surfaces appear more realistic Must move with

More information

Exercise 1 Introduction to OpenGL

Exercise 1 Introduction to OpenGL Exercise 1 Introduction to OpenGL What we are going to do OpenGL Glut Small Example using OpenGl and Glut Alexandra Junghans 2 What is OpenGL? OpenGL Two Parts most widely used and supported graphics API

More information

Lectures Display List

Lectures Display List Lectures Display List By Tom Duff Pixar Animation Studios Emeryville, California and George Ledin Jr Sonoma State University Rohnert Park, California 2004, Tom Duff and George Ledin Jr 1 What is it? What

More information

ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO EECS 104. Fundamentals of Computer Graphics. OpenGL

ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO EECS 104. Fundamentals of Computer Graphics. OpenGL ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO SANTA BARBARA SANTA CRUZ EECS 104 Fundamentals of Computer Graphics OpenGL Slides courtesy of Dave Shreine, Ed Angel and Vicki Shreiner

More information

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics CS4621/5621 Fall 2015 Basics of OpenGL/GLSL Textures Basics Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang and Pramook

More information

CS559: Computer Graphics. Lecture 12: OpenGL Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 12: OpenGL Li Zhang Spring 2008 CS559: Computer Graphics Lecture 12: OpenGL Li Zhang Spring 2008 Reading Redbook Ch 1 & 2 So far: 3D Geometry Pipeline Model Space (Object Space) Rotation Translation Resizing World Space M Rotation Translation

More information

Chapter 9 Texture Mapping An Overview and an Example Steps in Texture Mapping A Sample Program Specifying the Texture Texture Proxy Replacing All or

Chapter 9 Texture Mapping An Overview and an Example Steps in Texture Mapping A Sample Program Specifying the Texture Texture Proxy Replacing All or Chapter 9 Texture Mapping An Overview and an Example Steps in Texture Mapping A Sample Program Specifying the Texture Texture Proxy Replacing All or Part of a Texture Image One Dimensional Textures Using

More information

Display Lists in OpenGL

Display Lists in OpenGL Display Lists in OpenGL Display lists are a mechanism for improving performance of interactive OpenGL applications. A display list is a group of OpenGL commands that have been stored for later execution.

More information

Introduction to Computer Graphics with OpenGL/GLUT

Introduction to Computer Graphics with OpenGL/GLUT Introduction to Computer Graphics with OpenGL/GLUT What is OpenGL? A software interface to graphics hardware Graphics rendering API (Low Level) High-quality color images composed of geometric and image

More information

Precept 2 Aleksey Boyko February 18, 2011

Precept 2 Aleksey Boyko February 18, 2011 Precept 2 Aleksey Boyko February 18, 2011 Getting started Initialization Drawing Transformations Cameras Animation Input Keyboard Mouse Joystick? Textures Lights Programmable pipeline elements (shaders)

More information

Programming with OpenGL Part 2: Complete Programs Computer Graphics I, Fall

Programming with OpenGL Part 2: Complete Programs Computer Graphics I, Fall Programming with OpenGL Part 2: Complete Programs 91.427 Computer Graphics I, Fall 2008 1 1 Objectives Refine first program Alter default values Introduce standard program structure Simple viewing 2-D

More information

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3)

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3) Computer Graphics (Fall 2008) COMS 4160, Lecture 9: OpenGL 1 http://www.cs.columbia.edu/~cs4160 To Do Start thinking (now) about HW 3. Milestones are due soon. Course Course 3D Graphics Pipeline 3D Graphics

More information

OpenGL refresher. Advanced Computer Graphics 2012

OpenGL refresher. Advanced Computer Graphics 2012 Advanced Computer Graphics 2012 What you will see today Outline General OpenGL introduction Setting up: GLUT and GLEW Elementary rendering Transformations in OpenGL Texture mapping Programmable shading

More information

CT5510: Computer Graphics. Texture Mapping

CT5510: Computer Graphics. Texture Mapping CT5510: Computer Graphics Texture Mapping BOCHANG MOON Texture Mapping Simulate spatially varying surface properties Phong illumination model is coupled with a material (e.g., color) Add small polygons

More information

Methodology for Lecture

Methodology for Lecture Basic Geometry Setup Methodology for Lecture Make mytest1 more ambitious Sequence of steps Demo Review of Last Demo Changed floor to all white, added global for teapot and teapotloc, moved geometry to

More information

Basic Graphics Programming

Basic Graphics Programming CSCI 480 Computer Graphics Lecture 2 Basic Graphics Programming January 11, 2012 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s12/ Graphics Pipeline OpenGL API

More information

CS212. OpenGL Texture Mapping and Related

CS212. OpenGL Texture Mapping and Related CS212 OpenGL Texture Mapping and Related Basic Strategy Three steps to applying a texture 1. specify the texture read or generate image assign to texture enable texturing 2. assign texture coordinates

More information

Teacher Assistant : Tamir Grossinger Reception hours: by - Building 37 / office -102 Assignments: 4 programing using

Teacher Assistant : Tamir Grossinger   Reception hours: by  - Building 37 / office -102 Assignments: 4 programing using Teacher Assistant : Tamir Grossinger email: tamirgr@gmail.com Reception hours: by email - Building 37 / office -102 Assignments: 4 programing using C++ 1 theoretical You can find everything you need in

More information

RECITATION - 1. Ceng477 Fall

RECITATION - 1. Ceng477 Fall RECITATION - 1 Ceng477 Fall 2007-2008 2/ 53 Agenda General rules for the course General info on the libraries GLUT OpenGL GLUI Details about GLUT Functions Probably we will not cover this part 3/ 53 General

More information

2/3/16. Interaction. Triangles (Clarification) Choice of Programming Language. Buffer Objects. The CPU-GPU bus. CSCI 420 Computer Graphics Lecture 3

2/3/16. Interaction. Triangles (Clarification) Choice of Programming Language. Buffer Objects. The CPU-GPU bus. CSCI 420 Computer Graphics Lecture 3 CSCI 420 Computer Graphics Lecture 3 Interaction Jernej Barbic University of Southern California [Angel Ch. 2] Triangles (Clarification) Can be any shape or size Well-shaped triangles have advantages for

More information

11/1/13. Basic Graphics Programming. Teaching Assistant. What is OpenGL. Course Producer. Where is OpenGL used. Graphics library (API)

11/1/13. Basic Graphics Programming. Teaching Assistant. What is OpenGL. Course Producer. Where is OpenGL used. Graphics library (API) CSCI 420 Computer Graphics Lecture 2 Basic Graphics Programming Teaching Assistant Yijing Li Office hours TBA Jernej Barbic University of Southern California Graphics Pipeline OpenGL API Primitives: Lines,

More information

Computer Graphics. OpenGL

Computer Graphics. OpenGL Computer Graphics OpenGL What is OpenGL? OpenGL (Open Graphics Library) is a library for computer graphics It consists of several procedures and functions that allow a programmer to specify the objects

More information

Interaction. CSCI 420 Computer Graphics Lecture 3

Interaction. CSCI 420 Computer Graphics Lecture 3 CSCI 420 Computer Graphics Lecture 3 Interaction Jernej Barbic University of Southern California Client/Server Model Callbacks Double Buffering Hidden Surface Removal Simple Transformations [Angel Ch.

More information

12. Selection. - The objects selected are specified by hit records in the selection buffer. E.R. Bachmann & P.L. McDowell MV 4202 Page 1 of 13

12. Selection. - The objects selected are specified by hit records in the selection buffer. E.R. Bachmann & P.L. McDowell MV 4202 Page 1 of 13 12. Selection Picking is a method of capturing mouse clicks at some window position and determining what objects are beneath it. The basic idea is to enter the selection rendering mode with a small viewing

More information

COMPUTER GRAPHICS LAB # 3

COMPUTER GRAPHICS LAB # 3 COMPUTER GRAPHICS LAB # 3 Chapter 2: COMPUTER GRAPHICS by F.S HILLs. Initial steps in drawing figures (polygon, rectangle etc) Objective: Basic understanding of simple code in OpenGL and initial steps

More information

by modifying the glutinitwindowsize() function you can change the screen size to whatever you please.

by modifying the glutinitwindowsize() function you can change the screen size to whatever you please. Zoe Veale Lab 2 Draw2 part 1: I edited the glutinitwindowsize() function tom change the size of my screen window. int main(int argc, char** argv) glutinit(&argc, argv); //initialize toolkit glutinitdisplaymode

More information

Information Coding / Computer Graphics, ISY, LiTH. OpenGL! ! where it fits!! what it contains!! how you work with it 11(40)

Information Coding / Computer Graphics, ISY, LiTH. OpenGL! ! where it fits!! what it contains!! how you work with it 11(40) 11(40) Information Coding / Computer Graphics, ISY, LiTH OpenGL where it fits what it contains how you work with it 11(40) OpenGL The cross-platform graphics library Open = Open specification Runs everywhere

More information

Computer Graphics Course 2005

Computer Graphics Course 2005 Computer Graphics Course 2005 Introduction to GLUT, GLU and OpenGL Administrative Stuff Teaching Assistant: Rony Goldenthal Reception Hour: Wed. 18:00 19:00 Room 31 (Ross 1) Questions: E-mail: cg@cs Newsgroups:

More information

Books, OpenGL, GLUT, CUDA, OpenCL, OpenCV, PointClouds, G3D, and Qt

Books, OpenGL, GLUT, CUDA, OpenCL, OpenCV, PointClouds, G3D, and Qt Books, OpenGL, GLUT, CUDA, OpenCL, OpenCV, PointClouds, G3D, and Qt CS334 Fall 2015 Daniel G. Aliaga Department of Computer Science Purdue University Books (and by now means complete ) Interactive Computer

More information

2 Transformations and Homogeneous Coordinates

2 Transformations and Homogeneous Coordinates Brief solutions to Exam in Computer Graphics Time and place: 08:00 3:00 Tuesday March 7, 2009, Gimogatan 4, sal Grades TD388: 3: 20pts; 4: 26pts; 5: 34pts. Glossary API Application Programmer s Interface.

More information

OpenCL. An Introduction for HPC programmers. Benedict Gaster, AMD Tim Mattson, Intel. - Page 1

OpenCL. An Introduction for HPC programmers. Benedict Gaster, AMD Tim Mattson, Intel. - Page 1 OpenCL An Introduction for HPC programmers Benedict Gaster, AMD Tim Mattson, Intel - Page 1 Preliminaries: Disclosures - The views expressed in this tutorial are those of the people delivering the tutorial.

More information

Drawing and Coordinate Systems

Drawing and Coordinate Systems Drawing and Coordinate Systems Coordinate Systems World Coordinate system World window Screen Coordinate system Viewport Window to viewport mapping Screen Coordinate System Glut OpenGL (0,0) 0) Screen

More information

arxiv:hep-lat/ v1 21 Nov 2006

arxiv:hep-lat/ v1 21 Nov 2006 Lattice QCD as a video game Győző I. Egri a, Zoltán Fodor abc, Christian Hoelbling b, Sándor D. Katz ab, Dániel Nógrádi b and Kálmán K. Szabó b arxiv:hep-lat/0611022 v1 21 Nov 2006 a Institute for Theoretical

More information

Introduction to OpenCL. Benedict R. Gaster October, 2010

Introduction to OpenCL. Benedict R. Gaster October, 2010 Introduction to OpenCL Benedict R. Gaster October, 2010 OpenCL With OpenCL you can Leverage CPUs and GPUs to accelerate parallel computation Get dramatic speedups for computationally intensive applications

More information

Introduction to OpenGL

Introduction to OpenGL Introduction to OpenGL Tutorial 1: Create a window and draw a 2D square Introduction: The aim of the first tutorial is to introduce you to the magic world of graphics based on the OpenGL and GLUT APIs.

More information

Copyright Khronos Group, Page 1. OpenCL Overview. February 2010

Copyright Khronos Group, Page 1. OpenCL Overview. February 2010 Copyright Khronos Group, 2011 - Page 1 OpenCL Overview February 2010 Copyright Khronos Group, 2011 - Page 2 Khronos Vision Billions of devices increasing graphics, compute, video, imaging and audio capabilities

More information

C OMPUTER G RAPHICS Thursday

C OMPUTER G RAPHICS Thursday C OMPUTER G RAPHICS 2017.04.27 Thursday Professor s original PPT http://calab.hanyang.ac.kr/ Courses Computer Graphics practice3.pdf TA s current PPT not uploaded yet GRAPHICS PIPELINE What is Graphics

More information

CS179: GPU Programming

CS179: GPU Programming CS179: GPU Programming Lecture 4: Textures Original Slides by Luke Durant, Russel McClellan, Tamas Szalay Today Recap Textures What are textures? Traditional uses Alternative uses Recap Our data so far:

More information

CS452/552; EE465/505. Texture Mapping in WebGL

CS452/552; EE465/505. Texture Mapping in WebGL CS452/552; EE465/505 Texture Mapping in WebGL 2-26 15 Outline! Texture Mapping in WebGL Read: Angel, Chapter 7, 7.3-7.5 LearningWebGL lesson 5: http://learningwebgl.com/blog/?p=507 Lab3 due: Monday, 3/2

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming Texture Mapping 2 Texture Poly. Per Vertex Mapping CPU DL Pixel Texture Raster Frag FB Apply a 1D, 2D,

More information

To Do. Review of Last Demo. Methodology for Lecture. Geometry Basic Setup. Outline. Foundations of Computer Graphics (Fall 2012)

To Do. Review of Last Demo. Methodology for Lecture. Geometry Basic Setup. Outline. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 8: OpenGL 2 http://inst.eecs.berkeley.edu/~cs184 To Do Continue working on HW 2. Can be difficult Class lectures, programs primary source Can

More information

Interaction. CSCI 480 Computer Graphics Lecture 3

Interaction. CSCI 480 Computer Graphics Lecture 3 CSCI 480 Computer Graphics Lecture 3 Interaction January 18, 2012 Jernej Barbic University of Southern California Client/Server Model Callbacks Double Buffering Hidden Surface Removal Simple Transformations

More information