COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

Size: px
Start display at page:

Download "COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)"

Transcription

1 COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49

2 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron 50

3 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron b {x A x = b, x 0} is polyhedron in standard form representation 50

4 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron b {x A x = b, x 0} is polyhedron in standard form representation Definition 2.2. a Set S R n is bounded if there is K 2 R such that kxk 1 apple K for all x 2 S. 50

5 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron b {x A x = b, x 0} is polyhedron in standard form representation Definition 2.2. a Set S R n is bounded if there is K 2 R such that kxk 1 apple K for all x 2 S. b Aboundedpolyhedroniscalledpolytope. 50

6 Hyperplanes and Halfspaces Definition 2.3. Let a 2 R n \{0} and b 2 R: a set {x 2 R n a T x = b} is called hyperplane 51

7 Hyperplanes and Halfspaces Definition 2.3. Let a 2 R n \{0} and b 2 R: a set {x 2 R n a T x = b} is called hyperplane b set {x 2 R n a T x b} is called halfspace 51

8 Hyperplanes and Halfspaces Definition 2.3. Let a 2 R n \{0} and b 2 R: a set {x 2 R n a T x = b} is called hyperplane b set {x 2 R n a T x b} is called halfspace Remarks I Hyperplanes and halfspaces are convex sets. 51

9 Hyperplanes and Halfspaces Definition 2.3. Let a 2 R n \{0} and b 2 R: a set {x 2 R n a T x = b} is called hyperplane b set {x 2 R n a T x b} is called halfspace Remarks I Hyperplanes and halfspaces are convex sets. I A polyhedron is an intersection of finitely many halfspaces. 51

10 Convex Combination and Convex Hull Definition 2.4. Let x 1,...,x k 2 R n and 1,..., k 2 R 0 with k = 1. a The vector P k i=1 i x i is a convex combination of x 1,...,x k. 52

11 Convex Combination and Convex Hull Definition 2.4. Let x 1,...,x k 2 R n and 1,..., k 2 R 0 with k = 1. a The vector P k i=1 i x i is a convex combination of x 1,...,x k. b The convex hull of x 1,...,x k is the set of all convex combinations. 52

12 Convex Sets, Convex Combinations, and Convex Hulls Theorem 2.5. a The intersection of convex sets is convex. 53

13 Convex Sets, Convex Combinations, and Convex Hulls Theorem 2.5. a The intersection of convex sets is convex. b Every polyhedron is a convex set. 53

14 Convex Sets, Convex Combinations, and Convex Hulls Theorem 2.5. a The intersection of convex sets is convex. b c Every polyhedron is a convex set. Aconvexcombinationofafinitenumberofelementsofaconvexsetalsobelongs to that set. 53

15 Convex Sets, Convex Combinations, and Convex Hulls Theorem 2.5. a The intersection of convex sets is convex. b c d Every polyhedron is a convex set. Aconvexcombinationofafinitenumberofelementsofaconvexsetalsobelongs to that set. The convex hull of finitely many vectors is a convex set. 53

16 Convex Sets, Convex Combinations, and Convex Hulls Theorem 2.5. a The intersection of convex sets is convex. b c d Every polyhedron is a convex set. Aconvexcombinationofafinitenumberofelementsofaconvexsetalsobelongs to that set. The convex hull of finitely many vectors is a convex set. Corollary 2.6. The convex hull of x 1,...,x k 2 R n is the smallest (w.r.t. inclusion) convex subset of R n containing x 1,...,x k. 53

17 Extreme Points and Vertices of Polyhedra Definition 2.7. Let P R n be a polyhedron. a x 2 P is an extreme point of P if x 6= y +(1 ) z for all y, z 2 P \{x}, 0apple apple 1, i. e., x is not a convex combination of two other points in P. 54

18 Extreme Points and Vertices of Polyhedra Definition 2.7. Let P R n be a polyhedron. a x 2 P is an extreme point of P if x 6= y +(1 ) z for all y, z 2 P \{x}, 0apple apple 1, b i. e., x is not a convex combination of two other points in P. x 2 P is a vertex of P if there is some c 2 R n such that c T x < c T y for all y 2 P \{x}, i. e., x is the unique optimal solution to the LP min{c T z z 2 P}. 54

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

R n a T i x = b i} is a Hyperplane.

R n a T i x = b i} is a Hyperplane. Geometry of LPs Consider the following LP : min {c T x a T i x b i The feasible region is i =1,...,m}. X := {x R n a T i x b i i =1,...,m} = m i=1 {x Rn a T i x b i} }{{} X i The set X i is a Half-space.

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems 6. Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

ORIE 6300 Mathematical Programming I September 2, Lecture 3

ORIE 6300 Mathematical Programming I September 2, Lecture 3 ORIE 6300 Mathematical Programming I September 2, 2014 Lecturer: David P. Williamson Lecture 3 Scribe: Divya Singhvi Last time we discussed how to take dual of an LP in two different ways. Today we will

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

C&O 355 Lecture 16. N. Harvey

C&O 355 Lecture 16. N. Harvey C&O 355 Lecture 16 N. Harvey Topics Review of Fourier-Motzkin Elimination Linear Transformations of Polyhedra Convex Combinations Convex Hulls Polytopes & Convex Hulls Fourier-Motzkin Elimination Joseph

More information

Advanced Linear Programming. Organisation. Lecturers: Leen Stougie, CWI and Vrije Universiteit in Amsterdam

Advanced Linear Programming. Organisation. Lecturers: Leen Stougie, CWI and Vrije Universiteit in Amsterdam Advanced Linear Programming Organisation Lecturers: Leen Stougie, CWI and Vrije Universiteit in Amsterdam E-mail: stougie@cwi.nl Marjan van den Akker Universiteit Utrecht marjan@cs.uu.nl Advanced Linear

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

A Course in Convexity

A Course in Convexity A Course in Convexity Alexander Barvinok Graduate Studies in Mathematics Volume 54 American Mathematical Society Providence, Rhode Island Preface vii Chapter I. Convex Sets at Large 1 1. Convex Sets. Main

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

Convex Hull Representation Conversion (cddlib, lrslib)

Convex Hull Representation Conversion (cddlib, lrslib) Convex Hull Representation Conversion (cddlib, lrslib) Student Seminar in Combinatorics: Mathematical Software Niklas Pfister October 31, 2014 1 Introduction In this report we try to give a short overview

More information

Edge unfolding Cut sets Source foldouts Proof and algorithm Complexity issues Aleksandrov unfolding? Unfolding polyhedra.

Edge unfolding Cut sets Source foldouts Proof and algorithm Complexity issues Aleksandrov unfolding? Unfolding polyhedra. Unfolding polyhedra Ezra Miller University of Minnesota ezra@math.umn.edu University of Nebraska 27 April 2007 Outline 1. Edge unfolding 2. Cut sets 3. Source foldouts 4. Proof and algorithm 5. Complexity

More information

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that

be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that ( Shelling (Bruggesser-Mani 1971) and Ranking Let be a polytope. has such a representation iff it contains the origin in its interior. For a generic, sort the inequalities so that. a ranking of vertices

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets Instructor: Shaddin Dughmi Announcements New room: KAP 158 Today: Convex Sets Mostly from Boyd and Vandenberghe. Read all of

More information

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem IE 5: Integer Programming, Spring 29 24 Jan, 29 Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem Lecturer: Karthik Chandrasekaran Scribe: Setareh Taki Disclaimer: These notes have not been subjected

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

A linear program is an optimization problem of the form: minimize subject to

A linear program is an optimization problem of the form: minimize subject to Lec11 Page 1 Lec11p1, ORF363/COS323 This lecture: Linear Programming (LP) Applications of linear programming History of linear programming Geometry of linear programming Geometric and algebraic definition

More information

Voronoi Diagrams, Delaunay Triangulations and Polytopes

Voronoi Diagrams, Delaunay Triangulations and Polytopes Voronoi Diagrams, Delaunay Triangulations and Polytopes Jean-Daniel Boissonnat MPRI, Lecture 2 Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 1 / 43 Voronoi diagrams in nature

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

Polar Duality and Farkas Lemma

Polar Duality and Farkas Lemma Lecture 3 Polar Duality and Farkas Lemma October 8th, 2004 Lecturer: Kamal Jain Notes: Daniel Lowd 3.1 Polytope = bounded polyhedron Last lecture, we were attempting to prove the Minkowsky-Weyl Theorem:

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010

Polyhedral Computation Today s Topic: The Double Description Algorithm. Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 Polyhedral Computation Today s Topic: The Double Description Algorithm Komei Fukuda Swiss Federal Institute of Technology Zurich October 29, 2010 1 Convexity Review: Farkas-Type Alternative Theorems Gale

More information

The Chvátal-Gomory Closure of a Strictly Convex Body is a Rational Polyhedron

The Chvátal-Gomory Closure of a Strictly Convex Body is a Rational Polyhedron The Chvátal-Gomory Closure of a Strictly Convex Body is a Rational Polyhedron Juan Pablo Vielma Joint work with Daniel Dadush and Santanu S. Dey July, Atlanta, GA Outline Introduction Proof: Step Step

More information

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017

Semistandard Young Tableaux Polytopes. Sara Solhjem Joint work with Jessica Striker. April 9, 2017 Semistandard Young Tableaux Polytopes Sara Solhjem Joint work with Jessica Striker North Dakota State University Graduate Student Combinatorics Conference 217 April 9, 217 Sara Solhjem (NDSU) Semistandard

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Contents. Preface... VII. Part I Classical Topics Revisited

Contents. Preface... VII. Part I Classical Topics Revisited Contents Preface........................................................ VII Part I Classical Topics Revisited 1 Sphere Packings........................................... 3 1.1 Kissing Numbers of Spheres..............................

More information

CS671 Parallel Programming in the Many-Core Era

CS671 Parallel Programming in the Many-Core Era 1 CS671 Parallel Programming in the Many-Core Era Polyhedral Framework for Compilation: Polyhedral Model Representation, Data Dependence Analysis, Scheduling and Data Locality Optimizations December 3,

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Reverse Search for Parametric Linear Programming

Reverse Search for Parametric Linear Programming Reverse Search for Parametric Linear Programg Colin N. Jones Automatic Control Laboratory Swiss Federal Institute of Technology Physikstrasse 3, CH-8092 Zurich Switzerland colin.jones@cantab.net Jan M.

More information

An Introduction to Computational Geometry: Arrangements and Duality

An Introduction to Computational Geometry: Arrangements and Duality An Introduction to Computational Geometry: Arrangements and Duality Joseph S. B. Mitchell Stony Brook University Some images from [O Rourke, Computational Geometry in C, 2 nd Edition, Chapter 6] Arrangement

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

A mini-introduction to convexity

A mini-introduction to convexity A mini-introduction to convexity Geir Dahl March 14, 2017 1 Introduction Convexity, or convex analysis, is an area of mathematics where one studies questions related to two basic objects, namely convex

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

4.2 Simplicial Homology Groups

4.2 Simplicial Homology Groups 4.2. SIMPLICIAL HOMOLOGY GROUPS 93 4.2 Simplicial Homology Groups 4.2.1 Simplicial Complexes Let p 0, p 1,... p k be k + 1 points in R n, with k n. We identify points in R n with the vectors that point

More information

Restricted-Orientation Convexity in Higher-Dimensional Spaces

Restricted-Orientation Convexity in Higher-Dimensional Spaces Restricted-Orientation Convexity in Higher-Dimensional Spaces ABSTRACT Eugene Fink Derick Wood University of Waterloo, Waterloo, Ont, Canada N2L3G1 {efink, dwood}@violetwaterlooedu A restricted-oriented

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 25, 2017 1 / 40 Outline Key Concepts MILP Set Monoids LP set Relaxation of MILP Set Formulation Quality

More information

Optimal Region for Binary Search Tree, Rotation and Polytope

Optimal Region for Binary Search Tree, Rotation and Polytope Optimal Region for Binary Search Tree, Rotation and Polytope Kensuke Onishi Mamoru Hoshi 2 Department of Mathematical Sciences, School of Science Tokai University, 7 Kitakaname, Hiratsuka, Kanagawa, 259-292,

More information

Linear Programming Motivation: The Diet Problem

Linear Programming Motivation: The Diet Problem Agenda We ve done Greedy Method Divide and Conquer Dynamic Programming Network Flows & Applications NP-completeness Now Linear Programming and the Simplex Method Hung Q. Ngo (SUNY at Buffalo) CSE 531 1

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 50 CS 473: Algorithms, Spring 2018 Introduction to Linear Programming Lecture 18 March

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples LECTURE 7 LECTURE OUTLINE Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples Reading: Section 1.5, 1.6 All figures are courtesy of Athena Scientific,

More information

Geometric and Combinatorial Weighted Voting: Some Open Problems

Geometric and Combinatorial Weighted Voting: Some Open Problems Geometric and Combinatorial Weighted Voting: Some Open Problems Sarah K. Mason and R. Jason Parsley Winston Salem, NC Encuentro Colombiano de Combinatoria 2016 Types of voting In voting for most political

More information

COMPUTATIONAL GEOMETRY

COMPUTATIONAL GEOMETRY Thursday, September 20, 2007 (Ming C. Lin) Review on Computational Geometry & Collision Detection for Convex Polytopes COMPUTATIONAL GEOMETRY (Refer to O'Rourke's and Dutch textbook ) 1. Extreme Points

More information

Figure 2.1: An example of a convex set and a nonconvex one.

Figure 2.1: An example of a convex set and a nonconvex one. Convex Hulls 2.1 Definitions 2 Convexity is the key to understanding and simplifying geometry, and the convex hull plays a role in geometry akin to the sorted order for a collection of numbers. So what

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

A convexity theorem for real projective structures

A convexity theorem for real projective structures arxiv:0705.3920v1 [math.gt] 27 May 2007 A convexity theorem for real projective structures Jaejeong Lee Abstract Given a finite collection P of convex n-polytopes in RP n (n 2), we consider a real projective

More information

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes

On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes On the Hardness of Computing Intersection, Union and Minkowski Sum of Polytopes Hans Raj Tiwary hansraj@cs.uni-sb.de FR Informatik Universität des Saarlandes D-66123 Saarbrücken, Germany Tel: +49 681 3023235

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Lower Bounds for Geometric Diameter Problems

Lower Bounds for Geometric Diameter Problems Lower Bounds for Geometric Diameter Problems p. 1/48 Lower Bounds for Geometric Diameter Problems Hervé Fournier University of Versailles St-Quentin en Yvelines Antoine Vigneron INRA Jouy-en-Josas Lower

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Outreach Lecture: Polytopes

Outreach Lecture: Polytopes Outreach Lecture: Polytopes Darrell Allgaier (Grove City College), David Perkinson (Reed College), Sarah Ann Stewart (North Central College), John Thurber (Eastern Oregon University) Abstract This is an

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

Advanced Algorithms Linear Programming

Advanced Algorithms Linear Programming Reading: Advanced Algorithms Linear Programming CLRS, Chapter29 (2 nd ed. onward). Linear Algebra and Its Applications, by Gilbert Strang, chapter 8 Linear Programming, by Vasek Chvatal Introduction to

More information

Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation Colin N. Jones, Eric C. Kerrigan and Jan M.

Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation Colin N. Jones, Eric C. Kerrigan and Jan M. Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation Colin N. Jones, Eric C. Kerrigan and Jan M. Maciejowski CUED/F-INFENG/TR.463 June 8, 2004 Equality Set

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Distance and Collision Detection

Distance and Collision Detection Distance and Collision Detection Efi Fogel efif@post.tau.ac.il School of computer science, Tel Aviv University Fall 2003/4 Motion Planning seminar 1/33 The Papers A Fast Procedure for Computing the Distance

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information