Varys. Efficient Coflow Scheduling. Mosharaf Chowdhury, Yuan Zhong, Ion Stoica. UC Berkeley

Size: px
Start display at page:

Download "Varys. Efficient Coflow Scheduling. Mosharaf Chowdhury, Yuan Zhong, Ion Stoica. UC Berkeley"

Transcription

1 Varys Efficient Coflow Scheduling Mosharaf Chowdhury, Yuan Zhong, Ion Stoica UC Berkeley

2 Communication is Crucial Performance Facebook analytics jobs spend 33% of their runtime in communication 1 As in-memory systems proliferate, the network is likely to become the primary bottleneck 1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM 2011

3 Flow A sequence of packets between two endpoints Independent unit of allocation, sharing, load balancing, and/or prioritization Optimizing Communication Performance: Networking Approach Let systems figure it out

4 Optimizing Communication # Comm. Params * Spark Performance: Systems Approach Let users figure it out Hadoop YARN * Lower bound. Does not include many parameters that can indirectly impact communication; e.g., number of reducers etc. Also excludes control-plane communication/rpc parameters.

5 Optimizing Communication Performance: Systems Approach Optimizing Communication Performance: Networking Approach Let users figure it out Let systems figure it out

6 Optimizing Communication Performance: Systems Approach Optimizing Communication Performance: Networking Approach Let users figure it out Let systems figure it out

7 Optimizing Optimizing Coflow Communication Performance: 1 Systems A collection of parallel flows Approach Distributed endpoints Each flow is independent Let users figure it out Communication Performance: Networking Completion Approach time depends on the last flow to complete Let systems figure it out 1. Coflow: A Networking Abstraction for Cluster Applications, HotNets 2012

8 Coflow 1 A collection of parallel flows Distributed endpoints Each flow is independent Completion time depends on the last flow to complete 1. Coflow: A Networking Abstraction for Cluster Applications, HotNets 2012

9 1 1 How to 2 2 for faster #1 completion of coflows? schedule.. coflows.... to meet #2 more deadlines? N N DC Fabric

10 Varys Enables coflows in data-intensive clusters 1. Simpler Frameworks Zero user-side configuration using a simple coflow API 2. Better performance Faster and more predictable transfers through coflow scheduling

11 Benefits of Inter-Coflow Scheduling Coflow 1 Coflow 2 Link 2 Link 1 3 Units 6 Units 3-ε Units Fair Sharing Flow-level Prioritization 1,2 The Optimal L2 L1 L2 L1 L2 L time Coflow1 comp. time = 6 Coflow2 comp. time = time Coflow1 comp. time = 6 Coflow2 comp. time = time Coflow1 comp. time = 3 Coflow2 comp. time = 6 1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM pfabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM 2013.

12 Inter-Coflow Scheduling Coflow 1 Coflow 2 Link 2 Link 1 3 Units 6 Units 3-ε Units L2 L1 Fair Sharing Concurrent Open Shop Scheduling 1 Tasks on independent machines L2 Examples include job scheduling and L1 caching blocks Use time a ordering heuristic Coflow1 comp. time = 6 Coflow2 comp. time = 6 Flow-level Prioritization time Coflow1 comp. time = 6 Coflow2 comp. time = 6 L2 L1 The Optimal time Coflow1 comp. time = 3 Coflow2 comp. time = 6 1. A note on the complexity of the concurrent open shop problem, Journal of Scheduling, 9(4): , 2006

13 Inter-Coflow Scheduling is NP-Hard Coflow 1 Coflow 2 Link 2 Link 1 3 Units 6 Units 3-ε Units with coupled resources Concurrent Open Shop Scheduling Flows on dependent links Consider ordering and matching constraints Characterized COSS-CR Proved that list scheduling might not result in optimal solution ^ ε Ingress Ports (Machine Uplinks) DC Fabric Egress Ports (Machine Downlinks) 3 2 1

14 Varys Employs a two-step algorithm to minimize coflow completion times 1. Ordering heuristic Keeps an ordered list of coflows to be scheduled, preempting if needed 2. Allocation algorithm Allocates minimum required resources to each coflow to finish in minimum time

15 Ordering Heuristic : SEBF C 1 ends C 2 ends C 2 ends C 1 ends P 1 P P 2 P P 3 Time Time P 3 C 1 C 2 Length 3 4 Width 2 3 Size 5 12 Bottleneck 5 4 Shortest-First Narrowest-First Smallest-First Smallest- Effective- Bottleneck- First

16 Allocation Algorithm MADD A coflow cannot finish before its very last flow Finishing flows faster than the bottleneck cannot decrease a coflow s completion time Ensure minimum allocation to each flow for it to finish at the desired duration; for example, at bottleneck s completion, or at the deadline.

17 Varys Enables frameworks to take advantage of coflow scheduling 1. Exposes the coflow API 2. Enforces through a centralized scheduler

18 Evaluation A 3000-node trace-driven simulation matched against a 100-node EC2 deployment 1. Does it improve performance? YES 2. Can it beat non-preemptive solutions?

19 Faster Jobs Comm. Improv. Job Improv. Avg. 1.85X 1.25X 95 th 1.74X 1.15X

20 Faster Jobs Comm. Heavy 1 Comm. Improv. Job Improv. Avg. 3.16X 1.85X 2.50X 1.25X 95 th 3.84X 1.74X 2.94X 1.15X 1. 26% jobs spend at least 50% of their duration in communication stages.

21 Better than Non-Preemptive Solutions w.r.t. FIFO 1 Avg. 5.65X NO What About 95 th 7.70X Perpetual Starvation? 1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM 2011

22 #1 #2 #3 Coflow Dependencies Unknown Flow Information Decentralized Four Challenges Varys Multi-stage jobs Multi-wave stages Pipelining between stages Task failures and restarts Master failure Low-latency analytics in the Context of Multipoint-to-Multipoint Coflows

23 #4 Theory Behind Concurrent Open Shop Scheduling with Coupled Resources

24 Varys Greedily schedules coflows without worrying about flow-level metrics Consolidates network optimization of data-intensive frameworks Improves job performance by addressing the COSS-CR problem Increases predictability through informed admission control Mosharaf Chowdhury

25

Coflow. Big Data. Data-Parallel Applications. Big Datacenters for Massive Parallelism. Recent Advances and What s Next?

Coflow. Big Data. Data-Parallel Applications. Big Datacenters for Massive Parallelism. Recent Advances and What s Next? Big Data Coflow The volume of data businesses want to make sense of is increasing Increasing variety of sources Recent Advances and What s Next? Web, mobile, wearables, vehicles, scientific, Cheaper disks,

More information

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan Coflow Recent Advances and What s Next? Mosharaf Chowdhury University of Michigan Rack-Scale Computing Datacenter-Scale Computing Geo-Distributed Computing Coflow Networking Open Source Apache Spark Open

More information

15-744: Computer Networking. Data Center Networking II

15-744: Computer Networking. Data Center Networking II 15-744: Computer Networking Data Center Networking II Overview Data Center Topology Scheduling Data Center Packet Scheduling 2 Current solutions for increasing data center network bandwidth FatTree BCube

More information

6.888 Lecture 8: Networking for Data Analy9cs

6.888 Lecture 8: Networking for Data Analy9cs 6.888 Lecture 8: Networking for Data Analy9cs Mohammad Alizadeh ² Many thanks to Mosharaf Chowdhury (Michigan) and Kay Ousterhout (Berkeley) Spring 2016 1 Big Data Huge amounts of data being collected

More information

Saath: Speeding up CoFlows by Exploiting the Spatial Dimension. Chengkok-Koh

Saath: Speeding up CoFlows by Exploiting the Spatial Dimension. Chengkok-Koh Saath: Speeding up CoFlows by Exploiting the Spatial Dimension Akshay Jajoo Rohan Gandhi Y. Charlie Hu Chengkok-Koh 1 Analytics Jobs in Big Data Analytics jobs in data-centers Process huge amount of data

More information

Efficient Coflow Scheduling with Varys

Efficient Coflow Scheduling with Varys Efficient Coflow Scheduling with Varys Mosharaf Chowdhury 1, Yuan Zhong 2, Ion Stoica 1 1 UC Berkeley, 2 Columbia University {mosharaf, istoica}@cs.berkeley.edu, yz2561@columbia.edu ABSTRACT Communication

More information

Sinbad. Leveraging Endpoint Flexibility in Data-Intensive Clusters. Mosharaf Chowdhury, Srikanth Kandula, Ion Stoica. UC Berkeley

Sinbad. Leveraging Endpoint Flexibility in Data-Intensive Clusters. Mosharaf Chowdhury, Srikanth Kandula, Ion Stoica. UC Berkeley Sinbad Leveraging Endpoint Flexibility in Data-Intensive Clusters Mosharaf Chowdhury, Srikanth Kandula, Ion Stoica UC Berkeley Communication is Crucial for Analytics at Scale Performance Facebook analytics

More information

Coflow Efficiently Sharing Cluster Networks

Coflow Efficiently Sharing Cluster Networks Coflow Efficiently Sharing Cluster Networks Mosharaf Chowdhury Qualifying Exam, UC Berkeley Apr 11, 2013 Network Matters Typical Facebook jobs spend 33% of running time in communication Weeklong trace

More information

Sincronia: Near-Optimal Network Design for Coflows. Shijin Rajakrishnan. Joint work with

Sincronia: Near-Optimal Network Design for Coflows. Shijin Rajakrishnan. Joint work with Sincronia: Near-Optimal Network Design for Coflows Shijin Rajakrishnan Joint work with Saksham Agarwal Akshay Narayan Rachit Agarwal David Shmoys Amin Vahdat Traditional Applications: Care about performance

More information

Exploiting Inter-Flow Relationship for Coflow Placement in Data Centers. Xin Sunny Huang, T. S. Eugene Ng Rice University

Exploiting Inter-Flow Relationship for Coflow Placement in Data Centers. Xin Sunny Huang, T. S. Eugene Ng Rice University Exploiting Inter-Flow Relationship for Coflow Placement in Data Centers Xin Sunny Huang, T S Eugene g Rice University This Work Optimizing Coflow performance has many benefits such as avoiding application

More information

A Network-aware Scheduler in Data-parallel Clusters for High Performance

A Network-aware Scheduler in Data-parallel Clusters for High Performance A Network-aware Scheduler in Data-parallel Clusters for High Performance Zhuozhao Li, Haiying Shen and Ankur Sarker Department of Computer Science University of Virginia May, 2018 1/61 Data-parallel clusters

More information

Packet Scheduling in Data Centers. Lecture 17, Computer Networks (198:552)

Packet Scheduling in Data Centers. Lecture 17, Computer Networks (198:552) Packet Scheduling in Data Centers Lecture 17, Computer Networks (198:552) Datacenter transport Goal: Complete flows quickly / meet deadlines Short flows (e.g., query, coordination) Large flows (e.g., data

More information

Information-Agnostic Flow Scheduling for Commodity Data Centers. Kai Chen SING Group, CSE Department, HKUST May 16, Stanford University

Information-Agnostic Flow Scheduling for Commodity Data Centers. Kai Chen SING Group, CSE Department, HKUST May 16, Stanford University Information-Agnostic Flow Scheduling for Commodity Data Centers Kai Chen SING Group, CSE Department, HKUST May 16, 2016 @ Stanford University 1 SING Testbed Cluster Electrical Packet Switch, 1G (x10) Electrical

More information

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5 OPERATING SYSTEMS CS3502 Spring 2018 Processor Scheduling Chapter 5 Goals of Processor Scheduling Scheduling is the sharing of the CPU among the processes in the ready queue The critical activities are:

More information

Sincronia: Near-Optimal Network Design for Coflows

Sincronia: Near-Optimal Network Design for Coflows Sincronia: Near-Optimal Network Design for Coflows Saksham Agarwal Cornell University Rachit Agarwal Cornell University Shijin Rajakrishnan Cornell University David Shmoys Cornell University Akshay Narayan

More information

CPU Scheduling. CSE 2431: Introduction to Operating Systems Reading: Chapter 6, [OSC] (except Sections )

CPU Scheduling. CSE 2431: Introduction to Operating Systems Reading: Chapter 6, [OSC] (except Sections ) CPU Scheduling CSE 2431: Introduction to Operating Systems Reading: Chapter 6, [OSC] (except Sections 6.7.2 6.8) 1 Contents Why Scheduling? Basic Concepts of Scheduling Scheduling Criteria A Basic Scheduling

More information

Infiniswap. Efficient Memory Disaggregation. Mosharaf Chowdhury. with Juncheng Gu, Youngmoon Lee, Yiwen Zhang, and Kang G. Shin

Infiniswap. Efficient Memory Disaggregation. Mosharaf Chowdhury. with Juncheng Gu, Youngmoon Lee, Yiwen Zhang, and Kang G. Shin Infiniswap Efficient Memory Disaggregation Mosharaf Chowdhury with Juncheng Gu, Youngmoon Lee, Yiwen Zhang, and Kang G. Shin Rack-Scale Computing Datacenter-Scale Computing Geo-Distributed Computing Coflow

More information

A Generalized Blind Scheduling Policy

A Generalized Blind Scheduling Policy A Generalized Blind Scheduling Policy Hanhua Feng 1, Vishal Misra 2,3 and Dan Rubenstein 2 1 Infinio Systems 2 Columbia University in the City of New York 3 Google TTIC SUMMER WORKSHOP: DATA CENTER SCHEDULING

More information

CPU Scheduling. Daniel Mosse. (Most slides are from Sherif Khattab and Silberschatz, Galvin and Gagne 2013)

CPU Scheduling. Daniel Mosse. (Most slides are from Sherif Khattab and Silberschatz, Galvin and Gagne 2013) CPU Scheduling Daniel Mosse (Most slides are from Sherif Khattab and Silberschatz, Galvin and Gagne 2013) Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU I/O Burst Cycle Process

More information

Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization

Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization Wei Chen, Jia Rao*, and Xiaobo Zhou University of Colorado, Colorado Springs * University of Texas at Arlington Data Center

More information

Shaping Deadline Coflows to Accelerate Non-Deadline Coflows

Shaping Deadline Coflows to Accelerate Non-Deadline Coflows Shaping Deadline Coflows to Accelerate Non-Deadline Coflows Renhai Xu, Wenxin Li, Keqiu Li, Xiaobo Zhou Tianjin Key Laboratory of Advanced Networking, School of Computer Science and Technology, Tianjin

More information

Decentralized Task-Aware Scheduling for Data Center Networks

Decentralized Task-Aware Scheduling for Data Center Networks Decentralized Task-Aware Scheduling for Data Center Networks Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron Microsoft Research {fdogar, thomkar, hiballan, antr}@microsoft.com ABSTRACT

More information

Operating Systems. Scheduling

Operating Systems. Scheduling Operating Systems Scheduling Process States Blocking operation Running Exit Terminated (initiate I/O, down on semaphore, etc.) Waiting Preempted Picked by scheduler Event arrived (I/O complete, semaphore

More information

Sparrow. Distributed Low-Latency Spark Scheduling. Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica

Sparrow. Distributed Low-Latency Spark Scheduling. Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica Sparrow Distributed Low-Latency Spark Scheduling Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica Outline The Spark scheduling bottleneck Sparrow s fully distributed, fault-tolerant technique

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm Evaluation Chapter 5: CPU Scheduling

More information

Packing Tasks with Dependencies. Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, Janardhan Kulkarni

Packing Tasks with Dependencies. Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, Janardhan Kulkarni Packing Tasks with Dependencies Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, Janardhan Kulkarni The Cluster Scheduling Problem Jobs Goal: match tasks to resources Tasks 2 The Cluster Scheduling

More information

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling Key aspects of cloud computing Cluster Scheduling 1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning. The elimination of an up-front commitment

More information

CPU Scheduling: Objectives

CPU Scheduling: Objectives CPU Scheduling: Objectives CPU scheduling, the basis for multiprogrammed operating systems CPU-scheduling algorithms Evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

More information

Non-preemptive Coflow Scheduling and Routing

Non-preemptive Coflow Scheduling and Routing Non-preemptive Coflow Scheduling and Routing Ruozhou Yu, Guoliang Xue, Xiang Zhang, Jian Tang Abstract As more and more data-intensive applications have been moved to the cloud, the cloud network has become

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information

DON T CRY OVER SPILLED RECORDS Memory elasticity of data-parallel applications and its application to cluster scheduling

DON T CRY OVER SPILLED RECORDS Memory elasticity of data-parallel applications and its application to cluster scheduling DON T CRY OVER SPILLED RECORDS Memory elasticity of data-parallel applications and its application to cluster scheduling Călin Iorgulescu (EPFL), Florin Dinu (EPFL), Aunn Raza (NUST Pakistan), Wajih Ul

More information

Scheduling. Scheduling. Scheduling. Scheduling Criteria. Priorities. Scheduling

Scheduling. Scheduling. Scheduling. Scheduling Criteria. Priorities. Scheduling scheduling: share CPU among processes scheduling should: be fair all processes must be similarly affected no indefinite postponement aging as a possible solution adjust priorities based on waiting time

More information

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition,

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition, Chapter 5: CPU Scheduling Operating System Concepts 8 th Edition, Hanbat National Univ. Computer Eng. Dept. Y.J.Kim 2009 Chapter 5: Process Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms

More information

Maximizing Link Utilization with Coflow-Aware Scheduling in Datacenter Networks

Maximizing Link Utilization with Coflow-Aware Scheduling in Datacenter Networks Maximizing Link Utilization with Coflow-Aware Scheduling in Datacenter Networks Jingie Jiang, Shiyao Ma, Bo Li, Baochun Li, and Jiangchuan Liu Department of Computer Science and Engineering, Hong Kong

More information

HotCloud 17. Lube: Mitigating Bottlenecks in Wide Area Data Analytics. Hao Wang* Baochun Li

HotCloud 17. Lube: Mitigating Bottlenecks in Wide Area Data Analytics. Hao Wang* Baochun Li HotCloud 17 Lube: Hao Wang* Baochun Li Mitigating Bottlenecks in Wide Area Data Analytics iqua Wide Area Data Analytics DC Master Namenode Workers Datanodes 2 Wide Area Data Analytics Why wide area data

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information

Properties of Processes

Properties of Processes CPU Scheduling Properties of Processes CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution: CPU Scheduler Selects from among the processes that

More information

A Platform for Fine-Grained Resource Sharing in the Data Center

A Platform for Fine-Grained Resource Sharing in the Data Center Mesos A Platform for Fine-Grained Resource Sharing in the Data Center Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica University of California,

More information

Operating Systems ECE344. Ding Yuan

Operating Systems ECE344. Ding Yuan Operating Systems ECE344 Ding Yuan Announcement & Reminder Midterm exam Will grade them this Friday Will post the solution online before next lecture Will briefly go over the common mistakes next Monday

More information

CSE120 Principles of Operating Systems. Prof Yuanyuan (YY) Zhou Scheduling

CSE120 Principles of Operating Systems. Prof Yuanyuan (YY) Zhou Scheduling CSE120 Principles of Operating Systems Prof Yuanyuan (YY) Zhou Scheduling Announcement l Homework 2 due on October 26th l Project 1 due on October 27th 2 Scheduling Overview l In discussing process management

More information

Process Scheduling. Copyright : University of Illinois CS 241 Staff

Process Scheduling. Copyright : University of Illinois CS 241 Staff Process Scheduling Copyright : University of Illinois CS 241 Staff 1 Process Scheduling Deciding which process/thread should occupy the resource (CPU, disk, etc) CPU I want to play Whose turn is it? Process

More information

TDDD82 Secure Mobile Systems Lecture 6: Quality of Service

TDDD82 Secure Mobile Systems Lecture 6: Quality of Service TDDD82 Secure Mobile Systems Lecture 6: Quality of Service Mikael Asplund Real-time Systems Laboratory Department of Computer and Information Science Linköping University Based on slides by Simin Nadjm-Tehrani

More information

CPU Scheduling. Rab Nawaz Jadoon. Assistant Professor DCS. Pakistan. COMSATS, Lahore. Department of Computer Science

CPU Scheduling. Rab Nawaz Jadoon. Assistant Professor DCS. Pakistan. COMSATS, Lahore. Department of Computer Science CPU Scheduling Rab Nawaz Jadoon DCS COMSATS Institute of Information Technology Assistant Professor COMSATS, Lahore Pakistan Operating System Concepts Objectives To introduce CPU scheduling, which is the

More information

Siphon: Expediting Inter-Datacenter Coflows in Wide-Area Data Analytics. Shuhao Liu, Li Chen, Baochun Li University of Toronto July 12, 2018

Siphon: Expediting Inter-Datacenter Coflows in Wide-Area Data Analytics. Shuhao Liu, Li Chen, Baochun Li University of Toronto July 12, 2018 Siphon: Expediting Inter-Datacenter Coflows in Wide-Area Data Analytics Shuhao Liu, Li Chen, Baochun Li University of Toronto July 12, 2018 What is a Coflow? One stage in a data analytic job Map 1 Reduce

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

Scheduling Bits & Pieces

Scheduling Bits & Pieces Scheduling Bits & Pieces 1 Windows Scheduling 2 Windows Scheduling Priority Boost when unblocking Actual boost dependent on resource Disk (1), serial (2), keyboard (6), soundcard (8).. Interactive, window

More information

Chapter 5 CPU scheduling

Chapter 5 CPU scheduling Chapter 5 CPU scheduling Contents Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples Java Thread Scheduling

More information

CPU Scheduling. Operating Systems (Fall/Winter 2018) Yajin Zhou ( Zhejiang University

CPU Scheduling. Operating Systems (Fall/Winter 2018) Yajin Zhou (  Zhejiang University Operating Systems (Fall/Winter 2018) CPU Scheduling Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review Motivation to use threads

More information

Deadline Guaranteed Service for Multi- Tenant Cloud Storage Guoxin Liu and Haiying Shen

Deadline Guaranteed Service for Multi- Tenant Cloud Storage Guoxin Liu and Haiying Shen Deadline Guaranteed Service for Multi- Tenant Cloud Storage Guoxin Liu and Haiying Shen Presenter: Haiying Shen Associate professor *Department of Electrical and Computer Engineering, Clemson University,

More information

Stream Processing on IoT Devices using Calvin Framework

Stream Processing on IoT Devices using Calvin Framework Stream Processing on IoT Devices using Calvin Framework by Ameya Nayak A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science Supervised

More information

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling

Key aspects of cloud computing. Towards fuller utilization. Two main sources of resource demand. Cluster Scheduling Key aspects of cloud computing Cluster Scheduling 1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning. The elimination of an up-front commitment

More information

To Relay or Not to Relay for Inter-Cloud Transfers? Fan Lai, Mosharaf Chowdhury, Harsha Madhyastha

To Relay or Not to Relay for Inter-Cloud Transfers? Fan Lai, Mosharaf Chowdhury, Harsha Madhyastha To Relay or Not to Relay for Inter-Cloud Transfers? Fan Lai, Mosharaf Chowdhury, Harsha Madhyastha Background Over 40 Data Centers (DCs) on EC2, Azure, Google Cloud A geographically denser set of DCs across

More information

CS3733: Operating Systems

CS3733: Operating Systems CS3733: Operating Systems Topics: Process (CPU) Scheduling (SGG 5.1-5.3, 6.7 and web notes) Instructor: Dr. Dakai Zhu 1 Updates and Q&A Homework-02: late submission allowed until Friday!! Submit on Blackboard

More information

FairRide: Near-Optimal Fair Cache Sharing

FairRide: Near-Optimal Fair Cache Sharing UC BERKELEY FairRide: Near-Optimal Fair Cache Sharing Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, Ion Stoica 1 Caches are crucial 2 Caches are crucial 2 Caches are crucial 2 Caches are crucial 2 Cache

More information

Best Practices for Setting BIOS Parameters for Performance

Best Practices for Setting BIOS Parameters for Performance White Paper Best Practices for Setting BIOS Parameters for Performance Cisco UCS E5-based M3 Servers May 2013 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page

More information

IX: A Protected Dataplane Operating System for High Throughput and Low Latency

IX: A Protected Dataplane Operating System for High Throughput and Low Latency IX: A Protected Dataplane Operating System for High Throughput and Low Latency Belay, A. et al. Proc. of the 11th USENIX Symp. on OSDI, pp. 49-65, 2014. Reviewed by Chun-Yu and Xinghao Li Summary In this

More information

Adaptive Resync in vsan 6.7 First Published On: Last Updated On:

Adaptive Resync in vsan 6.7 First Published On: Last Updated On: First Published On: 04-26-2018 Last Updated On: 05-02-2018 1 Table of Contents 1. Overview 1.1.Executive Summary 1.2.vSAN's Approach to Data Placement and Management 1.3.Adaptive Resync 1.4.Results 1.5.Conclusion

More information

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica. University of California, Berkeley nsdi 11

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica. University of California, Berkeley nsdi 11 Dominant Resource Fairness: Fair Allocation of Multiple Resource Types Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica University of California, Berkeley nsdi 11

More information

Leveraging Flash in HPC Systems

Leveraging Flash in HPC Systems Leveraging Flash in HPC Systems IEEE MSST June 3, 2015 This work was performed under the auspices of the U.S. Department of Energy by under Contract DE-AC52-07NA27344. Lawrence Livermore National Security,

More information

Chapter 5: Process Scheduling

Chapter 5: Process Scheduling Chapter 5: Process Scheduling Chapter 5: Process Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Thread Scheduling Operating Systems Examples Algorithm

More information

Universal Packet Scheduling. Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley

Universal Packet Scheduling. Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley Universal Packet Scheduling Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley Packet Scheduling Active research literature with many Algorithms FIFO, DRR, virtual clocks, priorities

More information

Unit 3 : Process Management

Unit 3 : Process Management Unit : Process Management Processes are the most widely used units of computation in programming and systems, although object and threads are becoming more prominent in contemporary systems. Process management

More information

Scheduling. Multiple levels of scheduling decisions. Classes of Schedulers. Scheduling Goals II: Fairness. Scheduling Goals I: Performance

Scheduling. Multiple levels of scheduling decisions. Classes of Schedulers. Scheduling Goals II: Fairness. Scheduling Goals I: Performance Scheduling CSE 451: Operating Systems Spring 2012 Module 10 Scheduling Ed Lazowska lazowska@cs.washington.edu Allen Center 570 In discussing processes and threads, we talked about context switching an

More information

Scheduling. Today. Next Time Process interaction & communication

Scheduling. Today. Next Time Process interaction & communication Scheduling Today Introduction to scheduling Classical algorithms Thread scheduling Evaluating scheduling OS example Next Time Process interaction & communication Scheduling Problem Several ready processes

More information

CSE 451: Operating Systems Winter Module 10 Scheduling

CSE 451: Operating Systems Winter Module 10 Scheduling CSE 451: Operating Systems Winter 2017 Module 10 Scheduling Mark Zbikowski mzbik@cs.washington.edu Allen Center 476 2013 Gribble, Lazowska, Levy, Zahorjan Scheduling In discussing processes and threads,

More information

Operating Systems. Process scheduling. Thomas Ropars.

Operating Systems. Process scheduling. Thomas Ropars. 1 Operating Systems Process scheduling Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2018 References The content of these lectures is inspired by: The lecture notes of Renaud Lachaize. The lecture

More information

Tasks. Task Implementation and management

Tasks. Task Implementation and management Tasks Task Implementation and management Tasks Vocab Absolute time - real world time Relative time - time referenced to some event Interval - any slice of time characterized by start & end times Duration

More information

Low Latency Data Grids in Finance

Low Latency Data Grids in Finance Low Latency Data Grids in Finance Jags Ramnarayan Chief Architect GemStone Systems jags.ramnarayan@gemstone.com Copyright 2006, GemStone Systems Inc. All Rights Reserved. Background on GemStone Systems

More information

6.888 Lecture 5: Flow Scheduling

6.888 Lecture 5: Flow Scheduling 6.888 Lecture 5: Flow Scheduling Mohammad Alizadeh Spring 2016 1 Datacenter Transport Goal: Complete flows quickly / meet deadlines Short flows (e.g., query, coordina1on) Large flows (e.g., data update,

More information

Frequently asked questions from the previous class survey

Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [CPU SCHEDULING] Shrideep Pallickara Computer Science Colorado State University L14.1 Frequently asked questions from the previous class survey Turnstiles: Queue for threads blocked

More information

A Predictable RTOS. Mantis Cheng Department of Computer Science University of Victoria

A Predictable RTOS. Mantis Cheng Department of Computer Science University of Victoria A Predictable RTOS Mantis Cheng Department of Computer Science University of Victoria Outline I. Analysis of Timeliness Requirements II. Analysis of IO Requirements III. Time in Scheduling IV. IO in Scheduling

More information

ResQ: Enabling SLOs in Network Function Virtualization

ResQ: Enabling SLOs in Network Function Virtualization ResQ: Enabling SLOs in Network Function Virtualization Amin Tootoonchian* Aurojit Panda Chang Lan Melvin Walls Katerina Argyraki Sylvia Ratnasamy Scott Shenker *Intel Labs UC Berkeley ICSI NYU Nefeli EPFL

More information

Lecture 5 / Chapter 6 (CPU Scheduling) Basic Concepts. Scheduling Criteria Scheduling Algorithms

Lecture 5 / Chapter 6 (CPU Scheduling) Basic Concepts. Scheduling Criteria Scheduling Algorithms Operating System Lecture 5 / Chapter 6 (CPU Scheduling) Basic Concepts Scheduling Criteria Scheduling Algorithms OS Process Review Multicore Programming Multithreading Models Thread Libraries Implicit

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm Evaluation

More information

DIBS: Just-in-time congestion mitigation for Data Centers

DIBS: Just-in-time congestion mitigation for Data Centers DIBS: Just-in-time congestion mitigation for Data Centers Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Minlan Yu, Jitendra Padhye University of Southern California Microsoft Research Summary

More information

The Datacenter Needs an Operating System

The Datacenter Needs an Operating System UC BERKELEY The Datacenter Needs an Operating System Anthony D. Joseph LASER Summer School September 2013 My Talks at LASER 2013 1. AMP Lab introduction 2. The Datacenter Needs an Operating System 3. Mesos,

More information

Chapter 5: CPU Scheduling. Operating System Concepts Essentials 8 th Edition

Chapter 5: CPU Scheduling. Operating System Concepts Essentials 8 th Edition Chapter 5: CPU Scheduling Silberschatz, Galvin and Gagne 2011 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating

More information

BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE

BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE BRETT WENINGER, MANAGING DIRECTOR 10/21/2014 ADURANT APPROACH TO BIG DATA Align to Un/Semi-structured Data Instead of Big Scale out will become Big Greatest

More information

EC-Cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding

EC-Cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding EC-Cache: Load-balanced, Low-latency Cluster Caching with Online Erasure Coding Rashmi Vinayak UC Berkeley Joint work with Mosharaf Chowdhury, Jack Kosaian (U Michigan) Ion Stoica, Kannan Ramchandran (UC

More information

Episode 5. Scheduling and Traffic Management

Episode 5. Scheduling and Traffic Management Episode 5. Scheduling and Traffic Management Part 3 Baochun Li Department of Electrical and Computer Engineering University of Toronto Outline What is scheduling? Why do we need it? Requirements of a scheduling

More information

MixApart: Decoupled Analytics for Shared Storage Systems. Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp

MixApart: Decoupled Analytics for Shared Storage Systems. Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp MixApart: Decoupled Analytics for Shared Storage Systems Madalin Mihailescu, Gokul Soundararajan, Cristiana Amza University of Toronto and NetApp Hadoop Pig, Hive Hadoop + Enterprise storage?! Shared storage

More information

MicroFuge: A Middleware Approach to Providing Performance Isolation in Cloud Storage Systems

MicroFuge: A Middleware Approach to Providing Performance Isolation in Cloud Storage Systems 1 MicroFuge: A Middleware Approach to Providing Performance Isolation in Cloud Storage Systems Akshay Singh, Xu Cui, Benjamin Cassell, Bernard Wong and Khuzaima Daudjee July 3, 2014 2 Storage Resources

More information

Subject Name: OPERATING SYSTEMS. Subject Code: 10EC65. Prepared By: Kala H S and Remya R. Department: ECE. Date:

Subject Name: OPERATING SYSTEMS. Subject Code: 10EC65. Prepared By: Kala H S and Remya R. Department: ECE. Date: Subject Name: OPERATING SYSTEMS Subject Code: 10EC65 Prepared By: Kala H S and Remya R Department: ECE Date: Unit 7 SCHEDULING TOPICS TO BE COVERED Preliminaries Non-preemptive scheduling policies Preemptive

More information

Universal Packet Scheduling. Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley

Universal Packet Scheduling. Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley Universal Packet Scheduling Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, Scott Shenker UC Berkeley Many Scheduling Algorithms Many different algorithms FIFO, FQ, virtual clocks, priorities Many different

More information

CSL373: Lecture 6 CPU Scheduling

CSL373: Lecture 6 CPU Scheduling CSL373: Lecture 6 CPU Scheduling First come first served (FCFS or FIFO) Simplest scheduling algorithm cpu cpu 0 0 Run jobs in order that they arrive Disadvantage: wait time depends on arrival order. Unfair

More information

Scheduling. Monday, November 22, 2004

Scheduling. Monday, November 22, 2004 Scheduling Page 1 Scheduling Monday, November 22, 2004 11:22 AM The scheduling problem (Chapter 9) Decide which processes are allowed to run when. Optimize throughput, response time, etc. Subject to constraints

More information

Pocket: Elastic Ephemeral Storage for Serverless Analytics

Pocket: Elastic Ephemeral Storage for Serverless Analytics Pocket: Elastic Ephemeral Storage for Serverless Analytics Ana Klimovic*, Yawen Wang*, Patrick Stuedi +, Animesh Trivedi +, Jonas Pfefferle +, Christos Kozyrakis* *Stanford University, + IBM Research 1

More information

D3N: A multi-layer cache for data centers with imbalanced networks

D3N: A multi-layer cache for data centers with imbalanced networks D3N: A multi-layer cache for data centers with imbalanced networks Emine Ugur Kaynar *, Mohammad Hossein Hajkazemi, Mania Abdi, Ata Turk *, Raja R. Sambasivan *, Larry Rudolph, Peter Desnoyers, Orran Krieger

More information

Far-sighted Multi-stage Aware Coflow Scheduling

Far-sighted Multi-stage Aware Coflow Scheduling Far-sighted Multi-stage Aware Coflow Scheduling Shuai Zhang, Sheng Zhang, Xiaoda Zhang, Zhuzhong Qian Mingjun Xiao, Jie Wu, Jidong Ge, Xiaoliang Wang State Key Lab. for Novel Software Technology, Nanjing

More information

CS370: System Architecture & Software [Fall 2014] Dept. Of Computer Science, Colorado State University

CS370: System Architecture & Software [Fall 2014] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: SYSTEM ARCHITECTURE & SOFTWARE [CPU SCHEDULING] Shrideep Pallickara Computer Science Colorado State University OpenMP compiler directives

More information

CPU Scheduling: Part I ( 5, SGG) Operating Systems. Autumn CS4023

CPU Scheduling: Part I ( 5, SGG) Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline 1 CPU Scheduling: Part I ( 5, SGG) Outline CPU Scheduling: Part I ( 5, SGG) 1 CPU Scheduling: Part I ( 5, SGG) Basic Concepts Typical program behaviour CPU Scheduling:

More information

Leveraging Endpoint Flexibility in Data-Intensive Clusters

Leveraging Endpoint Flexibility in Data-Intensive Clusters Leveraging Endpoint Flexibility in Data-Intensive Clusters Mosharaf Chowdhury 1, Srikanth Kandula 2, Ion Stoica 1 1 UC Berkeley, 2 Microsoft Research {mosharaf, istoica}@cs.berkeley.edu, srikanth@microsoft.com

More information

LECTURE 3:CPU SCHEDULING

LECTURE 3:CPU SCHEDULING LECTURE 3:CPU SCHEDULING 1 Outline Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time CPU Scheduling Operating Systems Examples Algorithm Evaluation 2 Objectives

More information

Exam Review TexPoint fonts used in EMF.

Exam Review TexPoint fonts used in EMF. Exam Review Generics Definitions: hard & soft real-time Task/message classification based on criticality and invocation behavior Why special performance measures for RTES? What s deadline and where is

More information

Process- Concept &Process Scheduling OPERATING SYSTEMS

Process- Concept &Process Scheduling OPERATING SYSTEMS OPERATING SYSTEMS Prescribed Text Book Operating System Principles, Seventh Edition By Abraham Silberschatz, Peter Baer Galvin and Greg Gagne PROCESS MANAGEMENT Current day computer systems allow multiple

More information

Comp 310 Computer Systems and Organization

Comp 310 Computer Systems and Organization Comp 310 Computer Systems and Organization Lecture #9 Process Management (CPU Scheduling) 1 Prof. Joseph Vybihal Announcements Oct 16 Midterm exam (in class) In class review Oct 14 (½ class review) Ass#2

More information

Better Never than Late: Meeting Deadlines in Datacenter Networks

Better Never than Late: Meeting Deadlines in Datacenter Networks Better Never than Late: Meeting Deadlines in Datacenter Networks Christo Wilson, Hitesh Ballani, Thomas Karagiannis, Ant Rowstron Microsoft Research, Cambridge User-facing online services Two common underlying

More information

Quality of Service in US Air Force Information Management Systems

Quality of Service in US Air Force Information Management Systems Quality of Service in US Air Force Information Management Systems Co-hosted by: Dr. Joseph P. Loyall BBN Technologies Sponsored by: 12/11/2009 Material Approved for Public Release. Quality of Service is

More information

8: Scheduling. Scheduling. Mark Handley

8: Scheduling. Scheduling. Mark Handley 8: Scheduling Mark Handley Scheduling On a multiprocessing system, more than one process may be available to run. The task of deciding which process to run next is called scheduling, and is performed by

More information

A comparison between the scheduling algorithms used in RTLinux and in VxWorks - both from a theoretical and a contextual view

A comparison between the scheduling algorithms used in RTLinux and in VxWorks - both from a theoretical and a contextual view A comparison between the scheduling algorithms used in RTLinux and in VxWorks - both from a theoretical and a contextual view Authors and Affiliation Oskar Hermansson and Stefan Holmer studying the third

More information