Gate Sizing by Lagrangian Relaxation Revisited

Size: px
Start display at page:

Download "Gate Sizing by Lagrangian Relaxation Revisited"

Transcription

1 Gate Sizing by Lagrangian Relaxation Revisited Jia Wang, Debasish Das, and Hai Zhou Electrical Engineering and Computer Science Northwestern University Evanston, Illinois, United States October 17, / 41

2 Outline Introduction to Gate Sizing Generalized Convex Sizing The Dual Problems The DualFD Algorithm Experiments Conclusions 2 / 41

3 Gate Sizing A mathematical programming formulation. Timing constraints: delays, arrival times. Objective function: clock period, total weighted area, etc. Trade off performance and cost. Optimize performance. Optimize cost under performance constraint. 3 / 41

4 Previous Works General Convex Optimization TILOS [Fishburn & Dunlop, 85], [Sapatnekar et al., 93], etc. Transform sizing into a convex programming problem. Assume convex delays (after variable transformation). Convexity through geometric programming commonly. Apply general convex optimization techniques. Studied for decades. High running time. 4 / 41

5 Previous Works Lagrangian Relaxation [Chen, Chu, & Wong, 99], [Tennakoon & Sechen, 02, 05] Special structure: timing constraints are system of difference inequalities. The Lagrangian dual problem is simplified. Objective function (Lagrangian dual function): available through Lagrangian subproblems. Constraints: flow conservation on Lagrangian multipliers. 5 / 41

6 Previous Works Lagrangian Relaxation [Chen, Chu, & Wong, 99], [Tennakoon & Sechen, 02, 05] Special structure: timing constraints are system of difference inequalities. The Lagrangian dual problem is simplified. Objective function (Lagrangian dual function): available through Lagrangian subproblems. Constraints: flow conservation on Lagrangian multipliers. Lagrangian dual function is not differentiable in general. Apply subgradient optimizations. Difficult to choose good initial solution and step sizes. Pre-processing can help choosing initial solutions for some delay models. No universal pre-processing method for all convex delays. 5 / 41

7 Contribution Combine gate sizing with sequential optimization. Revisit Lagrangian relaxation. Correct misunderstandings. Check primal feasibility in dual problems. Identify a class of problems with differentiable dual functions. The DualFD algorithm: use gradient and network flow. 6 / 41

8 Outline Introduction to Gate Sizing Generalized Convex Sizing The Dual Problems The DualFD Algorithm Experiments Conclusions 7 / 41

9 Generalized Convex Sizing (GCS) Minimize C(x) s.t. t i + d i,j (x) t j 0, (i, j) E, x Ω. G = (V, E): a directed graph, the system structure. x: the system parameters belonging to t: (relative) arrival times. Ω = {x : l k x k u k, 1 k n}. C(x), d i,j (x): objective function and delays, twice differentiable and convex. 8 / 41

10 The GCS Formulation Timing specification in sequential circuits. Feasible timing No positive cycle Prefer edge delays to vertex delays for accuracy. Timing arcs in one gate/cell. Rise/fall delay and slew. Flexibility in choosing x. Logarithms of sizes (gate, wire, transistor, etc. )for Elmore and posynomial delays. Clock skews and clock period. 9 / 41

11 GCS is Convex GCS formulation is convex. Objective function and feasible set are convex. Not necessary to establish convexity through geometric programming. 10 / 41

12 GCS is Convex GCS formulation is convex. Objective function and feasible set are convex. Not necessary to establish convexity through geometric programming. Non-convex formulations can be transformed into convex ones. Properties of convex formulations are not necessarily hold for equivalent non-convex ones. 10 / 41

13 Proper GCS Problems Definition A GCS is proper iff: x Ω, z 0, z H C (x)z 0. With differentiable dual functions (shown later). di,j (x) are irrelevant. Optimizing total positive weighted area is proper. 11 / 41

14 Simultaneous Sizing and Clock Skew Optimization Minimize total area under performance bound while allowing clock skew optimization. Handle long path conditions (setup condition). Assume post-processing for repairing of violated short path conditions (hold condition). Not proper: C s = 0, clock skew variable s. Cancel s. Transform to a proper one. 12 / 41

15 Simultaneous Sizing and Clock Skew Optimization Make a Non-Proper Problem Proper Constraints concerning clock skew s k : (t I + s k t Qk ) (t Dk s k t O ) (s k s k s + k ) Cancel s k : [t Dk t O, t Qk t I ] [s k, s+ k ]. Equivalently: (t Dk s + k t O) (t I + s k t Q k ) (t Dk t Qk T ) 13 / 41

16 Outline Introduction to Gate Sizing Generalized Convex Sizing The Dual Problems The DualFD Algorithm Experiments Conclusions 14 / 41

17 Lagrangian Relaxation Overview Lagrangian function: L (x, t, f) = C(x) + f i,j (t i + d i,j (x) t j ) (i,j) E Lagrangian subproblem: L(f) = inf{l (x, t, f) : x Ω, t R V } Lagrangian dual problem (D-GCS): Maximize L(f) s.t. f N. N : non-negative f. 15 / 41

18 Duality Gap P = inf{c(x) : x X }, D = sup{l(f) : f N }. X : feasible x. Zero duality gap is necessary: P = D. 16 / 41

19 Duality Gap P = inf{c(x) : x X }, D = sup{l(f) : f N }. X : feasible x. Zero duality gap is necessary: P = D. Establish P = D through Strong Duality Theorem. Strictly feasible solution exists saddle point (x, t, f): D = L(f) = L (x, t, f) = C(x) = P. 16 / 41

20 Duality Gap P = inf{c(x) : x X }, D = sup{l(f) : f N }. X : feasible x. Zero duality gap is necessary: P = D. Establish P = D through Strong Duality Theorem. Strictly feasible solution exists saddle point (x, t, f): D = L(f) = L (x, t, f) = C(x) = P. Misunderstanding: previous work applied Strong Duality Theorem to original non-convex formulation (transformation was necessary for convexity). GCS is convex without transformation. 16 / 41

21 Duality Gap What if there is no strictly feasible solution? 17 / 41

22 Duality Gap What if there is no strictly feasible solution? Regularity condition zero duality gap. [Rockafellear 1971] More general than Strong Duality Theorem for zero duality gap. No guarantee for saddle points as Strong Duality Theorem. f N, L(f) < D. 17 / 41

23 Simplify the Dual Problem Flow conservation on G: F = {f : f i,k = f k,j, k V }. (i,k) E (k,j) E L(f) = for f / F, since f / F, M R, x Ω, t R V, L (x, t, f) < M. Simplify D-GCS into FD-GCS: Maximize L(f) s.t. f F N. 18 / 41

24 Simplify the Dual Problem Flow conservation on G: F = {f : f i,k = f k,j, k V }. (i,k) E (k,j) E L(f) = for f / F, since f / F, M R, x Ω, t R V, L (x, t, f) < M. Simplify D-GCS into FD-GCS: Maximize L(f) s.t. f F N. Misunderstanding: previous works obtained FD-GCS by the Karush-Kuhn-Tucker (KKT) conditions L t k = 0. However, KKT conditions are not necessary conditions. 18 / 41

25 A trivial example that is not trivial. Will the extreme cases happen for sizing? Optimal solutions do NOT satisfy KKT conditions. No saddle point. f F N, L(f) < D.. 19 / 41

26 A trivial example that is not trivial. Optimize a single inverter with size e x and fixed driver/load: Minimize e x s.t. t 1 + e x t 2, t 2 + e x t 3, t 3 t 1 + 2, ln 2 x ln 2. Single feasible solution x = 0. Optimal but not strictly feasible. KKT conditions cannot be satisfied by x = 0: 0 = L x = e x + f 1,2 e x f 2,3 e x = 1 + f 1,2 f 2,3, 0 = L t 2 = f 2,3 f 1,2. 20 / 41

27 A trivial example that is not trivial. Since f F N, assume β = f 1,2 = f 2,3 = f 3,1 0. Compute L(f): L(f) = q(β) = { 1+β 2, if 0 β < /β+1, if β 1 3 q(β) increases from 1 2 to 1 when β increases from 0 to +. Therefore, f F N, L(f) < 1 = D. 21 / 41

28 Further Simplification of the Dual Problem Simplify L(f) given f F: P f (x) Q(f) = C(x) + (i,j) E f i,j d i,j (x), = inf{p f (x) : x Ω}. L(f) = Q(f), f F. SD-GCS: Maximize Q(f) s.t. f F N. SD-GCS is different from FD-GCS. D-GCS, FD-GCS, SD-GCS are equivalent. 22 / 41

29 Infeasibility for GCS GCS can be infeasible: clock period is too small. C(x) is continuous and Ω is compact: U, x Ω, C(x) U. Assume zero duality gap, GCS is feasible iff f F N, Q(f) U. 23 / 41

30 Outline Introduction to Gate Sizing Generalized Convex Sizing The Dual Problems The DualFD Algorithm Experiments Conclusions 24 / 41

31 Differentiable Dual Objective Q(f) Sufficient condition (from textbook): x f Ω, x Ω, Q(f) = P f (x f ) < P f (x). Assume the condition is NOT satisfied. x x Ω, Q(f) = P f (x ) = P f (x ) 0 γ 1, Q(f) = P f ((1 γ)x + γx ) (x x ) H Pf ( x + x )(x x ) = 0 2 (x x ) H C ( x + x )(x x ) = 0 2 GCS is NOT proper! For proper GCS problems, Q(f) is differentiable, and Q(f) f i,j = d i,j (x f ). 25 / 41

32 Improving Feasible Direction Method of feasible directions: Find f, an ascent direction that is also feasible (w.r.t. SD-GCS). How to find? λ > 0, (Q(f + λ f) > Q(f)) (f + λ f F N ). 26 / 41

33 Improving Feasible Direction Method of feasible directions: Find f, an ascent direction that is also feasible (w.r.t. SD-GCS). How to find? λ > 0, (Q(f + λ f) > Q(f)) (f + λ f F N ). d(x f ) is the gradient of Q(f): f d(x f ) > 0 λ > 0, Q(f + λ f) > Q(f). Flow conservation: f + f F N 0 λ min f i,j, f + λ f F N. f i,j <0 f i,j 26 / 41

34 Improving Feasible Direction The direction finding (DF) problem: Maximize f d(x f ) s.t. f + f F N, u f i,j u, (i, j) E. f are decision variables, u is positive constant. f d(x f ): first order approx. of Q(f + f) Q(f). DF is a min-cost network flow problem. For optimal f, f d(x f ) 0. And f d(x f ) = 0 x f is optimal for GCS. 27 / 41

35 The DualFD Algorithm Iterative algorithm. Q(f) is increasing every iteration. Q(f) is convex local maximal is global maximum. For subgradient optimizations, Q(f) may decrease. Each iteration, Solve DF for f. Perform a line search to find Q(f + λ f) > Q(f) Check GCS infeasibility when computing Q. Claim optimality if the changes are marginal. 28 / 41

36 Outline Introduction to Gate Sizing Generalized Convex Sizing The Dual Problems The DualFD Algorithm Experiments Conclusions 29 / 41

37 Experimental Setup Minimize total area under performance bound with Elmore delay model. ISCAS89 sequential circuits, 29 totally. Largest: vertices, edges, variables. Implement DualFD algorithm in C++. Use the CS2 min-cost network flow solver for DF. [Goldberg] Compare to subgradient optimizations: SubGrad. 30 / 41

38 Experimental Results 15 largest benchmarks. Clock period achieved T vs. target clock period T 0 s838 is NOT feasible. 31 / 41

39 Experimental Results 15 largest benchmarks. Compare area, dual objective, and running time. DualFD SubGrad name area dual t(s) area dual t(s) s s K s K s K s s K s s s K s K s K s K s M s K s K / 41

40 DualFD vs. SubGrad 29 benchmarks totally. SubGrad never dominates DualFD. 33 / 41

41 How far away are we from the optimals? Collect feasible solutions to estimate the duality gap. 15 out of 29 benchmarks. 34 / 41

42 Convergence of s / 41

43 Outline Introduction to Gate Sizing Generalized Convex Sizing The Dual Problems The DualFD Algorithm Experiments Conclusions 36 / 41

44 Conclusions Formulate GCS problems to handle sequential optimization. Correct misunderstandings when applying Lagrangian relaxation. Show how to detect infeasibility in GCS. Prove gradient exists for proposed proper GCS problems. Design the DualFD algorithm to solve proper GCS problems. 37 / 41

45 Q & A 38 / 41

46 Thank you! 39 / 41

47 L(f) vs. Q(f) L(f) = Q(f), f F N, L(f) =, f N F, Q(f), f N F. L(f) is convex but not differentiable for f N. Q(f) is convex and differentiable for f N. 40 / 41

48 Proper GCS Problems Posynomial objective functions of e x k : C(x) = l c i e b i i=1 x, c i > 0, 1 i l Let B = (b 1, b 2,..., b l ), rank(b) = n proper. Full row rank. 41 / 41

Gate Sizing by Lagrangian Relaxation Revisited

Gate Sizing by Lagrangian Relaxation Revisited Gate Sizing by Lagrangian Relaxation Revisited Abstract In this paper, we formulate the Generalized Convex Sizing (GCS) problem that unifies and generalizes the sizing problems. We revisit the approach

More information

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering LAGRANGIAN RELAXATION FOR GATE IMPLEMENTATION SELECTION Yi-Le Huang, Jiang Hu and Weiping Shi Department of Electrical and Computer Engineering Texas A&M University OUTLINE Introduction and motivation

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Gate Sizing and Vth Assignment for Asynchronous Circuits Using Lagrangian Relaxation. Gang Wu, Ankur Sharma and Chris Chu Iowa State University

Gate Sizing and Vth Assignment for Asynchronous Circuits Using Lagrangian Relaxation. Gang Wu, Ankur Sharma and Chris Chu Iowa State University 1 Gate Sizing and Vth Assignment for Asynchronous Circuits Using Lagrangian Relaxation Gang Wu, Ankur Sharma and Chris Chu Iowa State University Introduction 2 Asynchronous Gate Selection Problem: Selecting

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Lagrangean relaxation - exercises

Lagrangean relaxation - exercises Lagrangean relaxation - exercises Giovanni Righini Set covering We start from the following Set Covering Problem instance: min z = x + 2x 2 + x + 2x 4 + x 5 x + x 2 + x 4 x 2 + x x 2 + x 4 + x 5 x + x

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Optimization III: Constrained Optimization

Optimization III: Constrained Optimization Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Lecture 4 Duality and Decomposition Techniques

Lecture 4 Duality and Decomposition Techniques Lecture 4 Duality and Decomposition Techniques Jie Lu (jielu@kth.se) Richard Combes Alexandre Proutiere Automatic Control, KTH September 19, 2013 Consider the primal problem Lagrange Duality Lagrangian

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM MANAGEMENT SCIENCE doi 10.1287/mnsc.1070.0812ec pp. ec1 ec7 e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 2008 INFORMS Electronic Companion Customized Bundle Pricing for Information Goods: A Nonlinear

More information

Parallel and Distributed Graph Cuts by Dual Decomposition

Parallel and Distributed Graph Cuts by Dual Decomposition Parallel and Distributed Graph Cuts by Dual Decomposition Presented by Varun Gulshan 06 July, 2010 What is Dual Decomposition? What is Dual Decomposition? It is a technique for optimization: usually used

More information

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c)

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c) Convex Optimization (for CS229) Erick Delage, and Ashutosh Saxena October 20, 2006 1 Convex Sets Definition: A set G R n is convex if every pair of point (x, y) G, the segment beteen x and y is in A. More

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Simultaneous Slack Matching, Gate Sizing and Repeater Insertion for Asynchronous Circuits

Simultaneous Slack Matching, Gate Sizing and Repeater Insertion for Asynchronous Circuits Simultaneous Slack Matching, Gate Sizing and Repeater Insertion for Asynchronous Circuits Gang Wu and Chris Chu Department of Electrical and Computer Engineering, Iowa State University, IA Email: {gangwu,

More information

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21 Convex Programs COMPSCI 371D Machine Learning COMPSCI 371D Machine Learning Convex Programs 1 / 21 Logistic Regression! Support Vector Machines Support Vector Machines (SVMs) and Convex Programs SVMs are

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

CONLIN & MMA solvers. Pierre DUYSINX LTAS Automotive Engineering Academic year

CONLIN & MMA solvers. Pierre DUYSINX LTAS Automotive Engineering Academic year CONLIN & MMA solvers Pierre DUYSINX LTAS Automotive Engineering Academic year 2018-2019 1 CONLIN METHOD 2 LAY-OUT CONLIN SUBPROBLEMS DUAL METHOD APPROACH FOR CONLIN SUBPROBLEMS SEQUENTIAL QUADRATIC PROGRAMMING

More information

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives Foundations of Machine Learning École Centrale Paris Fall 25 9. Support Vector Machines Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech Learning objectives chloe agathe.azencott@mines

More information

Lecture 15: Log Barrier Method

Lecture 15: Log Barrier Method 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 15: Log Barrier Method Scribes: Pradeep Dasigi, Mohammad Gowayyed Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Linear Bilevel Programming With Upper Level Constraints Depending on the Lower Level Solution

Linear Bilevel Programming With Upper Level Constraints Depending on the Lower Level Solution Linear Bilevel Programming With Upper Level Constraints Depending on the Lower Level Solution Ayalew Getachew Mersha and Stephan Dempe October 17, 2005 Abstract Focus in the paper is on the definition

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method.

Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method. Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method Per Sjögren November 28, 2009 Abstract A subgradient method for solving large linear

More information

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem Computational Learning Theory Fall Semester, 2012/13 Lecture 10: SVM Lecturer: Yishay Mansour Scribe: Gitit Kehat, Yogev Vaknin and Ezra Levin 1 10.1 Lecture Overview In this lecture we present in detail

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints Instructor: Kevin Ross Scribe: Pritam Roy May 0, 2005 Outline of topics for the lecture We will discuss

More information

Linear Programming. Course review MS-E2140. v. 1.1

Linear Programming. Course review MS-E2140. v. 1.1 Linear Programming MS-E2140 Course review v. 1.1 Course structure Modeling techniques Linear programming theory and the Simplex method Duality theory Dual Simplex algorithm and sensitivity analysis Integer

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

Lagrangian Relaxation

Lagrangian Relaxation Lagrangian Relaxation Ş. İlker Birbil March 6, 2016 where Our general optimization problem in this lecture is in the maximization form: maximize f(x) subject to x F, F = {x R n : g i (x) 0, i = 1,...,

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

3 Interior Point Method

3 Interior Point Method 3 Interior Point Method Linear programming (LP) is one of the most useful mathematical techniques. Recent advances in computer technology and algorithms have improved computational speed by several orders

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Lecture 14: Linear Programming II

Lecture 14: Linear Programming II A Theorist s Toolkit (CMU 18-859T, Fall 013) Lecture 14: Linear Programming II October 3, 013 Lecturer: Ryan O Donnell Scribe: Stylianos Despotakis 1 Introduction At a big conference in Wisconsin in 1948

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes

Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes Link Dimensioning and LSP Optimization for MPLS Networks Supporting DiffServ EF and BE Classes Kehang Wu Douglas S. Reeves Capacity Planning for QoS DiffServ + MPLS QoS in core networks DiffServ provides

More information

Fast-Lipschitz Optimization

Fast-Lipschitz Optimization Fast-Lipschitz Optimization DREAM Seminar Series University of California at Berkeley September 11, 2012 Carlo Fischione ACCESS Linnaeus Center, Electrical Engineering KTH Royal Institute of Technology

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

6.854 Advanced Algorithms. Scribes: Jay Kumar Sundararajan. Duality

6.854 Advanced Algorithms. Scribes: Jay Kumar Sundararajan. Duality 6.854 Advanced Algorithms Scribes: Jay Kumar Sundararajan Lecturer: David Karger Duality This lecture covers weak and strong duality, and also explains the rules for finding the dual of a linear program,

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Network Flows. 7. Multicommodity Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 7. Multicommodity Flows Problems. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 7. Multicommodity Flows Problems 7.2 Lagrangian Relaxation Approach Fall 2010 Instructor: Dr. Masoud Yaghini The multicommodity flow problem formulation: We associate nonnegative

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem

An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem An O(log n/ log log n)-approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments CATS @ UMD April 22, 2016 The Asymmetric Traveling Salesman Problem (ATSP) Problem

More information

CME307/MS&E311 Theory Summary

CME307/MS&E311 Theory Summary CME307/MS&E311 Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

An Introduction to Dual Ascent Heuristics

An Introduction to Dual Ascent Heuristics An Introduction to Dual Ascent Heuristics Introduction A substantial proportion of Combinatorial Optimisation Problems (COPs) are essentially pure or mixed integer linear programming. COPs are in general

More information

Symmetrical Buffered Clock-Tree Synthesis with Supply-Voltage Alignment

Symmetrical Buffered Clock-Tree Synthesis with Supply-Voltage Alignment Symmetrical Buffered Clock-Tree Synthesis with Supply-Voltage Alignment Xin-Wei Shih, Tzu-Hsuan Hsu, Hsu-Chieh Lee, Yao-Wen Chang, Kai-Yuan Chao 2013.01.24 1 Outline 2 Clock Network Synthesis Clock network

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Asynchronous Circuit Placement by Lagrangian Relaxation

Asynchronous Circuit Placement by Lagrangian Relaxation Asynchronous Circuit Placement by Lagrangian Relaxation Gang Wu, Tao Lin, Hsin-Ho Huang, Chris Chu and Peter A. Beerel Department of Electrical and Computer Engineering, Iowa State University, IA Ming

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Group Members: 1. Geng Xue (A0095628R) 2. Cai Jingli (A0095623B) 3. Xing Zhe (A0095644W) 4. Zhu Xiaolu (A0109657W) 5. Wang Zixiao (A0095670X) 6. Jiao Qing (A0095637R) 7. Zhang

More information

Marginal and Sensitivity Analyses

Marginal and Sensitivity Analyses 8.1 Marginal and Sensitivity Analyses Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor, Winter 1997. Consider LP in standard form: min z = cx, subject to Ax = b, x 0 where A m n and rank m. Theorem:

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis

Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Improving Dual Bound for Stochastic MILP Models Using Sensitivity Analysis Vijay Gupta Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University, Pittsburgh Bora Tarhan ExxonMobil

More information

Optimal Network Flow Allocation. EE 384Y Almir Mutapcic and Primoz Skraba 27/05/2004

Optimal Network Flow Allocation. EE 384Y Almir Mutapcic and Primoz Skraba 27/05/2004 Optimal Network Flow Allocation EE 384Y Almir Mutapcic and Primoz Skraba 27/05/2004 Problem Statement Optimal network flow allocation Find flow allocation which minimizes certain performance criterion

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Heuristic Optimization Today: Linear Programming Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Linear programming Let s first define it formally: A linear program is an optimization

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information