A Representation of Human Visual Acuity on an Immersive Projection Display

Size: px
Start display at page:

Download "A Representation of Human Visual Acuity on an Immersive Projection Display"

Transcription

1 A Representation of Human Visual Acuity on an Immersive Projection Display Yukihiro Ishibashi and Mitsunori Makino Graduate School of Science and Engineering, Chuo University, Japan Abstract This paper proposes a representation method of a scene influenced by weak or different human vision on an immersive projection display (IPD) such as the CAVE. Recently reduced visual acuity has been social problem, especially for children, in Japan. Myopia, short sight, is major case among causes for the reduced visual acuity. Since both of early detection and treatment are important for visual restoration, educational activities are necessary. Among the activities, hands-on experience is effective especially for children, since the experience shows how unclearly they can see a scene in the case of weak and/or different vision. Furthermore, it is much effective that they can see any scene from any viewpoint. Therefore in this paper, we propose a visualization method of a scene on IPD, in which human visual acuity is considered. Displaying the images on IPD supported by the CAVElib, the method shows the user stereoscopic blurred target objects far from focal points of the eyes, while it shows clear objects near the points. As a result, the proposed method is useful for children as an educational hands-on tool of human vision. 1 Introduction Recently reduced visual acuity has been social problem, especially for children, in Japan. Myopia, short sight, is a major case among causes for the reduced visual acuity. Although both of early detection and treatment are important for visual restoration, symptom of myopia is easily overlooked. Therefore, educational activities are necessary for children. Among the activities, hands-on experience is effective especially for children. Through experiencing scene which they have not experienced before, children are encouraged understanding and consciousness[1]. However, they cannot experience three dimensional sense, as well as they cannot interactively change their viewpoints and experience the influence with several visual acuities on textbooks and/or video. Also textbooks and/or video are not rendered case of different visual acuity on each eye. CAVE is known as a typical immersive projection display (IPG) system. CAVE needs two images for each eye to make a three dimensional image. Since CAVE can render different visual acuity in three dimension, CAVE is expected to be useful to educational tool for myopia. In this paper, we aim to educational support for show children a scene influenced scene by visual acuity for children. Therefore we propose a visualization method of a scene on IPD, in which human visual acuity is considered. 2 Visual Feature 2.1 Structure of Human s eye and Myopia According to Ref.[2], human s augen is a sphere with 24-25mm diameter. Cornea, iris and crystal lens are located anterior to the augen, while retina is located posterior to it (see Fig.1). Figure 1: Human eye cross-sectional view[3] Under health vision, the cornea and the lens focus incident light on the retina (see Fig.2). However, they happen to focus the light in front of the retina, when a far obfect is unclearly seen (see Fig.3). Such situation is defined as myopia, which is caused by a certain abnormal situation on the cornea, the lens and/or size of augen. Wearing glasses is effective as

2 its symptomatic treatment, as well as surgery of the retina or the lens is direct remediation. However, both of preservation and early detection of the myopia are the first priority for keeping healthy vision. Figure 4: Landolt ring(for 5m, visual acuity 1.0) Figure 2: Emmetropia condition[4] Figure 3: Myopia condition[4] 2.2 Landolt Ring for Static Vision Visual acuity is called as static vision, when both of eyes and a target object stand still. The Landolt ring, C-shaped black ring shown in Fig.4, is wellknown figure by which we can measure the static vision. By using different size of the rings, we determine the smallest size of the ring on which we can detect white missing area. From relationship between the size and distance from viewpoint, the smallest field of view under which we can distinguish two points. For example, suppose that the smallest ring is 7.5mm of diameter, 1.5mm of wire size, and 1.5mm of missing width, and that the white missing area can be detected 5m awayfrom the ring. Then, the field of view is 1 second (one-sixty degree). Therefore, the visual acuity becomes 1.0 since the acuity is defined as inverse number of the field of view (1 second)[5]. Under healthy vision the visual acuity becomes [6]. However, the visual acuity usually under the myopia decreases less than one under the healthy vision, since the incorrect focus causes hard detection of missing area. 3 Proposal Method 3.1 Requirement and Overview In order to construct a representation of myopic situation as an educational tool, the representation has to give us views according to light simulation from an object to retina through cornea and crystal lens. Also the views should be changed when the given visual acuity or allocation of the object is different. For example, the representation generates an unclear image of a far object for the given visual acuity, while the representation generates a clear image of a near object. Furthermore, the representation should handle difference of visual acuity for both eyes, since such situation often happens on myopic person. Therefore the representation requires a stereoscopic display system such as the CAVE, which gives us two views from both eyes simultaneously. In this section, we construct a representation of myopia on the CAVE with the CAVELib, a graphic library for the CAVE. At first, we define visual acuity for each eye. Then, we determine refraction index for each eye by calculating a focal point inside an augen from the given visual acuity. By using the index, we represent spread of blur (unclear view) for an object according to distance between the object and retina. 3.2 Calculation of Refraction Index Here let diameter of an augen be 24mm. Also let semimajor axis and semiminor axis of crystal lens be 5mm and 2mm, respectively (see Fig.5). According to the definition of the visual acuity 1.0 described in Sect.2.2, we define d max [m] as the longest length between an object and retina, under which human having visual acuity s can discriminate 1.5mm white area on the Landolt ring (see Fig.6). d max is calculated as the following formula: d max = tan 1 s (1)

3 Figure 7: Light refraction and shorter focal length under myopia Figure 5: Augen Model Figure 6: Relationship between visual acuity s and length d max Suppose that an object is located d[m] away from retina. Under myopia, unclear view is given if d d max since focal length f is shorter than distance f 0 between the crystal lens and the retina. Othermise clear view is given so that f is equal to f 0. Let ε[m] be d d max. Considering the myopic situation for the augen model defined above, we define f[m] as follows: n = sin ϕ sin θ 3.3 Determination of Affected Area (4) For easy explanation, suppose that x-y plane where center of an eye is set to its origin point and representative point (center) of an object is set to P c (p x, 0) (see Fig.8). Then, refraction index n is calculated with the given visual acuity and P c by Eq.(4) in 3.2. By using n, we determine position Q(q x, q y ) where a light ray from P c intersects retina after refraction at the upper edge of the crystal lens (see the first path in Fig.8). Moreover, we determine position P b (p x, p y ) from where a light ray intersects Q on retina after refraction at the lower edge of the lens (see the second path in Fig.8). It is noted that a human with the given visual acuity cannot discriminate P c from p y -neighbor points such as P b, since light rays from the area overlap the same are on his/her retina. It causes a blurred image of the object represented by P c. In 3D space, a circle on y-z plane, which has center of P b and radius of p y, is regarded as affected area by myopia. f = ( )e ε (2) Here suppose that r is radius of a virtual sphere, which shares a part of surface with the crystal lens in the augen (see Fig.5). Then refraction angle ϕ at edge of the crystal lens is calculated by the following equation (see Fig.7): ϕ = tan 1 (r/5.0) tan 1 (f/5.0) (3) Figure 8: Affected area(s) Considering ϕ derived from Eq.(3) and incident angle θ, we determine refraction index n as follows:

4 3.4 Representation of Myopic View Let I o be a CG image generated by normal method for the given viewpoint and objects without focus. Suppose that each pixel on I o has color data, information on visible object, and distance between the viewpoint and the visible object. We note that I o represents an image on human retina. Also let I b be a CG image generated by the proposed method. I b has only color data and its color on each pixel is black initially. Taking the given visual acuity, we calculate affected length d max by Eq.(1). d max is compared with distance information for any pixel (k, l) on I o. If I o (k, l) represents no object or an object locating nearer than d max, pixel (k, l) is determined not to be affected by myopia. In this case, add color information of I o (k, l) to I b (k, l). Otherwise if I o (k, l) represents an object locating further than d max, pixel (k, l) is determined to be affected by myopia. In the affected case, affected pixel set {(i, j) k α i k + α, l α j l + α} is calculated based on discussion in 3.3. Then, color information of I b (i, j) is updated by the followings: representing objects being further than d max in 3.4. The computation causes difficulty of real-time and precise visualization of myopia situation according to the head-tracking. 4 Simulation and Evaluation 4.1 Simulation We implemented the proposed method on Chuo- CAVE, three-faces IPD with head tracking, and CRTbased IPD with no tracking, which displays stereoscopic view on a CRT under the same principle as the CAVE. For experiment, alphabetical characters are introduced to objects in a virtual scene (see Fig.9) since they are well seen in our real life and used for an eye chart[7], while the Landolt ring can be seen only under vision test. I b [i][j] = I b [i][j] + W (k, l, i, j)i o [k][l] (5) where, W (k, l, i, j) = sum = i,j distance (1.0 radius )2 sum (6) (1.0 distance radius )2 (7) Here distance is defined as distance from (i, j) to (k, l), and radius is radius of the affected area. Applying the above procedures to images from both eyes, we obtain two blurred images affected by myopia based on different visual acuities. Overlapping these images on IPD, we can see virtual world under myopia. 3.5 Features The proposed method can represent stereoscopic CG images affected by myopia according to the given viewpoint and visual acuity as well as the given scene. Therefore the method can help us easily understand influence by myopia. Moreover, tracking head positions periodically with support of the CAVElib, the proposed method can represent the situation under myopia more effectively. However, computation is almost directly proportional to resolution of generated image (i.e., number of pixels) and number of pixels Figure 9: An example of alphabetical characters in a virtual scene We set 9 letters of MAKINOLAB in the scene. Figures show results under different situation. Figure 10 shows a clear image without focus, which is generated by normal CG rendering method. On the image we can see clearly all characters. Figure 11 shows an image from the left eye with 1.0 visual acuity, and Fig.12 shows an image from the right eye with 0.5 visual acuity. Comparing these images, we can see that Fig.12 is affected by myopia more than Fig.11. Especially, it is seen that further object is more affected in Fig.12. The actual system displays both images simultaneously so that we can also understand influence from difference of the acuity very much. Figures 13 and 14 show images from different viewpoint with the same visual acuity, 1.0. From the images far objects is unclearly seen under healthy view of 1.0 acuity. 4.2 Evaluation For evaluation of the proposed system, questionnaire is sent out to 21 students in Chuo University.

5 12 among them have myopia and different visual acuity. After their experience on the CRT-based IPD, they return the questionnaire described as follows: 1. Can you understand difference of each visual acuity? 2. How do you think handleability when you set up visual acuity? 3. How do you think handleability when you translate view point? 4. Can you get depth in situation which objects wash out? 5. Do you expand an understanding of Myopia? They answer each question by grade 1-5. Here grade 1 is the best and 5 is the worst evaluation. Table 1 shows result of answers. Table 1: result of opinionaire ques.1 (ques.1 by 12 with different acuity) ques.1 (ques.1 by 9 with same acuity) ques ques ques ques From the answer of the first question, it is seen that all examinees with different acuity understand the difference of acuity on the proposed system. Also most of examinees with the same acuity grade 1 or 2. Consequently, it is shown that the proposed system provides the difference sufficiently. Considering the answers of the fifth question, too, we can conclude that the proposed system can work well as an educational tool for teaching myopia. However, from the answers of the second and third questions, manipulation feature should be improved in the proposed system. Furthermore we should discuss suitable scene setting, since the result of the forth question shows not so good for depth effect. object in the given scene into account, we generate blurred images from clear image. The proposed system provides two images for both eyes so that the system provides stereoscopic view on IPD. In future paper, the followings should be considered: decrease of computation time improvement of interface improvement of interactivity Acknowledgement The authors would thank to the TISE Collaborative Research Project of Chuo University, KAK- ENHI, the Grantin-Aid for Scientific Research(C) No from the Japan Society for the Promotion of Science (JSPS), and the Telecom Engineering Center. References [1] Internet website of Eye-athletic Research Institute : [2] Tadashi Oyama, Invitation to Visual Psychology and Approach to World of Vainglory, SAIENSU-SHA Co., Ltd, [3] Internet website of National Eye Institute : [4] Internet website of TAUCHI EYE CLINIC : [5] Naoya Sagara, Mitsunori Makino, A Visual Simulation of Motion Blur in Consideration of Optical Flow, Proceedings of the 2001 International Technical Conference on Circuits / Systems, Computers and Comunications(ITC- CSCC2001), Vol.I, pp , [6] Internet website of Sangubashi Eye Clinic : [7] Internet website of NIDEK Inc. : 5 Conclusion This paper proposed a representation method of a scene on IPD, which is influenced by weak or different human vision, in order to teach myopic view as education. Taking visual acuity and distance of each

6 Figure 10: a clear image without focus Figure 11: an image with 1.0 acuity Figure 12: an image with 0.5 acuity Figure 13: an image with 1.0 acuity from near viewpoint Figure 14: an image with 1.0 acuity from far viewpoint

OPTICS: Solutions to higher level questions

OPTICS: Solutions to higher level questions OPTICS: Solutions to higher level questions 2015 Question 12 (b) (i) Complete the path of the light ray through the section of the lens. See diagram: (ii) Draw a ray diagram to show the formation of a

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

SNC 2PI Optics Unit Review /95 Name:

SNC 2PI Optics Unit Review /95 Name: SNC 2PI Optics Unit Review /95 Name: Part 1: True or False Indicate in the space provided if the statement is true (T) or false(f) [15] 1. Light is a form of energy 2. Shadows are proof that light travels

More information

Astronomy Lab Lenses and Telescopes

Astronomy Lab Lenses and Telescopes Astronomy Lab Lenses and Telescopes OBJECTIVES: Recognize a meter, a centimeter, and a millimeter. Correctly measure distances in mm, cm, and m. Describe the appearance of both a converging lens and a

More information

Ray tracing based fast refraction method for an object seen through a cylindrical glass

Ray tracing based fast refraction method for an object seen through a cylindrical glass 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Ray tracing based fast refraction method for an object seen through a cylindrical

More information

Chapter 34. Thin Lenses

Chapter 34. Thin Lenses Chapter 34 Thin Lenses Thin Lenses Mirrors Lenses Optical Instruments MFMcGraw-PHY 2426 Chap34a-Lenses-Revised: 7/13/2013 2 Inversion A right-handed coordinate system becomes a left-handed coordinate system

More information

Name: Chapter 14 Light. Class: Date: 143 minutes. Time: 143 marks. Marks: Comments: Page 1 of 53

Name: Chapter 14 Light. Class: Date: 143 minutes. Time: 143 marks. Marks: Comments: Page 1 of 53 Chapter 4 Light Name: Class: Date: Time: 43 minutes Marks: 43 marks Comments: Page of 53 A person can see an image of himself in a tall plane mirror. The diagram shows how the person can see his hat. (a)

More information

TEAMS National Competition Middle School Version Photometry 25 Questions

TEAMS National Competition Middle School Version Photometry 25 Questions TEAMS National Competition Middle School Version Photometry 25 Questions Page 1 of 13 Telescopes and their Lenses Although telescopes provide us with the extraordinary power to see objects miles away,

More information

Downloaded from UNIT 06 Optics

Downloaded from   UNIT 06 Optics 1 Mark UNIT 06 Optics Q1: A partially plane polarised beam of light is passed through a polaroid. Show graphically the variation of the transmitted light intensity with angle of rotation of the Polaroid.

More information

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions Page 1 of 14 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

TEAMS National Competition High School Version Photometry 25 Questions

TEAMS National Competition High School Version Photometry 25 Questions TEAMS National Competition High School Version Photometry 25 Questions Page 1 of 14 Telescopes and their Lenses Although telescopes provide us with the extraordinary power to see objects miles away, the

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions TEAMS National Competition High School Version Photometry Solution Manual 25 Questions Page 1 of 15 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Instruction sheet 06/18 ALF Laser Optics Demonstration Set Laser Optics Supplement Set Page 1 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

CS 563 Advanced Topics in Computer Graphics Camera Models. by Kevin Kardian

CS 563 Advanced Topics in Computer Graphics Camera Models. by Kevin Kardian CS 563 Advanced Topics in Computer Graphics Camera Models by Kevin Kardian Introduction Pinhole camera is insufficient Everything in perfect focus Less realistic Different camera models are possible Create

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

MR-Mirror: A Complex of Real and Virtual Mirrors

MR-Mirror: A Complex of Real and Virtual Mirrors MR-Mirror: A Complex of Real and Virtual Mirrors Hideaki Sato 1, Itaru Kitahara 1, and Yuichi Ohta 1 1 Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering,

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

Improving visual function diagnostic metrics. Charles Campbell

Improving visual function diagnostic metrics. Charles Campbell Improving visual function diagnostic metrics Charles Campbell Metrics - What are they? What are they used for? A metric assigns a numerical value or a set of values to characterize some chosen phenomenon

More information

Part 1: Plane Mirrors!

Part 1: Plane Mirrors! Algodoo Optics Part 1: Plane Mirrors This activity will model, using Algodoo, the mirror lab experiment from class. With a physical model, students are asked to look into the mirror from two different

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

A 100Hz Real-time Sensing System of Textured Range Images

A 100Hz Real-time Sensing System of Textured Range Images A 100Hz Real-time Sensing System of Textured Range Images Hidetoshi Ishiyama Course of Precision Engineering School of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551,

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

9. RAY OPTICS AND OPTICAL INSTRUMENTS

9. RAY OPTICS AND OPTICAL INSTRUMENTS 9. RAY OPTICS AND OPTICAL INSTRUMENTS 1. Define the terms (a) ray of light & (b) beam of light A ray is defined as the straight line path joining the two points by which light is travelling. A beam is

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Natural Viewing 3D Display

Natural Viewing 3D Display We will introduce a new category of Collaboration Projects, which will highlight DoCoMo s joint research activities with universities and other companies. DoCoMo carries out R&D to build up mobile communication,

More information

DIVISION OF VISION SCIENCES

DIVISION OF VISION SCIENCES DIVISION OF VISION SCIENCES SESSION: 2008/2009 2 ND DIET GEOMETRICAL OPTICS VISP103 LEVEL: 1 MODULE LEADER: DR HARRY ORBACH B.Sc/B.Sc. (HONS) OPTOMETRY AUGUST 2009 DURATION: 2 HOURS CANDIDATES SHOULD ATTEMPT

More information

Lecture 10: Ray tracing

Lecture 10: Ray tracing Interactive Computer Graphics Lecture 10: Ray tracing Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Direct and Global Illumination Direct illumination:

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 (a) Fig. 1.1 shows a ray of light incident on a mirror at X. The incident ray makes an angle of 50 with the surface of the mirror. (i) Complete Fig. 1.1 to show the normal and

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Geometric Optics Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 36! The study of light divides itself into three fields geometric optics wave optics quantum optics! In the previous chapter,

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Measurement of Pedestrian Groups Using Subtraction Stereo

Measurement of Pedestrian Groups Using Subtraction Stereo Measurement of Pedestrian Groups Using Subtraction Stereo Kenji Terabayashi, Yuki Hashimoto, and Kazunori Umeda Chuo University / CREST, JST, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan terabayashi@mech.chuo-u.ac.jp

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Homework #1. Displays, Alpha Compositing, Image Processing, Affine Transformations, Hierarchical Modeling

Homework #1. Displays, Alpha Compositing, Image Processing, Affine Transformations, Hierarchical Modeling Computer Graphics Instructor: Brian Curless CSE 457 Spring 2014 Homework #1 Displays, Alpha Compositing, Image Processing, Affine Transformations, Hierarchical Modeling Assigned: Saturday, April th Due:

More information

History of Light. 5 th Century B.C.

History of Light. 5 th Century B.C. History of Light 5 th Century B.C. Philosophers thought light was made up of streamers emitted by the eye making contact with an object Others thought that light was made of particles that traveled from

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1 Ray tracing Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 3/19/07 1 From last time Hidden surface removal Painter s algorithm Clipping algorithms Area subdivision BSP trees Z-Buffer

More information

Shape Modeling of A String And Recognition Using Distance Sensor

Shape Modeling of A String And Recognition Using Distance Sensor Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication Kobe, Japan, Aug 31 - Sept 4, 2015 Shape Modeling of A String And Recognition Using Distance Sensor Keisuke

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus (RODS+) USER S GUIDE

Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus (RODS+) USER S GUIDE Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus USER S GUIDE 1 NO. OF EXP. Table of contents TITLE OF EXPERIMENT SET TO USE Introduction Tables of the set elements E1 Reflection

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

GEOMETRIC OPTICS MIRRORS

GEOMETRIC OPTICS MIRRORS GEOMETRIC OPTICS Now that we understand the laws of reflection and refraction we can put them to practical use by designing optical instruments. We begin with the law of reflection which tells us that

More information

Geometrical Optics. Name ID TA. Partners. Date Section. Please do not scratch, polish or touch the surface of the mirror.

Geometrical Optics. Name ID TA. Partners. Date Section. Please do not scratch, polish or touch the surface of the mirror. Geometrical Optics Name ID TA Partners Date Section Please do not scratch, polish or touch the surface of the mirror. 1. Application of geometrical optics: 2. Real and virtual images: One easy method to

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

Wave Properties. Page 1 of 13

Wave Properties. Page 1 of 13 Wave Properties Transverse and longitudinal waves Be able to describe the difference between longitudinal and transverse waves including examples of each (e.g. ripples / light for transverse & sound (compression

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University Ray Tracing CS334 Fall 2013 Daniel G. Aliaga Department of Computer Science Purdue University Ray Casting and Ray Tracing Ray Casting Arthur Appel, started around 1968 Ray Tracing Turner Whitted, started

More information

a) Design a thin-lens peephole that covers a total field of 90 and has a total length of 25 mm (it has to fit within the thickness of the door).

a) Design a thin-lens peephole that covers a total field of 90 and has a total length of 25 mm (it has to fit within the thickness of the door). Peephole The goal of this problem is to design a door peephole to view your visitors (you see them, but they don t see you). The eye should be included as part of the design, and for this problem we will

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

PHYS 202 Notes, Week 9

PHYS 202 Notes, Week 9 PHYS 202 Notes, Week 9 Greg Christian March 22 & 24, 206 Last updated: 03/24/206 at 2:23:56 This week we learn about images by mirrors, refraction, and thin lenses. Images Spherical Mirrors First let s

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Aberration Theory. Lens. Optical systems convert the shapes of wavefronts

Aberration Theory. Lens. Optical systems convert the shapes of wavefronts Aberration Theory Lens Optical systems convert the shapes of wavefronts Aberrations A perfectly spherical wave will converge to a point. Any deviation from the ideal spherical shape is said to be an aberration.

More information

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for Chapter Fundamental Optics for DVD Pickups.1 Introduction to basic optics The theory of the geometrical aberration and diffraction limits are introduced for estimating the focused laser beam spot of a

More information

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 10 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when

More information

Figure 1 - Refraction

Figure 1 - Refraction Geometrical optics Introduction Refraction When light crosses the interface between two media having different refractive indices (e.g. between water and air) a light ray will appear to change its direction

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your

More information

This theorem concerned a spherical gradient index in which the refractive density of a medium

This theorem concerned a spherical gradient index in which the refractive density of a medium APPENDIX Theorem 461 This theorem concerned a spherical gradient index in which the refractive density of a medium varied with a given power, q, of the distance, x, from a point, P. Young was more interested

More information

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter Reading: Light Key concepts: Huygens s principle; reflection; refraction; reflectivity; total reflection; Brewster angle; polarization by absorption, reflection and Rayleigh scattering. 1.! Questions about

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb?

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? 1. Match the physical quantities (first column) with the units (second column). 4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? (π=3.) Luminous flux A. candela Radiant

More information

Regents Physics Lab #30R. Due Date. Refraction of Light

Regents Physics Lab #30R. Due Date. Refraction of Light Name Date Regents Physics Lab #0R Period Mrs. Nadworny Research Problem Materials Refraction of Light Due Date When a ray of light passes obliquely (at an angle) from air to glass, it is refracted. The

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

Experiment 9. Law of reflection and refraction of light

Experiment 9. Law of reflection and refraction of light Experiment 9. Law of reflection and refraction of light 1. Purpose Invest light passing through two mediums boundary surface in order to understand reflection and refraction of light 2. Principle As shown

More information

Integration of 3D Stereo Vision Measurements in Industrial Robot Applications

Integration of 3D Stereo Vision Measurements in Industrial Robot Applications Integration of 3D Stereo Vision Measurements in Industrial Robot Applications Frank Cheng and Xiaoting Chen Central Michigan University cheng1fs@cmich.edu Paper 34, ENG 102 Abstract Three dimensional (3D)

More information

Chapter 8 Light in Physics

Chapter 8 Light in Physics Chapter 8 Light in Physics MCQ 1: Our eyes detect light in A. RGB form, Red Blue Green form B. ROYGBIV, rainbow color form C. The simple form of a particular color D. none of these ways MCQ 2: The symbol

More information

El- T O O K H Y, Omar

El- T O O K H Y, Omar Global Veterinary Summit August 31-September 2, 2015 Florida, USA C A I R O U N I V E R S I T Y E G Y P T El- T O O K H Y, Omar 欧玛尔 Points to be Discussed 1 2 3 4 5 6 7 8 Eye vs Schematic eye, models of

More information

PHYSICS 106. Assignment #10 Due by 10 pm Tuesday April 13, DISCUSSION SECTION: [ ] D1 W 9 am [ ] D2 W 10 am [ ] HS W 10 am

PHYSICS 106. Assignment #10 Due by 10 pm Tuesday April 13, DISCUSSION SECTION: [ ] D1 W 9 am [ ] D2 W 10 am [ ] HS W 10 am PHYSICS 106 Assignment #10 Due by 10 pm Tuesday April 13, 010 NAME: DISCUSSION SECTION: [ ] D1 W 9 am [ ] D W 10 am [ ] HS W 10 am [ ] D3 W 11 am [ ] D4 W 1 pm [ ] D5 W 1 pm (Sophie) [ ] D6 W 1 pm (Nima)

More information

Homework #2. Shading, Ray Tracing, and Texture Mapping

Homework #2. Shading, Ray Tracing, and Texture Mapping Computer Graphics Prof. Brian Curless CSE 457 Spring 2000 Homework #2 Shading, Ray Tracing, and Texture Mapping Prepared by: Doug Johnson, Maya Widyasari, and Brian Curless Assigned: Monday, May 8, 2000

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Projection simulator to support design development of spherical immersive display

Projection simulator to support design development of spherical immersive display Projection simulator to support design development of spherical immersive display Wataru Hashimoto, Yasuharu Mizutani, and Satoshi Nishiguchi Faculty of Information Sciences and Technology, Osaka Institute

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Exam Microscopic Measurement Techniques 4T th of April, 2008

Exam Microscopic Measurement Techniques 4T th of April, 2008 Exam Microscopic Measurement Techniques 4T300 29 th of April, 2008 Name / Initials: Ident. #: Education: This exam consists of 5 questions. Questions and sub questions will be rewarded with the amount

More information

Extended Fractional View Integral Photography Using Slanted Orthogonal Lenticular Lenses

Extended Fractional View Integral Photography Using Slanted Orthogonal Lenticular Lenses Proceedings of the 2 nd World Congress on Electrical Engineering and Computer Systems and Science (EECSS'16) Budapest, Hungary August 16 17, 2016 Paper No. MHCI 112 DOI: 10.11159/mhci16.112 Extended Fractional

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality Human Visual Perception The human visual system 2 eyes Optic nerve: 1.5 million fibers per eye (each fiber is the axon from a neuron) 125 million rods (achromatic

More information

Physics Experiment 13

Physics Experiment 13 Fig. 13-1 Equipment This side of the mirror is gray. Place this side on the baseline. You can see your reflection on this side of the mirror. Fig. 13-2 Mirror Placement: The "Plexi-Ray Kit" contains a

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Speed of Light in Glass

Speed of Light in Glass Name Date Regents Physics Lab #R Period Mrs. Nadworny Research Problem Materials Speed of Light in Glass Due Date When a ray of light passes obliquely (at an angle) from air to glass, it is refracted.

More information

Optics of Vision. MATERIAL TO READ Web: 1.

Optics of Vision. MATERIAL TO READ Web: 1. Optics of Vision MATERIAL TO READ Web: 1. www.physics.uoguelph.ca/phys1070/webst.html Text: Chap. 3, pp. 1-39 (NB: pg. 3-37 missing) Chap. 5 pp.1-17 Handbook: 1. study guide 3 2. lab 3 Optics of the eye

More information

PSC20 - Properties of Waves 3

PSC20 - Properties of Waves 3 PSC20 - Properties of Waves 3 The speed of light is in a vacuum. it travels 299 972 458 m/s. (rounded to m/s). Speed of light is given the symbol comes from the word meaning. How far do you think light

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net

Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net On-level Physics Optics This unit will allow each student to: a. gain a better understanding of the behavior and characteristics of light as it is reflected and refracted by s and lenses b. continue making

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2 Optics Homework Assignment #1 Textbook: Read Section 22-3 (Honors only) Textbook: Read Section 23-1 Online: Reflection Lesson 1a: * problems are for all students ** problems are for honors physics 1. *

More information