Byzantine Fault Tolerance and Consensus. Adi Seredinschi Distributed Programming Laboratory

Size: px
Start display at page:

Download "Byzantine Fault Tolerance and Consensus. Adi Seredinschi Distributed Programming Laboratory"

Transcription

1 Byzantine Fault Tolerance and Consensus Adi Seredinschi Distributed Programming Laboratory 1

2 (Original) Problem Correct process General goal: Run a distributed algorithm 2

3 (Original) Problem Correct process Arbitrary failure General goal: Run a distributed algorithm 2

4 (Recasting the) Problem REQUEST REPLY Client Application Distributed algorithm 3

5 Recasting the problem Application requirements: High-Availability (give a reply to a request) Reliability (give correct replies) REQUEST REPLY Distributed algorithm Client Application Boils down to fault-tolerance 4

6 Solution Fault-tolerance basic techniques: Agreement = Consensus REPLY Client Replication = State Machine Replication REQUEST Application In the following we will see PBFT Seminal algorithm for Byzantine Fault Tolerance Distributed algorithm 5

7 PBFT Practical Byzantine Fault Tolerance OSDI 99 Miguel Castro Barbara Liskov 6

8 Modules Application State Machine Replication (SMR) Consensus Perfect Links Channels 7

9 Modules Application State Machine Replication (SMR) PBFT Consensus Perfect Links Channels 7

10 Overview PBFT: System model slightly different from what we ve seen so far SMR Consensus 8

11 System model Processes Three types of processes in this algorithm: Clients n replicas one of them is primary others are backup n 9

12 System model Failure model Arbitrary (Byzantine) faults Clients:. Any client can be faulty Replicas: n = 3f + 1 f faulty (upper bound) n=4 f=1 n=7 f=2 10

13 System model Network & crypto Assume perfect links Direct links between any two processes For messages: Public-key signatures, message authentication codes Avoid spoofing, replays, corruption Clients are authenticated Can revoke access to faulty clients 11

14 Overview PBFT: System model slightly different from what we ve seen so far SMR Consensus 12

15 State Machine Replication (SMR) A fault-tolerance technique. Basic ideas: Application = state machine Process 1. Process n Run the application on multiple processes Each processes is a faithful replica of the application Note: We can ignore the primary/backup distinction in this example 13

16 SMR in a nutshell All SMR replicas start from the same state () 14

17 SMR in a nutshell a S2 a a S2 S2 All SMR replicas start from the same state () Transition to state (S2) due to operation a 14

18 SMR in a nutshell a S2 null a S2 a a S2 c All SMR replicas start from the same state () Transition to state (S2) due to operation a 14

19 SMR in a nutshell a S2 null S2 a S2 a S3 a S2 c S4 All SMR replicas start from the same state () Transition to state (S2) due to operation a A faulty client can wreak havoc 14

20 SMR in a nutshell a S2 null S2 rand() a S2 a S3 rand() a S2 c S4 rand() All SMR replicas start from the same state () Transition to state (S2) due to operation a A faulty client can wreak havoc 14

21 SMR in a nutshell a S2 null S2 rand() S5 a S2 a S3 rand() S6 a S2 c S4 rand() S7 All SMR replicas start from the same state () Transition to state (S2) due to operation a A faulty client can wreak havoc Non-determinism is also harmful 14

22 SMR in a nutshell a S2 null S2 rand() S5 a S2 a S3 rand() S6 a S2 c S4 rand() S7 All SMR replicas start from the same state () Transition to state (S2) due to operation a A faulty client can wreak havoc Non-determinism is also harmful 14 Diverging states!

23 SMR Requirements Avoid diverging states All replicas must: 1. Start in the same state 2. Execute the same sequence of operations 3. Use only provided operation (+parameters), thus avoid non-determinism 15

24 SMR Requirements Avoid diverging states All replicas must: 1. Start in the same state 2. Execute the same sequence of operations 3. Use only provided operation (+parameters), thus avoid non-determinism Simple Consensus Depends on application 15

25 SMR in PBFT Application = a distributed file system Network File System (NFS) Operations = write to a file, delete, etc. Primary/backup distinction is relevant NFS State Machine Replication (SMR) Consensus Perfect Links Channels 16

26 SMR in PBFT Application = a distributed file system Network File System (NFS) Operations = write to a file, delete, etc. Primary/backup distinction is relevant NFS State Machine Replication (SMR) Consensus Perfect Links Channels The replicated state is a file system 16

27 SMR in PBFT REQUEST Client contacts the primary with a request 17

28 SMR in PBFT REQUEST Consensus Client contacts the primary with a request All replicas agree on the request & execute it 17

29 SMR in PBFT REQUEST REPLY Consensus REPLY REPLY REPLY Client contacts the primary with a request All replicas agree on the request & execute it 17 Client gets the same reply from all correct replicas

30 SMR in PBFT REQUEST REPLY Lost Consensus REPLY REPLY REPLY Client contacts the primary with a request All replicas agree on the request & execute it 18 Redundancy in Replies = Cope with failures

31 SMR in PBFT REQUEST REPLY Lost Consensus REPLY REPLY REPLY Client contacts the primary with a request All replicas agree on the request & execute it 18 Redundancy in Replies = Cope with failures

32 Overview PBFT: System model slightly different from what we ve seen so far SMR Consensus 19

33 Consensus The core for many algorithms, including: TRB, Group membership, View synchronous b-cast, State machine replication Traditionally In PBFT: Instance Processes propose values Instance Clients propose requests Primary multicasts the requests to backup replicas Agree on a proposed value Primary & replicas agree on the sequence of request 20

34 Consensus in PBFT We ll assume one client Proposals = requests for application operations Assume: n = 4, f = 1 REQUEST REQUEST REQUEST The faulty replica does not cooperate Concurrent requests: Consensus to agree on a sequential execution of requests 21

35 Consensus in PBFT Algorithm ideas: Client sends requests to the primary replica Execute a sequence of consensus instances: Each instance is dedicated to a request Instances (and therefore requests) are sequentially ordered by the primary Backup replicas adopt requests from the primary in the imposed order Properties: Validity, Agreement, Termination, Integrity 22

36 Consensus in PBFT REQUEST Consensus 23

37 Consensus in PBFT REQUEST Consensus A three-phase protocol 23

38 Consensus instance = three-phase protocol REQUEST

39 Consensus instance = three-phase protocol REQUEST

40 Consensus instance = three-phase protocol REQUEST

41 Consensus instance = three-phase protocol REQUEST

42 Consensus instance = three-phase protocol REQUEST REPLY

43 Consensus instance = three-phase protocol REQUEST REPLY

44 Consensus Corner case What if the primary is faulty, e.g. does not multicast the request to the backups? View change protocol: primary replaced by one of the backups Idea: Replicas are numbered 1 n In view v, the replica p is the primary, where p = v mod n 29

45 Consensus Why 3 phases? 1. PRE-PREPARE 2. PREPARE 3. COMMIT 30

46 Consensus Why 3 phases? 1. PRE-PREPARE Agree on (the order of) requests within the same view 2. PREPARE 3. COMMIT 30

47 Consensus Why 3 phases? 1. PRE-PREPARE Agree on (the order of) requests within the same view 2. PREPARE 3. COMMIT Ensure that requests which execute are totally ordered across different views + Garbage collection 30

48 Practical BFT Reasonable overhead 3% Does not assume synchrony Some clever optimizations: PBFT NFS MD5 replaces digital signatures Message digests Read-only requests, tentative execution 31

49 Further reading Castro, M., & Liskov, B. (1999). Practical Byzantine fault tolerance. OSDI, (February), Available at: Castro, M. (2011). Practical Consensus. Microsoft Research Cambridge. Available at: 32

Practical Byzantine Fault

Practical Byzantine Fault Practical Byzantine Fault Tolerance Practical Byzantine Fault Tolerance Castro and Liskov, OSDI 1999 Nathan Baker, presenting on 23 September 2005 What is a Byzantine fault? Rationale for Byzantine Fault

More information

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov

Practical Byzantine Fault Tolerance. Miguel Castro and Barbara Liskov Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov Outline 1. Introduction to Byzantine Fault Tolerance Problem 2. PBFT Algorithm a. Models and overview b. Three-phase protocol c. View-change

More information

Tolerating Latency in Replicated State Machines through Client Speculation

Tolerating Latency in Replicated State Machines through Client Speculation Tolerating Latency in Replicated State Machines through Client Speculation April 22, 2009 1, James Cowling 2, Edmund B. Nightingale 3, Peter M. Chen 1, Jason Flinn 1, Barbara Liskov 2 University of Michigan

More information

Practical Byzantine Fault Tolerance (The Byzantine Generals Problem)

Practical Byzantine Fault Tolerance (The Byzantine Generals Problem) Practical Byzantine Fault Tolerance (The Byzantine Generals Problem) Introduction Malicious attacks and software errors that can cause arbitrary behaviors of faulty nodes are increasingly common Previous

More information

Reducing the Costs of Large-Scale BFT Replication

Reducing the Costs of Large-Scale BFT Replication Reducing the Costs of Large-Scale BFT Replication Marco Serafini & Neeraj Suri TU Darmstadt, Germany Neeraj Suri EU-NSF ICT March 2006 Dependable Embedded Systems & SW Group www.deeds.informatik.tu-darmstadt.de

More information

Byzantine Techniques

Byzantine Techniques November 29, 2005 Reliability and Failure There can be no unity without agreement, and there can be no agreement without conciliation René Maowad Reliability and Failure There can be no unity without agreement,

More information

Robust BFT Protocols

Robust BFT Protocols Robust BFT Protocols Sonia Ben Mokhtar, LIRIS, CNRS, Lyon Joint work with Pierre Louis Aublin, Grenoble university Vivien Quéma, Grenoble INP 18/10/2013 Who am I? CNRS reseacher, LIRIS lab, DRIM research

More information

Practical Byzantine Fault Tolerance. Castro and Liskov SOSP 99

Practical Byzantine Fault Tolerance. Castro and Liskov SOSP 99 Practical Byzantine Fault Tolerance Castro and Liskov SOSP 99 Why this paper? Kind of incredible that it s even possible Let alone a practical NFS implementation with it So far we ve only considered fail-stop

More information

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Practical Byzantine Consensus CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Scenario Asynchronous system Signed messages s are state machines It has to be practical CS 138

More information

PBFT: A Byzantine Renaissance. The Setup. What could possibly go wrong? The General Idea. Practical Byzantine Fault-Tolerance (CL99, CL00)

PBFT: A Byzantine Renaissance. The Setup. What could possibly go wrong? The General Idea. Practical Byzantine Fault-Tolerance (CL99, CL00) PBFT: A Byzantine Renaissance Practical Byzantine Fault-Tolerance (CL99, CL00) first to be safe in asynchronous systems live under weak synchrony assumptions -Byzantine Paxos! The Setup Crypto System Model

More information

Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application Hao Xu Muyun Chen Xin Li

Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application Hao Xu Muyun Chen Xin Li Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application Hao Xu Muyun Chen Xin Li Abstract Along with cryptocurrencies become a great success known to the world, how to

More information

Byzantine fault tolerance. Jinyang Li With PBFT slides from Liskov

Byzantine fault tolerance. Jinyang Li With PBFT slides from Liskov Byzantine fault tolerance Jinyang Li With PBFT slides from Liskov What we ve learnt so far: tolerate fail-stop failures Traditional RSM tolerates benign failures Node crashes Network partitions A RSM w/

More information

Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography

Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography Appears as Technical Memo MIT/LCS/TM-589, MIT Laboratory for Computer Science, June 999 Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography Miguel Castro and Barbara Liskov Laboratory

More information

Zyzzyva. Speculative Byzantine Fault Tolerance. Ramakrishna Kotla. L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin

Zyzzyva. Speculative Byzantine Fault Tolerance. Ramakrishna Kotla. L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin Zyzzyva Speculative Byzantine Fault Tolerance Ramakrishna Kotla L. Alvisi, M. Dahlin, A. Clement, E. Wong University of Texas at Austin The Goal Transform high-performance service into high-performance

More information

EECS 591 DISTRIBUTED SYSTEMS. Manos Kapritsos Fall 2018

EECS 591 DISTRIBUTED SYSTEMS. Manos Kapritsos Fall 2018 EECS 591 DISTRIBUTED SYSTEMS Manos Kapritsos Fall 2018 THE GENERAL IDEA Replicas A Primary A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PBFT: NORMAL OPERATION Three phases: Pre-prepare Prepare Commit assigns sequence

More information

Practical Byzantine Fault Tolerance Using Fewer than 3f+1 Active Replicas

Practical Byzantine Fault Tolerance Using Fewer than 3f+1 Active Replicas Proceedings of the 17th International Conference on Parallel and Distributed Computing Systems San Francisco, California, pp 241-247, September 24 Practical Byzantine Fault Tolerance Using Fewer than 3f+1

More information

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance Appears in the Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999 Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov Laboratory

More information

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance Practical Byzantine Fault Tolerance Robert Grimm New York University (Partially based on notes by Eric Brewer and David Mazières) The Three Questions What is the problem? What is new or different? What

More information

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Appears as Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999 A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Miguel Castro and Barbara Liskov

More information

A definition. Byzantine Generals Problem. Synchronous, Byzantine world

A definition. Byzantine Generals Problem. Synchronous, Byzantine world The Byzantine Generals Problem Leslie Lamport, Robert Shostak, and Marshall Pease ACM TOPLAS 1982 Practical Byzantine Fault Tolerance Miguel Castro and Barbara Liskov OSDI 1999 A definition Byzantine (www.m-w.com):

More information

Proactive Recovery in a Byzantine-Fault-Tolerant System

Proactive Recovery in a Byzantine-Fault-Tolerant System Proactive Recovery in a Byzantine-Fault-Tolerant System Miguel Castro and Barbara Liskov Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139

More information

Byzantine Fault Tolerance

Byzantine Fault Tolerance Byzantine Fault Tolerance CS6450: Distributed Systems Lecture 10 Ryan Stutsman Material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton University.

More information

or? Paxos: Fun Facts Quorum Quorum: Primary Copy vs. Majority Quorum: Primary Copy vs. Majority

or? Paxos: Fun Facts Quorum Quorum: Primary Copy vs. Majority Quorum: Primary Copy vs. Majority Paxos: Fun Facts Quorum Why is the algorithm called Paxos? Leslie Lamport described the algorithm as the solution to a problem of the parliament on a fictitious Greek island called Paxos Many readers were

More information

Viewstamped Replication to Practical Byzantine Fault Tolerance. Pradipta De

Viewstamped Replication to Practical Byzantine Fault Tolerance. Pradipta De Viewstamped Replication to Practical Byzantine Fault Tolerance Pradipta De pradipta.de@sunykorea.ac.kr ViewStamped Replication: Basics What does VR solve? VR supports replicated service Abstraction is

More information

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski Distributed Systems 09. State Machine Replication & Virtual Synchrony Paul Krzyzanowski Rutgers University Fall 2016 1 State machine replication 2 State machine replication We want high scalability and

More information

Byzantine Fault Tolerance

Byzantine Fault Tolerance Byzantine Fault Tolerance CS 240: Computing Systems and Concurrency Lecture 11 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. So far: Fail-stop failures

More information

Distributed Systems 11. Consensus. Paul Krzyzanowski

Distributed Systems 11. Consensus. Paul Krzyzanowski Distributed Systems 11. Consensus Paul Krzyzanowski pxk@cs.rutgers.edu 1 Consensus Goal Allow a group of processes to agree on a result All processes must agree on the same value The value must be one

More information

Failure models. Byzantine Fault Tolerance. What can go wrong? Paxos is fail-stop tolerant. BFT model. BFT replication 5/25/18

Failure models. Byzantine Fault Tolerance. What can go wrong? Paxos is fail-stop tolerant. BFT model. BFT replication 5/25/18 Failure models Byzantine Fault Tolerance Fail-stop: nodes either execute the protocol correctly or just stop Byzantine failures: nodes can behave in any arbitrary way Send illegal messages, try to trick

More information

Byzantine Fault Tolerant Raft

Byzantine Fault Tolerant Raft Abstract Byzantine Fault Tolerant Raft Dennis Wang, Nina Tai, Yicheng An {dwang22, ninatai, yicheng} @stanford.edu https://github.com/g60726/zatt For this project, we modified the original Raft design

More information

Key-value store with eventual consistency without trusting individual nodes

Key-value store with eventual consistency without trusting individual nodes basementdb Key-value store with eventual consistency without trusting individual nodes https://github.com/spferical/basementdb 1. Abstract basementdb is an eventually-consistent key-value store, composed

More information

Basic vs. Reliable Multicast

Basic vs. Reliable Multicast Basic vs. Reliable Multicast Basic multicast does not consider process crashes. Reliable multicast does. So far, we considered the basic versions of ordered multicasts. What about the reliable versions?

More information

Today: Fault Tolerance

Today: Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Practical Byzantine Fault Tolerance and Proactive Recovery

Practical Byzantine Fault Tolerance and Proactive Recovery Practical Byzantine Fault Tolerance and Proactive Recovery MIGUEL CASTRO Microsoft Research and BARBARA LISKOV MIT Laboratory for Computer Science Our growing reliance on online services accessible on

More information

Today: Fault Tolerance. Fault Tolerance

Today: Fault Tolerance. Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Distributed Systems. replication Johan Montelius ID2201. Distributed Systems ID2201

Distributed Systems. replication Johan Montelius ID2201. Distributed Systems ID2201 Distributed Systems ID2201 replication Johan Montelius 1 The problem The problem we have: servers might be unavailable The solution: keep duplicates at different servers 2 Building a fault-tolerant service

More information

Replication. Feb 10, 2016 CPSC 416

Replication. Feb 10, 2016 CPSC 416 Replication Feb 10, 2016 CPSC 416 How d we get here? Failures & single systems; fault tolerance techniques added redundancy (ECC memory, RAID, etc.) Conceptually, ECC & RAID both put a master in front

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance 1 Fault Tolerance Basic Concepts Being fault tolerant is strongly related to

More information

Distributed Systems Fault Tolerance

Distributed Systems Fault Tolerance Distributed Systems Fault Tolerance [] Fault Tolerance. Basic concepts - terminology. Process resilience groups and failure masking 3. Reliable communication reliable client-server communication reliable

More information

Fault Tolerance. Distributed Systems. September 2002

Fault Tolerance. Distributed Systems. September 2002 Fault Tolerance Distributed Systems September 2002 Basics A component provides services to clients. To provide services, the component may require the services from other components a component may depend

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance Fault Tolerance Basic Concepts Being fault tolerant is strongly related to what

More information

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems Fault Tolerance Fault cause of an error that might lead to failure; could be transient, intermittent, or permanent Fault tolerance a system can provide its services even in the presence of faults Requirements

More information

Recovering from a Crash. Three-Phase Commit

Recovering from a Crash. Three-Phase Commit Recovering from a Crash If INIT : abort locally and inform coordinator If Ready, contact another process Q and examine Q s state Lecture 18, page 23 Three-Phase Commit Two phase commit: problem if coordinator

More information

arxiv: v2 [cs.dc] 12 Sep 2017

arxiv: v2 [cs.dc] 12 Sep 2017 Efficient Synchronous Byzantine Consensus Ittai Abraham 1, Srinivas Devadas 2, Danny Dolev 3, Kartik Nayak 4, and Ling Ren 2 arxiv:1704.02397v2 [cs.dc] 12 Sep 2017 1 VMware Research iabraham@vmware.com

More information

Byzantine Fault Tolerance Can Be Fast

Byzantine Fault Tolerance Can Be Fast Byzantine Fault Tolerance Can Be Fast Miguel Castro Microsoft Research Ltd. 1 Guildhall St., Cambridge CB2 3NH, UK mcastro@microsoft.com Barbara Liskov MIT Laboratory for Computer Science 545 Technology

More information

Authenticated Agreement

Authenticated Agreement Chapter 18 Authenticated Agreement Byzantine nodes are able to lie about their inputs as well as received messages. Can we detect certain lies and limit the power of byzantine nodes? Possibly, the authenticity

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Fault Tolerance Jia Rao http://ranger.uta.edu/~jrao/ 1 Failure in Distributed Systems Partial failure Happens when one component of a distributed system fails Often leaves

More information

CSE 5306 Distributed Systems. Fault Tolerance

CSE 5306 Distributed Systems. Fault Tolerance CSE 5306 Distributed Systems Fault Tolerance 1 Failure in Distributed Systems Partial failure happens when one component of a distributed system fails often leaves other components unaffected A failure

More information

Proactive Recovery in a Byzantine-Fault-Tolerant System

Proactive Recovery in a Byzantine-Fault-Tolerant System Proactive Recovery in a Byzantine-Fault-Tolerant System Miguel Castro and Barbara Liskov Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139

More information

arxiv:cs/ v3 [cs.dc] 1 Aug 2007

arxiv:cs/ v3 [cs.dc] 1 Aug 2007 A Byzantine Fault Tolerant Distributed Commit Protocol arxiv:cs/0612083v3 [cs.dc] 1 Aug 2007 Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University, 2121 Euclid Ave,

More information

ABSTRACT. Web Service Atomic Transaction (WS-AT) is a standard used to implement distributed

ABSTRACT. Web Service Atomic Transaction (WS-AT) is a standard used to implement distributed ABSTRACT Web Service Atomic Transaction (WS-AT) is a standard used to implement distributed processing over the internet. Trustworthy coordination of transactions is essential to ensure proper running

More information

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance Practical Byzantine Fault Tolerance Miguel Castro January 31, 2001 c Massachusetts Institute of Technology 2001 This research was supported in part by DARPA under contract DABT63-95-C-005, monitored by

More information

A SECURE DOMAIN NAME SYSTEM BASED ON INTRUSION TOLERANCE

A SECURE DOMAIN NAME SYSTEM BASED ON INTRUSION TOLERANCE Proceedings of the Seventh International Conference on Learning and Cybernetics, Kunming, 12-15 July 2008 A SECURE DOMAIN NAME SYSTEM BASED ON INTRUSION TOLERANCE WEI ZHOU 1, 2, LIU CHEN 3, 4 1 School

More information

Distributed Systems (ICE 601) Fault Tolerance

Distributed Systems (ICE 601) Fault Tolerance Distributed Systems (ICE 601) Fault Tolerance Dongman Lee ICU Introduction Failure Model Fault Tolerance Models state machine primary-backup Class Overview Introduction Dependability availability reliability

More information

Towards Recoverable Hybrid Byzantine Consensus

Towards Recoverable Hybrid Byzantine Consensus Towards Recoverable Hybrid Byzantine Consensus Hans P. Reiser 1, Rüdiger Kapitza 2 1 University of Lisboa, Portugal 2 University of Erlangen-Nürnberg, Germany September 22, 2009 Overview 1 Background Why?

More information

AS distributed systems develop and grow in size,

AS distributed systems develop and grow in size, 1 hbft: Speculative Byzantine Fault Tolerance With Minimum Cost Sisi Duan, Sean Peisert, Senior Member, IEEE, and Karl N. Levitt Abstract We present hbft, a hybrid, Byzantine fault-tolerant, ted state

More information

Today: Fault Tolerance. Failure Masking by Redundancy

Today: Fault Tolerance. Failure Masking by Redundancy Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery Checkpointing

More information

Security (and finale) Dan Ports, CSEP 552

Security (and finale) Dan Ports, CSEP 552 Security (and finale) Dan Ports, CSEP 552 Today Security: what if parts of your distributed system are malicious? BFT: state machine replication Bitcoin: peer-to-peer currency Course wrap-up Security Too

More information

Tolerating latency in replicated state machines through client speculation

Tolerating latency in replicated state machines through client speculation Tolerating latency in replicated state machines through client speculation Benjamin Wester Peter M. Chen University of Michigan James Cowling Jason Flinn MIT CSAIL Edmund B. Nightingale Barbara Liskov

More information

Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq

Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq Vincent Rahli, Ivana Vukotic, Marcus Völp, Paulo Esteves-Verissimo SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg firstname.lastname@uni.lu

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

Lecture 10: Clocks and Time

Lecture 10: Clocks and Time 06-06798 Distributed Systems Lecture 10: Clocks and Time Distributed Systems 1 Time service Overview requirements and problems sources of time Clock synchronisation algorithms clock skew & drift Cristian

More information

Fault Tolerance Part I. CS403/534 Distributed Systems Erkay Savas Sabanci University

Fault Tolerance Part I. CS403/534 Distributed Systems Erkay Savas Sabanci University Fault Tolerance Part I CS403/534 Distributed Systems Erkay Savas Sabanci University 1 Overview Basic concepts Process resilience Reliable client-server communication Reliable group communication Distributed

More information

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ)

Data Consistency and Blockchain. Bei Chun Zhou (BlockChainZ) Data Consistency and Blockchain Bei Chun Zhou (BlockChainZ) beichunz@cn.ibm.com 1 Data Consistency Point-in-time consistency Transaction consistency Application consistency 2 Strong Consistency ACID Atomicity.

More information

Two New Protocols for Fault Tolerant Agreement

Two New Protocols for Fault Tolerant Agreement Two New Protocols for Fault Tolerant Agreement Poonam Saini 1 and Awadhesh Kumar Singh 2, 1,2 Department of Computer Engineering, National Institute of Technology, Kurukshetra, India nit.sainipoonam@gmail.com,

More information

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Fault Tolerance Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Basic Concepts Process Resilience Reliable

More information

Consensus and related problems

Consensus and related problems Consensus and related problems Today l Consensus l Google s Chubby l Paxos for Chubby Consensus and failures How to make process agree on a value after one or more have proposed what the value should be?

More information

ZZ: Cheap Practical BFT using Virtualization

ZZ: Cheap Practical BFT using Virtualization University of Massachusetts, Technical Report TR14-08 1 ZZ: Cheap Practical BFT using Virtualization Timothy Wood, Rahul Singh, Arun Venkataramani, and Prashant Shenoy Department of Computer Science, University

More information

Distributed Algorithms Practical Byzantine Fault Tolerance

Distributed Algorithms Practical Byzantine Fault Tolerance Distributed Algorithms Practical Byzantine Fault Tolerance Alberto Montresor Università di Trento 2018/12/06 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

More information

Zyzzyva: Speculative Byzantine Fault Tolerance

Zyzzyva: Speculative Byzantine Fault Tolerance : Speculative Byzantine Fault Tolerance Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong Dept. of Computer Sciences University of Texas at Austin {kotla,lorenzo,dahlin,aclement,elwong}@cs.utexas.edu

More information

CS5412: CONSENSUS AND THE FLP IMPOSSIBILITY RESULT

CS5412: CONSENSUS AND THE FLP IMPOSSIBILITY RESULT 1 CS5412: CONSENSUS AND THE FLP IMPOSSIBILITY RESULT Lecture XII Ken Birman Generalizing Ron and Hermione s challenge 2 Recall from last time: Ron and Hermione had difficulty agreeing where to meet for

More information

Fault Tolerance. Distributed Software Systems. Definitions

Fault Tolerance. Distributed Software Systems. Definitions Fault Tolerance Distributed Software Systems Definitions Availability: probability the system operates correctly at any given moment Reliability: ability to run correctly for a long interval of time Safety:

More information

Byzantine Fault Tolerance for Distributed Systems

Byzantine Fault Tolerance for Distributed Systems Cleveland State University EngagedScholarship@CSU ETD Archive 2014 Byzantine Fault Tolerance for Distributed Systems Honglei Zhang Cleveland State University How does access to this work benefit you? Let

More information

Prophecy: Using History for High Throughput Fault Tolerance

Prophecy: Using History for High Throughput Fault Tolerance Prophecy: Using History for High Throughput Fault Tolerance Siddhartha Sen Joint work with Wyatt Lloyd and Mike Freedman Princeton University Non crash failures happen Non crash failures happen Model as

More information

Trustworthy Coordination of Web Services Atomic Transactions

Trustworthy Coordination of Web Services Atomic Transactions 1 Trustworthy Coordination of Web s Atomic Transactions Honglei Zhang, Hua Chai, Wenbing Zhao, Member, IEEE, P. M. Melliar-Smith, Member, IEEE, L. E. Moser, Member, IEEE Abstract The Web Atomic Transactions

More information

Resource-efficient Byzantine Fault Tolerance. Tobias Distler, Christian Cachin, and Rüdiger Kapitza

Resource-efficient Byzantine Fault Tolerance. Tobias Distler, Christian Cachin, and Rüdiger Kapitza 1 Resource-efficient Byzantine Fault Tolerance Tobias Distler, Christian Cachin, and Rüdiger Kapitza Abstract One of the main reasons why Byzantine fault-tolerant (BFT) systems are currently not widely

More information

Fault Tolerance. Basic Concepts

Fault Tolerance. Basic Concepts COP 6611 Advanced Operating System Fault Tolerance Chi Zhang czhang@cs.fiu.edu Dependability Includes Availability Run time / total time Basic Concepts Reliability The length of uninterrupted run time

More information

Semi-Passive Replication in the Presence of Byzantine Faults

Semi-Passive Replication in the Presence of Byzantine Faults Semi-Passive Replication in the Presence of Byzantine Faults HariGovind V. Ramasamy Adnan Agbaria William H. Sanders University of Illinois at Urbana-Champaign 1308 W. Main Street, Urbana IL 61801, USA

More information

Proactive and Reactive View Change for Fault Tolerant Byzantine Agreement

Proactive and Reactive View Change for Fault Tolerant Byzantine Agreement Journal of Computer Science 7 (1): 101-107, 2011 ISSN 1549-3636 2011 Science Publications Proactive and Reactive View Change for Fault Tolerant Byzantine Agreement Poonam Saini and Awadhesh Kumar Singh

More information

Today: Fault Tolerance. Replica Management

Today: Fault Tolerance. Replica Management Today: Fault Tolerance Failure models Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery

More information

The Long March of BFT. Weird Things Happen in Distributed Systems. A specter is haunting the system s community... A hierarchy of failure models

The Long March of BFT. Weird Things Happen in Distributed Systems. A specter is haunting the system s community... A hierarchy of failure models A specter is haunting the system s community... The Long March of BFT Lorenzo Alvisi UT Austin BFT Fail-stop A hierarchy of failure models Crash Weird Things Happen in Distributed Systems Send Omission

More information

Automatic Reconfiguration for Large-Scale Reliable Storage Systems

Automatic Reconfiguration for Large-Scale Reliable Storage Systems Automatic Reconfiguration for Large-Scale Reliable Storage Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Adapting Byzantine Fault Tolerant Systems

Adapting Byzantine Fault Tolerant Systems Adapting Byzantine Fault Tolerant Systems Miguel Neves Pasadinhas miguel.pasadinhas@tecnico.ulisboa.pt Instituto Superior Técnico (Advisor: Professor Luís Rodrigues) Abstract. Malicious attacks, software

More information

GFS: The Google File System

GFS: The Google File System GFS: The Google File System Brad Karp UCL Computer Science CS GZ03 / M030 24 th October 2014 Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one

More information

Lecture 12: Time Distributed Systems

Lecture 12: Time Distributed Systems Lecture 12: Time Distributed Systems Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 12 1 Overview Time service requirements and problems sources of time Clock synchronisation

More information

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita Proseminar Distributed Systems Summer Semester 2016 Paxos algorithm stefan.resmerita@cs.uni-salzburg.at The Paxos algorithm Family of protocols for reaching consensus among distributed agents Agents may

More information

Primary-Backup Replication

Primary-Backup Replication Primary-Backup Replication CS 240: Computing Systems and Concurrency Lecture 7 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. Simplified Fault Tolerance

More information

BYZANTINE FAULT TOLERANT SOFTWARE- DEFINED NETWORKING (SDN) CONTROLLERS

BYZANTINE FAULT TOLERANT SOFTWARE- DEFINED NETWORKING (SDN) CONTROLLERS BYZANTINE FAULT TOLERANT SOFTWARE- DEFINED NETWORKING (SDN) CONTROLLERS KARIM ELDEFRAWY* AND TYLER KACZMAREK** * INFORMATION AND SYSTEMS SCIENCES LAB (ISSL), HRL LABORATORIES ** UNIVERSITY OF CALIFORNIA

More information

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf Distributed systems Lecture 6: distributed transactions, elections, consensus and replication Malte Schwarzkopf Last time Saw how we can build ordered multicast Messages between processes in a group Need

More information

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 19. Fault Tolerance Paul Krzyzanowski Rutgers University Fall 2013 November 27, 2013 2013 Paul Krzyzanowski 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware

More information

Evaluating BFT Protocols for Spire

Evaluating BFT Protocols for Spire Evaluating BFT Protocols for Spire Henry Schuh & Sam Beckley 600.667 Advanced Distributed Systems & Networks SCADA & Spire Overview High-Performance, Scalable Spire Trusted Platform Module Known Network

More information

Fault Tolerance. Distributed Systems IT332

Fault Tolerance. Distributed Systems IT332 Fault Tolerance Distributed Systems IT332 2 Outline Introduction to fault tolerance Reliable Client Server Communication Distributed commit Failure recovery 3 Failures, Due to What? A system is said to

More information

Distributed Algorithms Practical Byzantine Fault Tolerance

Distributed Algorithms Practical Byzantine Fault Tolerance Distributed Algorithms Practical Byzantine Fault Tolerance Alberto Montresor University of Trento, Italy 2017/01/06 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions

Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions Byzantine Fault Tolerant Coordination for Web s Atomic Transactions Wenbing Zhao Department of Electrical and Computer Engineering Cleveland State University, Cleveland, OH 44115 wenbing@ieee.org Abstract.

More information

Distributed Systems Principles and Paradigms. Chapter 08: Fault Tolerance

Distributed Systems Principles and Paradigms. Chapter 08: Fault Tolerance Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Fault Tolerance Version: December 2, 2010 2 / 65 Contents Chapter

More information

CS 425 / ECE 428 Distributed Systems Fall 2017

CS 425 / ECE 428 Distributed Systems Fall 2017 CS 425 / ECE 428 Distributed Systems Fall 2017 Indranil Gupta (Indy) Nov 7, 2017 Lecture 21: Replication Control All slides IG Server-side Focus Concurrency Control = how to coordinate multiple concurrent

More information

Distributed Systems 24. Fault Tolerance

Distributed Systems 24. Fault Tolerance Distributed Systems 24. Fault Tolerance Paul Krzyzanowski pxk@cs.rutgers.edu 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware failure Software bugs Operator errors Network

More information

How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems

How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems How to Tolerate Half Less One Byzantine Nodes in Practical Distributed Systems Miguel Correia, Nuno Ferreira Neves, Paulo Veríssimo DI FCUL TR 04 6 July 2004 Departamento de Informática Faculdade de Ciências

More information

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5.

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5. Question 1 What makes a message unstable? How does an unstable message become stable? Distributed Systems 2016 Exam 2 Review Paul Krzyzanowski Rutgers University Fall 2016 In virtual sychrony, a message

More information

Parsimonious Asynchronous Byzantine-Fault-Tolerant Atomic Broadcast

Parsimonious Asynchronous Byzantine-Fault-Tolerant Atomic Broadcast Parsimonious Asynchronous Byzantine-Fault-Tolerant Atomic Broadcast HariGovind V. Ramasamy Christian Cachin August 19, 2005 Abstract Atomic broadcast is a communication primitive that allows a group of

More information

GFS: The Google File System. Dr. Yingwu Zhu

GFS: The Google File System. Dr. Yingwu Zhu GFS: The Google File System Dr. Yingwu Zhu Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one big CPU More storage, CPU required than one PC can

More information