Sequence alignment algorithms

Size: px
Start display at page:

Download "Sequence alignment algorithms"

Transcription

1 Sequence alignment algorithms Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 23 rd 27 After this lecture, you can decide when to use local and global sequence alignments use dynamic programming to align two sequences explain difference between fixed/linear/affine gap penalty derive substitution scores and gap penalties from an alignment matrix explain the progressive multiple alignment algorithm and the difference between guide tree and phylogenetic tree recognize and validate alignment Fasta files list and evaluate the assumptions on which sequence alignment depends

2 Pairwise sequence alignments Definition of sequence alignment iven two sequences: seqx = X X 2 X M and seqy = Y Y 2 Y N an alignment is an assignment of gaps to positions,, M in x, and to positions,, N in seqy, so as to line up each letter in one sequence with either a letter or a gap in the other sequence -ACTATCACCTACCTCCACCA--TCCC--- ACTATCACCTACCTCCACCATCCC TA-CTATCAC--ACCC--TCATTTCCCAC TACTATCACACCCTCATTTCCCAC The optimal alignment is the alignment that is most consistent with a model of evolution It is not trivial to make sequence alignments The alignment should be reliable The method of obtaining the alignment should be reproducible Thus, we use an algorithm to make sequence alignments lobal and local sequence alignments Alignment: adding gaps in one and/or the other sequence until they are both equally long Are sequences completely or partially homologous? Local alignment Finds the optimal sub-alignment within two sequences Partial homologs, e.g. resulting from domain rearrangement lobal alignment Aligns two sequences from end to end If you know two sequences are full homologs, e.g. resulting from gene duplication 2

3 How to detect identical (sub-)sequences? AACTCACTC TCACTCT Alignment matrix Alignment matrix 3

4 How to identify identical (sub-)sequences? TCTTCATTATTCAACTCACTCTA TCTTCATTCACTCTA Alignment matrix Towards an algorithm The challenge is to find an algorithm that finds the best alignment between two sequences The first thing we need is a scoring system Substitution matrix How many points for a match? How much penalty for a mismatch? ap penalty These scores are based on a model of evolution: How often do we think these events occur? More likely events are given higher scores A Less likely events are given lower scores (higher penalties) A C T C T Substitution matrix ap penalty: 4

5 Towards an algorithm Then we go through the alignment matrix, cell by cell and score it: If the residue at this position is the same in both the sequences, the cell gets a + score If the residue at this position is the same in both the sequences, the cell gets a - penalty A Relative to what? àrelative to one of the possible previous cells àthe one that maximizes the alignment score A C T C T Substitution matrix Alignment matrix Towards an algorithm From a given cell ( X ) the alignment can go in three directions: Diagonally from left above: this indicates an aligned residue Score of X = score of U + substitution score (b, d) From the cell directly above: this indicates a gap in the horizontal sequence Score of X = score of V gap penalty From the cell directly to the left: this indicates a gap in the vertical sequence Score of X = score of W gap penalty Every time, we choose the option that leads to the highest alignment score in X To identify local alignments, we set the alignment score to zero if becomes negative, and restart the alignment c d a U W b V X Alignment matrix 5

6 Alignment matrix Re-thinking the model of evolution An indel is an insertion/deletion of a sequence segment Indels are usually single evolutionary events So you do not want to penalize every residue aligned to a gap Alignment matrix ap open penalty: ap extension penalty: The model of evolution can account for this by differentiating two gap penalties: ap open penalty: high penalty indicating (un-)likelihood of an indel event in evolution ap extension penalty: zero score or low penalty indicating that the likelihood of the evolutionary event is regardless of the length of the indel 6

7 aps aps are the result of insertions or deletions in the sequence ap open: Total -3 gap penalty: ap extension: 6 x 5 x - A given insertion or deletion is probably just one evolutionary event, regardless of its size Adding a gap penalty for each gap position may decrease the alignment score too much This can be solved by using a high penalty for ap opening and a low penalty for ap extension Dynamic programming The algorithm we have described is called dynamic programming 7

8 Align CCCTAC to CCAAT. Many solutions are possible The optimal alignment maximizes the alignment score Depends on substitution matrix and gap penalty - - You could calculate alignment scores for all possible alignments: A A C T C - T ap penalty: = = = = -3 Etcetera An alignment matrix holds all possible alignments 8

9 lobal alignment Needleman-Wunsch algorithm Negative alignment matrix cells are allowed So that alignment score can be calculated from start to end of sequence Backtrack from last cell Proceed until the start of the sequence Identifies the highest scoring global alignment A A C T C T ap penalty: C -4 - C -4 C C C T A C = --4 C = -6-4 A A = -3 T Possible alignments Three global alignments are possible All three alignments are valid! A C T A C T The alignment scores are identical: = = = Alignments strongly depend on the substitution matrix! 9

10 Local alignment Smith-Waterman algorithm Negative alignment matrix cells are set to zero So that local alignments can be identified as positive values Backtrack from highest cell Proceed until the first zero Identifies the highest scoring local alignment = = + = C C A A T C C C T A C A A C T C T ap penalty: Exercise a. Is this a global or a local alignment? b. What is the name of the algorithm used? c. What is the gap penalty? d. ive the substitution matrix. e. What is the score of the optimal alignment? f. What is the optimal alignment?

11 Protein alignments Make a global alignment of these two sequences using the BLOSUM62 substitution matrix CAPT CFT C A P T ap penalty: - C F T Visualizing identity and similarity in an alignment Retinol-binding protein aligned to b-lactoglobulin: MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSTWYAMAKKDPE 5 RBP..... :..: :...MKCLLLALALTCAQALIVT..QTMKLDIQKVATWYSLAMAASD. 44 lactoglobulin 5 LFLQDNIVAEFSVDETQMSATAKRVR.LLNNWD..VCADMVTFTDTE 97 RBP : ::.. :. 45 ISLLDAQSAPLRV.YVEELKPTPEDLEILLQKWENECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWVASFLQKNDDHWIVDTDYDTYAV...QYSC 36 RBP. : IPAVFKIDALNENKVL...VLDTDYKKYLLFCMENSAEPEQSLAC 35 lactoglobulin 37 RLLNLDTCADSYSFVFSRDPNLPPEAQKIVRQRQ.EELCLARQYRLIV 85 RBP. :. 36 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Identical (bar) Very similar (two dots) Somewhat similar (one dot) Not similar (space)

12 Try it on BABA! Basic-Algorithms-of-Bioinformatics Applet If your computer does not run the Java Applet, use the standalone runnable version Multiple sequence alignment What if we want to align many sequences, for example a homologous gene in several animals? Option: dynamic programming in multiple dimensions 2E E NC E C N QU EU QE SE S S E Q U E N C E 3 Alignment matrix This algorithm is inefficient, because the size of the matrix (and thus the number of computational steps) scales exponentially with the number of sequences A matrix for proteins of residues is = 2 cells in size Storing this in RAM would require about million computers 2

13 Progressive multiple sequence alignment Algorithm goes through a series of pairwise alignments You first need a guide that indicates how similar/different the sequences are to each other A guide is not a phylogenetic tree Phylogenetic trees show evolutionary history, guides only show similarity You need an alignment first before you can create a phylogenetic tree Align the most similar pair of sequences first, and then progressivelyalign more divergent sequence pairs Iterate Create a sequence profile to summarize the already-aligned sequences This algorithm is efficient, becausethe computational steps scale linearly with the number of sequences Some useful programs Using existing bioinformatic programs is recommended because it makes your analysis reproducible Programs to align sequences Clustal Omega T-Coffee MAFFT Muscle Programs to view alignments Clustal Jalview Seaview 3

14 Warning! Input unaligned sequences Alignment program Output the optimal alignment Most computer programs will always output a result If sequences are not homologous then it does not make any biological sense to align them: this is WRON! even though an optimal alignment exists An optimal alignment can always be calculated, even when sequences are not homologous We have to use sequence alignment in different ways:. First, we use alignment to discover if two sequences are likely homologous 2. Only if they are homologous, then we use alignment: a) To identify how they evolved (which mutations occurred?) b) To quantify evolutionary relationships in terms of sequence similarity/divergence 4

15 Alignment files Alignments can be stored in Fasta format Other formats are also possible, check files in plain text editor Alignment files can easily be spotted when opened in a plain text editor: Some of the sequences contain gap characters: representing absentresidues So that all sequences have exactly the same length >protein_sequence_a MTQSHHHVAA FDLSSIRQE LTET DPNRAEI TFI >protein_sequence_b MTQSSHHVAA FDLAALHQE LTETDYSEV QRDPNRAEV TFV >protein_sequence_c AVAA FDLAALRQE LTETDYAEI QRDPNHAEL TF-- As in Fasta files, spaces and newlines just make sequences easier to read, they do not have any meaning 5

16 Bioinformatic considerations Optimal alignment This is just the alignment with the highest possible score which strongly depends on the substitution matrix and gap penalties This means it depends on a specific model of evolution Optimal alignment is not necessarily the most meaningful Substitutions or gap penalties are not equally frequent at all positions ap penalties do not model insertion/deletion events well Sometimes manual curation is necessary Inspection and adjusting the alignment by hand This is not reproducible, so use manual curation only in special cases if no automated option is available Assumptions of sequence alignment Positions in the sequence mutate independently The mutation rate is identical for all positions in the sequence The mutation rate is constant in time and in different species and lineages The nucleotide/amino acid composition is stable THE ASSUMPTIONS ARE NOT ALWAYS TRUE! because the residues of a gene/protein interact to perform function because the effect of a mutation on fitness (and thus on the rate of evolution) differs per position in the sequence and per species and even per moment in time and location in space it depends on the interaction of an organism and its proteins with the environment 6

Today s Lecture. Edit graph & alignment algorithms. Local vs global Computational complexity of pairwise alignment Multiple sequence alignment

Today s Lecture. Edit graph & alignment algorithms. Local vs global Computational complexity of pairwise alignment Multiple sequence alignment Today s Lecture Edit graph & alignment algorithms Smith-Waterman algorithm Needleman-Wunsch algorithm Local vs global Computational complexity of pairwise alignment Multiple sequence alignment 1 Sequence

More information

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic programming is a group of mathematical methods used to sequentially split a complicated problem into

More information

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University Profiles and Multiple Alignments COMP 571 Luay Nakhleh, Rice University Outline Profiles and sequence logos Profile hidden Markov models Aligning profiles Multiple sequence alignment by gradual sequence

More information

Lecture 10. Sequence alignments

Lecture 10. Sequence alignments Lecture 10 Sequence alignments Alignment algorithms: Overview Given a scoring system, we need to have an algorithm for finding an optimal alignment for a pair of sequences. We want to maximize the score

More information

Today s Lecture. Multiple sequence alignment. Improved scoring of pairwise alignments. Affine gap penalties Profiles

Today s Lecture. Multiple sequence alignment. Improved scoring of pairwise alignments. Affine gap penalties Profiles Today s Lecture Multiple sequence alignment Improved scoring of pairwise alignments Affine gap penalties Profiles 1 The Edit Graph for a Pair of Sequences G A C G T T G A A T G A C C C A C A T G A C G

More information

Sequence analysis Pairwise sequence alignment

Sequence analysis Pairwise sequence alignment UMF11 Introduction to bioinformatics, 25 Sequence analysis Pairwise sequence alignment 1. Sequence alignment Lecturer: Marina lexandersson 12 September, 25 here are two types of sequence alignments, global

More information

Basics of Multiple Sequence Alignment

Basics of Multiple Sequence Alignment Basics of Multiple Sequence Alignment Tandy Warnow February 10, 2018 Basics of Multiple Sequence Alignment Tandy Warnow Basic issues What is a multiple sequence alignment? Evolutionary processes operating

More information

Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA.

Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA. Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence or library of DNA. Fasta is used to compare a protein or DNA sequence to all of the

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Find the best alignment between 2 sequences with lengths n and m, respectively Best alignment is very dependent upon the substitution matrix and gap penalties The Global Alignment Problem tries to find

More information

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment Courtesy of jalview 1 Motivations Collective statistic Protein families Identification and representation of conserved sequence features

More information

Pairwise Sequence Alignment. Zhongming Zhao, PhD

Pairwise Sequence Alignment. Zhongming Zhao, PhD Pairwise Sequence Alignment Zhongming Zhao, PhD Email: zhongming.zhao@vanderbilt.edu http://bioinfo.mc.vanderbilt.edu/ Sequence Similarity match mismatch A T T A C G C G T A C C A T A T T A T G C G A T

More information

Lecture 2 Pairwise sequence alignment. Principles Computational Biology Teresa Przytycka, PhD

Lecture 2 Pairwise sequence alignment. Principles Computational Biology Teresa Przytycka, PhD Lecture 2 Pairwise sequence alignment. Principles Computational Biology Teresa Przytycka, PhD Assumptions: Biological sequences evolved by evolution. Micro scale changes: For short sequences (e.g. one

More information

Dynamic Programming & Smith-Waterman algorithm

Dynamic Programming & Smith-Waterman algorithm m m Seminar: Classical Papers in Bioinformatics May 3rd, 2010 m m 1 2 3 m m Introduction m Definition is a method of solving problems by breaking them down into simpler steps problem need to contain overlapping

More information

Computational Molecular Biology

Computational Molecular Biology Computational Molecular Biology Erwin M. Bakker Lecture 3, mainly from material by R. Shamir [2] and H.J. Hoogeboom [4]. 1 Pairwise Sequence Alignment Biological Motivation Algorithmic Aspect Recursive

More information

Sequence Alignment (chapter 6) p The biological problem p Global alignment p Local alignment p Multiple alignment

Sequence Alignment (chapter 6) p The biological problem p Global alignment p Local alignment p Multiple alignment Sequence lignment (chapter 6) p The biological problem p lobal alignment p Local alignment p Multiple alignment Local alignment: rationale p Otherwise dissimilar proteins may have local regions of similarity

More information

Multiple sequence alignment. November 20, 2018

Multiple sequence alignment. November 20, 2018 Multiple sequence alignment November 20, 2018 Why do multiple alignment? Gain insight into evolutionary history Can assess time of divergence by looking at the number of mutations needed to change one

More information

Bioinformatics for Biologists

Bioinformatics for Biologists Bioinformatics for Biologists Sequence Analysis: Part I. Pairwise alignment and database searching Fran Lewitter, Ph.D. Director Bioinformatics & Research Computing Whitehead Institute Topics to Cover

More information

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota Marina Sirota MOTIVATION: PROTEIN MULTIPLE ALIGNMENT To study evolution on the genetic level across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein

More information

24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, This lecture is based on the following papers, which are all recommended reading:

24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, This lecture is based on the following papers, which are all recommended reading: 24 Grundlagen der Bioinformatik, SS 10, D. Huson, April 26, 2010 3 BLAST and FASTA This lecture is based on the following papers, which are all recommended reading: D.J. Lipman and W.R. Pearson, Rapid

More information

Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it.

Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it. Sequence Alignments Overview Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it. Sequence alignment means arranging

More information

Programming assignment for the course Sequence Analysis (2006)

Programming assignment for the course Sequence Analysis (2006) Programming assignment for the course Sequence Analysis (2006) Original text by John W. Romein, adapted by Bart van Houte (bart@cs.vu.nl) Introduction Please note: This assignment is only obligatory for

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2015 1 Sequence Alignment Dannie Durand Pairwise Sequence Alignment The goal of pairwise sequence alignment is to establish a correspondence between the

More information

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations:

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations: Lecture Overview Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating

More information

Bioinformatics explained: Smith-Waterman

Bioinformatics explained: Smith-Waterman Bioinformatics Explained Bioinformatics explained: Smith-Waterman May 1, 2007 CLC bio Gustav Wieds Vej 10 8000 Aarhus C Denmark Telephone: +45 70 22 55 09 Fax: +45 70 22 55 19 www.clcbio.com info@clcbio.com

More information

Lab 4: Multiple Sequence Alignment (MSA)

Lab 4: Multiple Sequence Alignment (MSA) Lab 4: Multiple Sequence Alignment (MSA) The objective of this lab is to become familiar with the features of several multiple alignment and visualization tools, including the data input and output, basic

More information

Sequence Alignment & Search

Sequence Alignment & Search Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating the first version

More information

B L A S T! BLAST: Basic local alignment search tool. Copyright notice. February 6, Pairwise alignment: key points. Outline of tonight s lecture

B L A S T! BLAST: Basic local alignment search tool. Copyright notice. February 6, Pairwise alignment: key points. Outline of tonight s lecture February 6, 2008 BLAST: Basic local alignment search tool B L A S T! Jonathan Pevsner, Ph.D. Introduction to Bioinformatics pevsner@jhmi.edu 4.633.0 Copyright notice Many of the images in this powerpoint

More information

FASTA. Besides that, FASTA package provides SSEARCH, an implementation of the optimal Smith- Waterman algorithm.

FASTA. Besides that, FASTA package provides SSEARCH, an implementation of the optimal Smith- Waterman algorithm. FASTA INTRODUCTION Definition (by David J. Lipman and William R. Pearson in 1985) - Compares a sequence of protein to another sequence or database of a protein, or a sequence of DNA to another sequence

More information

Pairwise Sequence Alignment: Dynamic Programming Algorithms. COMP Spring 2015 Luay Nakhleh, Rice University

Pairwise Sequence Alignment: Dynamic Programming Algorithms. COMP Spring 2015 Luay Nakhleh, Rice University Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 - Spring 2015 Luay Nakhleh, Rice University DP Algorithms for Pairwise Alignment The number of all possible pairwise alignments (if

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 04: Variations of sequence alignments http://www.pitt.edu/~mcs2/teaching/biocomp/tutorials/global.html Slides adapted from Dr. Shaojie Zhang (University

More information

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST Alexander Chan 5075504 Biochemistry 218 Final Project An Analysis of Pairwise

More information

FastA & the chaining problem

FastA & the chaining problem FastA & the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem 1 Sources for this lecture: Lectures by Volker Heun, Daniel Huson and Knut Reinert,

More information

FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10:

FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10: FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10:56 4001 4 FastA and the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem

More information

Brief review from last class

Brief review from last class Sequence Alignment Brief review from last class DNA is has direction, we will use only one (5 -> 3 ) and generate the opposite strand as needed. DNA is a 3D object (see lecture 1) but we will model it

More information

BLAST MCDB 187. Friday, February 8, 13

BLAST MCDB 187. Friday, February 8, 13 BLAST MCDB 187 BLAST Basic Local Alignment Sequence Tool Uses shortcut to compute alignments of a sequence against a database very quickly Typically takes about a minute to align a sequence against a database

More information

Lectures by Volker Heun, Daniel Huson and Knut Reinert, in particular last years lectures

Lectures by Volker Heun, Daniel Huson and Knut Reinert, in particular last years lectures 4 FastA and the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem 4.1 Sources for this lecture Lectures by Volker Heun, Daniel Huson and Knut

More information

Sequence alignment theory and applications Session 3: BLAST algorithm

Sequence alignment theory and applications Session 3: BLAST algorithm Sequence alignment theory and applications Session 3: BLAST algorithm Introduction to Bioinformatics online course : IBT Sonal Henson Learning Objectives Understand the principles of the BLAST algorithm

More information

Algorithmic Approaches for Biological Data, Lecture #20

Algorithmic Approaches for Biological Data, Lecture #20 Algorithmic Approaches for Biological Data, Lecture #20 Katherine St. John City University of New York American Museum of Natural History 20 April 2016 Outline Aligning with Gaps and Substitution Matrices

More information

TCCAGGTG-GAT TGCAAGTGCG-T. Local Sequence Alignment & Heuristic Local Aligners. Review: Probabilistic Interpretation. Chance or true homology?

TCCAGGTG-GAT TGCAAGTGCG-T. Local Sequence Alignment & Heuristic Local Aligners. Review: Probabilistic Interpretation. Chance or true homology? Local Sequence Alignment & Heuristic Local Aligners Lectures 18 Nov 28, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall

More information

Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University

Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University 1 Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University DP Algorithms for Pairwise Alignment 2 The number of all possible pairwise alignments (if gaps are allowed)

More information

GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment

GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment Scoring Dynamic Programming algorithms Heuristic algorithms CLUSTAL W Courtesy of jalview Motivations Collective (or aggregate) statistic

More information

Computational Molecular Biology

Computational Molecular Biology Computational Molecular Biology Erwin M. Bakker Lecture 2 Materials used from R. Shamir [2] and H.J. Hoogeboom [4]. 1 Molecular Biology Sequences DNA A, T, C, G RNA A, U, C, G Protein A, R, D, N, C E,

More information

Biochemistry 324 Bioinformatics. Multiple Sequence Alignment (MSA)

Biochemistry 324 Bioinformatics. Multiple Sequence Alignment (MSA) Biochemistry 324 Bioinformatics Multiple Sequence Alignment (MSA) Big- Οh notation Greek omicron symbol Ο The Big-Oh notation indicates the complexity of an algorithm in terms of execution speed and storage

More information

Principles of Bioinformatics. BIO540/STA569/CSI660 Fall 2010

Principles of Bioinformatics. BIO540/STA569/CSI660 Fall 2010 Principles of Bioinformatics BIO540/STA569/CSI660 Fall 2010 Lecture 11 Multiple Sequence Alignment I Administrivia Administrivia The midterm examination will be Monday, October 18 th, in class. Closed

More information

Sequence Alignment. part 2

Sequence Alignment. part 2 Sequence Alignment part 2 Dynamic programming with more realistic scoring scheme Using the same initial sequences, we ll look at a dynamic programming example with a scoring scheme that selects for matches

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 06: Multiple Sequence Alignment https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/rplp0_90_clustalw_aln.gif/575px-rplp0_90_clustalw_aln.gif Slides

More information

Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships

Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships Comparison of Sequence Similarity Measures for Distant Evolutionary Relationships Abhishek Majumdar, Peter Z. Revesz Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln,

More information

Alignment ABC. Most slides are modified from Serafim s lectures

Alignment ABC. Most slides are modified from Serafim s lectures Alignment ABC Most slides are modified from Serafim s lectures Complete genomes Evolution Evolution at the DNA level C ACGGTGCAGTCACCA ACGTTGCAGTCCACCA SEQUENCE EDITS REARRANGEMENTS Sequence conservation

More information

Chapter 8 Multiple sequence alignment. Chaochun Wei Spring 2018

Chapter 8 Multiple sequence alignment. Chaochun Wei Spring 2018 1896 1920 1987 2006 Chapter 8 Multiple sequence alignment Chaochun Wei Spring 2018 Contents 1. Reading materials 2. Multiple sequence alignment basic algorithms and tools how to improve multiple alignment

More information

BGGN 213 Foundations of Bioinformatics Barry Grant

BGGN 213 Foundations of Bioinformatics Barry Grant BGGN 213 Foundations of Bioinformatics Barry Grant http://thegrantlab.org/bggn213 Recap From Last Time: 25 Responses: https://tinyurl.com/bggn213-02-f17 Why ALIGNMENT FOUNDATIONS Why compare biological

More information

Alignment of Long Sequences

Alignment of Long Sequences Alignment of Long Sequences BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2009 Mark Craven craven@biostat.wisc.edu Pairwise Whole Genome Alignment: Task Definition Given a pair of genomes (or other large-scale

More information

Biological Sequence Matching Using Fuzzy Logic

Biological Sequence Matching Using Fuzzy Logic International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 1 Biological Sequence Matching Using Fuzzy Logic Nivit Gill, Shailendra Singh Abstract: Sequence alignment is the

More information

BLAST, Profile, and PSI-BLAST

BLAST, Profile, and PSI-BLAST BLAST, Profile, and PSI-BLAST Jianlin Cheng, PhD School of Electrical Engineering and Computer Science University of Central Florida 26 Free for academic use Copyright @ Jianlin Cheng & original sources

More information

Distributed Protein Sequence Alignment

Distributed Protein Sequence Alignment Distributed Protein Sequence Alignment ABSTRACT J. Michael Meehan meehan@wwu.edu James Hearne hearne@wwu.edu Given the explosive growth of biological sequence databases and the computational complexity

More information

Basic Local Alignment Search Tool (BLAST)

Basic Local Alignment Search Tool (BLAST) BLAST 26.04.2018 Basic Local Alignment Search Tool (BLAST) BLAST (Altshul-1990) is an heuristic Pairwise Alignment composed by six-steps that search for local similarities. The most used access point to

More information

Bioinformatics. Sequence alignment BLAST Significance. Next time Protein Structure

Bioinformatics. Sequence alignment BLAST Significance. Next time Protein Structure Bioinformatics Sequence alignment BLAST Significance Next time Protein Structure 1 Experimental origins of sequence data The Sanger dideoxynucleotide method F Each color is one lane of an electrophoresis

More information

Outline. Sequence Alignment. Types of Sequence Alignment. Genomics & Computational Biology. Section 2. How Computers Store Information

Outline. Sequence Alignment. Types of Sequence Alignment. Genomics & Computational Biology. Section 2. How Computers Store Information enomics & omputational Biology Section Lan Zhang Sep. th, Outline How omputers Store Information Sequence lignment Dot Matrix nalysis Dynamic programming lobal: NeedlemanWunsch lgorithm Local: SmithWaterman

More information

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT Asif Ali Khan*, Laiq Hassan*, Salim Ullah* ABSTRACT: In bioinformatics, sequence alignment is a common and insistent task. Biologists align

More information

Chapter 6. Multiple sequence alignment (week 10)

Chapter 6. Multiple sequence alignment (week 10) Course organization Introduction ( Week 1,2) Part I: Algorithms for Sequence Analysis (Week 1-11) Chapter 1-3, Models and theories» Probability theory and Statistics (Week 3)» Algorithm complexity analysis

More information

Multiple sequence alignment. November 2, 2017

Multiple sequence alignment. November 2, 2017 Multiple sequence alignment November 2, 2017 Why do multiple alignment? Gain insight into evolutionary history Can assess time of divergence by looking at the number of mutations needed to change one sequence

More information

Bioinformatics explained: BLAST. March 8, 2007

Bioinformatics explained: BLAST. March 8, 2007 Bioinformatics Explained Bioinformatics explained: BLAST March 8, 2007 CLC bio Gustav Wieds Vej 10 8000 Aarhus C Denmark Telephone: +45 70 22 55 09 Fax: +45 70 22 55 19 www.clcbio.com info@clcbio.com Bioinformatics

More information

Lesson 13 Molecular Evolution

Lesson 13 Molecular Evolution Sequence Analysis Spring 2000 Dr. Richard Friedman (212)305-6901 (76901) friedman@cuccfa.ccc.columbia.edu 130BB Lesson 13 Molecular Evolution In this class we learn how to draw molecular evolutionary trees

More information

Dynamic Programming Part I: Examples. Bioinfo I (Institut Pasteur de Montevideo) Dynamic Programming -class4- July 25th, / 77

Dynamic Programming Part I: Examples. Bioinfo I (Institut Pasteur de Montevideo) Dynamic Programming -class4- July 25th, / 77 Dynamic Programming Part I: Examples Bioinfo I (Institut Pasteur de Montevideo) Dynamic Programming -class4- July 25th, 2011 1 / 77 Dynamic Programming Recall: the Change Problem Other problems: Manhattan

More information

Similarity Searches on Sequence Databases

Similarity Searches on Sequence Databases Similarity Searches on Sequence Databases Lorenza Bordoli Swiss Institute of Bioinformatics EMBnet Course, Zürich, October 2004 Swiss Institute of Bioinformatics Swiss EMBnet node Outline Importance of

More information

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be

As of August 15, 2008, GenBank contained bases from reported sequences. The search procedure should be 48 Bioinformatics I, WS 09-10, S. Henz (script by D. Huson) November 26, 2009 4 BLAST and BLAT Outline of the chapter: 1. Heuristics for the pairwise local alignment of two sequences 2. BLAST: search and

More information

Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties

Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties Global Alignment Scoring Matrices Local Alignment Alignment with Affine Gap Penalties From LCS to Alignment: Change the Scoring The Longest Common Subsequence (LCS) problem the simplest form of sequence

More information

Mapping Sequence Conservation onto Structures with Chimera

Mapping Sequence Conservation onto Structures with Chimera This page: www.rbvi.ucsf.edu/chimera/data/tutorials/systems/outline.html Chimera in BP205A BP205A syllabus Mapping Sequence Conservation onto Structures with Chimera Case 1: You already have a structure

More information

Data Walkthrough: Background

Data Walkthrough: Background Data Walkthrough: Background File Types FASTA Files FASTA files are text-based representations of genetic information. They can contain nucleotide or amino acid sequences. For this activity, students will

More information

Central Issues in Biological Sequence Comparison

Central Issues in Biological Sequence Comparison Central Issues in Biological Sequence Comparison Definitions: What is one trying to find or optimize? Algorithms: Can one find the proposed object optimally or in reasonable time optimize? Statistics:

More information

Sept. 9, An Introduction to Bioinformatics. Special Topics BSC5936:

Sept. 9, An Introduction to Bioinformatics. Special Topics BSC5936: Special Topics BSC5936: An Introduction to Bioinformatics. Florida State University The Department of Biological Science www.bio.fsu.edu Sept. 9, 2003 The Dot Matrix Method Steven M. Thompson Florida State

More information

Bioinformatics 1: lecture 4. Followup of lecture 3? Molecular evolution Global, semi-global and local Affine gap penalty

Bioinformatics 1: lecture 4. Followup of lecture 3? Molecular evolution Global, semi-global and local Affine gap penalty Bioinformatics 1: lecture 4 Followup of lecture 3? Molecular evolution Global, semi-global and local Affine gap penalty How sequences evolve point mutations (single base changes) deletion (loss of residues

More information

Lecture 5: Multiple sequence alignment

Lecture 5: Multiple sequence alignment Lecture 5: Multiple sequence alignment Introduction to Computational Biology Teresa Przytycka, PhD (with some additions by Martin Vingron) Why do we need multiple sequence alignment Pairwise sequence alignment

More information

On the Efficacy of Haskell for High Performance Computational Biology

On the Efficacy of Haskell for High Performance Computational Biology On the Efficacy of Haskell for High Performance Computational Biology Jacqueline Addesa Academic Advisors: Jeremy Archuleta, Wu chun Feng 1. Problem and Motivation Biologists can leverage the power of

More information

Multiple Sequence Alignment Sum-of-Pairs and ClustalW. Ulf Leser

Multiple Sequence Alignment Sum-of-Pairs and ClustalW. Ulf Leser Multiple Sequence Alignment Sum-of-Pairs and ClustalW Ulf Leser This Lecture Multiple Sequence Alignment The problem Theoretical approach: Sum-of-Pairs scores Practical approach: ClustalW Ulf Leser: Bioinformatics,

More information

In this section we describe how to extend the match refinement to the multiple case and then use T-Coffee to heuristically compute a multiple trace.

In this section we describe how to extend the match refinement to the multiple case and then use T-Coffee to heuristically compute a multiple trace. 5 Multiple Match Refinement and T-Coffee In this section we describe how to extend the match refinement to the multiple case and then use T-Coffee to heuristically compute a multiple trace. This exposition

More information

DNA Alignment With Affine Gap Penalties

DNA Alignment With Affine Gap Penalties DNA Alignment With Affine Gap Penalties Laurel Schuster Why Use Affine Gap Penalties? When aligning two DNA sequences, one goal may be to infer the mutations that made them different. Though it s impossible

More information

.. Fall 2011 CSC 570: Bioinformatics Alexander Dekhtyar..

.. Fall 2011 CSC 570: Bioinformatics Alexander Dekhtyar.. .. Fall 2011 CSC 570: Bioinformatics Alexander Dekhtyar.. PAM and BLOSUM Matrices Prepared by: Jason Banich and Chris Hoover Background As DNA sequences change and evolve, certain amino acids are more

More information

Stephen Scott.

Stephen Scott. 1 / 33 sscott@cse.unl.edu 2 / 33 Start with a set of sequences In each column, residues are homolgous Residues occupy similar positions in 3D structure Residues diverge from a common ancestral residue

More information

Multiple Sequence Alignment (MSA)

Multiple Sequence Alignment (MSA) I519 Introduction to Bioinformatics, Fall 2013 Multiple Sequence Alignment (MSA) Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Multiple sequence alignment (MSA) Generalize

More information

Simulation of Molecular Evolution with Bioinformatics Analysis

Simulation of Molecular Evolution with Bioinformatics Analysis Simulation of Molecular Evolution with Bioinformatics Analysis Barbara N. Beck, Rochester Community and Technical College, Rochester, MN Project created by: Barbara N. Beck, Ph.D., Rochester Community

More information

Multiple Sequence Alignment. With thanks to Eric Stone and Steffen Heber, North Carolina State University

Multiple Sequence Alignment. With thanks to Eric Stone and Steffen Heber, North Carolina State University Multiple Sequence Alignment With thanks to Eric Stone and Steffen Heber, North Carolina State University Definition: Multiple sequence alignment Given a set of sequences, a multiple sequence alignment

More information

Multiple Sequence Alignment. Mark Whitsitt - NCSA

Multiple Sequence Alignment. Mark Whitsitt - NCSA Multiple Sequence Alignment Mark Whitsitt - NCSA What is a Multiple Sequence Alignment (MA)? GMHGTVYANYAVDSSDLLLAFGVRFDDRVTGKLEAFASRAKIVHIDIDSAEIGKNKQPHV GMHGTVYANYAVEHSDLLLAFGVRFDDRVTGKLEAFASRAKIVHIDIDSAEIGKNKTPHV

More information

Shortest Path Algorithm

Shortest Path Algorithm Shortest Path Algorithm C Works just fine on this graph. C Length of shortest path = Copyright 2005 DIMACS BioMath Connect Institute Robert Hochberg Dynamic Programming SP #1 Same Questions, Different

More information

Sequence Analysis '17: lecture 4. Molecular evolution Global, semi-global and local Affine gap penalty

Sequence Analysis '17: lecture 4. Molecular evolution Global, semi-global and local Affine gap penalty Sequence Analysis '17: lecture 4 Molecular evolution Global, semi-global and local Affine gap penalty How sequences evolve point mutations (single base changes) deletion (loss of residues within the sequence)

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics A statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states in the training data. First used in speech and handwriting recognition In

More information

CS 284A: Algorithms for Computational Biology Notes on Lecture: BLAST. The statistics of alignment scores.

CS 284A: Algorithms for Computational Biology Notes on Lecture: BLAST. The statistics of alignment scores. CS 284A: Algorithms for Computational Biology Notes on Lecture: BLAST. The statistics of alignment scores. prepared by Oleksii Kuchaiev, based on presentation by Xiaohui Xie on February 20th. 1 Introduction

More information

COS 551: Introduction to Computational Molecular Biology Lecture: Oct 17, 2000 Lecturer: Mona Singh Scribe: Jacob Brenner 1. Database Searching

COS 551: Introduction to Computational Molecular Biology Lecture: Oct 17, 2000 Lecturer: Mona Singh Scribe: Jacob Brenner 1. Database Searching COS 551: Introduction to Computational Molecular Biology Lecture: Oct 17, 2000 Lecturer: Mona Singh Scribe: Jacob Brenner 1 Database Searching In database search, we typically have a large sequence database

More information

Research on Pairwise Sequence Alignment Needleman-Wunsch Algorithm

Research on Pairwise Sequence Alignment Needleman-Wunsch Algorithm 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017) Research on Pairwise Sequence Alignment Needleman-Wunsch Algorithm Xiantao Jiang1, a,*,xueliang

More information

CS313 Exercise 4 Cover Page Fall 2017

CS313 Exercise 4 Cover Page Fall 2017 CS313 Exercise 4 Cover Page Fall 2017 Due by the start of class on Thursday, October 12, 2017. Name(s): In the TIME column, please estimate the time you spent on the parts of this exercise. Please try

More information

Dynamic Programming: Sequence alignment. CS 466 Saurabh Sinha

Dynamic Programming: Sequence alignment. CS 466 Saurabh Sinha Dynamic Programming: Sequence alignment CS 466 Saurabh Sinha DNA Sequence Comparison: First Success Story Finding sequence similarities with genes of known function is a common approach to infer a newly

More information

Important Example: Gene Sequence Matching. Corrigiendum. Central Dogma of Modern Biology. Genetics. How Nucleotides code for Amino Acids

Important Example: Gene Sequence Matching. Corrigiendum. Central Dogma of Modern Biology. Genetics. How Nucleotides code for Amino Acids Important Example: Gene Sequence Matching Century of Biology Two views of computer science s relationship to biology: Bioinformatics: computational methods to help discover new biology from lots of data

More information

Lecture 3: February Local Alignment: The Smith-Waterman Algorithm

Lecture 3: February Local Alignment: The Smith-Waterman Algorithm CSCI1820: Sequence Alignment Spring 2017 Lecture 3: February 7 Lecturer: Sorin Istrail Scribe: Pranavan Chanthrakumar Note: LaTeX template courtesy of UC Berkeley EECS dept. Notes are also adapted from

More information

Multiple Sequence Alignment: Multidimensional. Biological Motivation

Multiple Sequence Alignment: Multidimensional. Biological Motivation Multiple Sequence Alignment: Multidimensional Dynamic Programming Boston University Biological Motivation Compare a new sequence with the sequences in a protein family. Proteins can be categorized into

More information

Database Searching Using BLAST

Database Searching Using BLAST Mahidol University Objectives SCMI512 Molecular Sequence Analysis Database Searching Using BLAST Lecture 2B After class, students should be able to: explain the FASTA algorithm for database searching explain

More information

Pairwise Sequence alignment Basic Algorithms

Pairwise Sequence alignment Basic Algorithms Pairwise Sequence alignment Basic Algorithms Agenda - Previous Lesson: Minhala - + Biological Story on Biomolecular Sequences - + General Overview of Problems in Computational Biology - Reminder: Dynamic

More information

Multiple Sequence Alignment Augmented by Expert User Constraints

Multiple Sequence Alignment Augmented by Expert User Constraints Multiple Sequence Alignment Augmented by Expert User Constraints A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Master of

More information

Sequence Alignment. Ulf Leser

Sequence Alignment. Ulf Leser Sequence Alignment Ulf Leser his Lecture Approximate String Matching Edit distance and alignment Computing global alignments Local alignment Ulf Leser: Bioinformatics, Summer Semester 2016 2 ene Function

More information

The Dot Matrix Method

The Dot Matrix Method Special Topics BS5936: An Introduction to Bioinformatics. Florida State niversity The Department of Biological Science www.bio.fsu.edu Sept. 9, 2003 The Dot Matrix Method Steven M. Thompson Florida State

More information

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein Sequence omparison: Dynamic Programming Genome 373 Genomic Informatics Elhanan Borenstein quick review: hallenges Find the best global alignment of two sequences Find the best global alignment of multiple

More information

EECS 4425: Introductory Computational Bioinformatics Fall Suprakash Datta

EECS 4425: Introductory Computational Bioinformatics Fall Suprakash Datta EECS 4425: Introductory Computational Bioinformatics Fall 2018 Suprakash Datta datta [at] cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4425 Many

More information