DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

Size: px
Start display at page:

Download "DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE"

Transcription

1

2 Research Paper ISSN Vol. 3, No. 3, July, IJMERR. All Rights Reserved DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE C P Gaikwad 1 * and S D Kalpande 2 *Corresponding Author: C P Gaikwad chetangaikwad99@gmail.com The objective of this work is to design and analyze the performance of connecting rod, through a simple experimental model of Forming and Cutting Die Station of Vacuum Forming Machine. A connecting rod is a machine member subjected to alternating direct compressive and tensile forces, compressive forces are generally more in connecting rods so it is considered for its prime safety. A parametric mathematical model of connecting rod is modeled using Pro-E Wildfire 4.0 Software and its Static Structural Analysis is carried on Ansys v-11.0 Workbench. FEA of connecting rod is done using C50 as its base material to determine its von-mises stress, Max shear Stress, Total Deformation and Alternating stress to cycles graph. Also the Stiffness of connecting rod is calculated. Keywords: Connecting rod, Vaccum forming, Ansys, FEA, Compressive, Design INTRODUCTION In its simplest form the Vacuum forming process consists essentially of inserting a thermoplastic sheet in a cold state into the forming clamp area, heating it to the desired temperature either with just a surface heater or with twin heaters and then raising a mould from below. The trapped air is evacuated with the assistance of a vacuum system and once cooled a reverse air supply is activated to release the plastic part from the mould. (5) The connecting rod is used in thermoforming machine is to transmit forces and motion from motor through gearbox and crankshaft to bottom plate of the machine to have its motion to carry out its process of forming cum cutting off plastic sheets. EXPERIMENTAL SETUP Forming and Cutting Die Pillar Station Vaccum forming machine is used to form the plastic parts to desired shape. In this Figure1 there is a top and bottom plate within which the forming cum cutting die is placed between the two plates. The Vacuum System is used to form the plastic by means of high vacuum 1 Mechanical Engineering Department, MET Institute of Engineering & Research, Nasik, India. 2 Mechanical Engineering, MET Institute of Engineering & Research, Nasik, India. 103

3 pressure as well as high pressure air from top also for equal distribution of wall thickness of plastic. Before this station there is heating station to preheat the sheet which is to be formed and after heating station this forming cum cutting station is placed.figure:1 show the Experimental setup of forming cum cutting die pillar station. The various parts of the Die pillar stations are as follows: 1) Top plate, 2) Bottom plate, 3) Shaft, 4) Crank, 5) Connecting rod, 6) Bearings, 7) Die Pillars, 8) Gear box and 9) Motor. Out of all these parts we are designing the Connecting rod which is an important part in transmitting motion Table 1: Vacuum Forming Machine Specifications Machine Specifications Die Size Cutting Force No: of cycles Forming Process Heaters capacity Material to be Formed & Cut Thickness Range 1010 mm x 300 mm 50 tons = KN 40 cycles/min Vaccum forming 55 KW PVC,PET,HIPS,ABS mm The I- cross-section of connecting rod is shown Figure 2: Standard Dimensions of I-Section (3) DESIGN OF CONNECTING ROD A connecting rod is a machine member which is subjected to alternating direct compressive and tensile forces. Since the compressive force are much higher than tensile forces. Therefore, the crossection of connecting rod is designed as a strut and Euler s Formula is used. (R S Khurmi and J K Gupta, 2005). Figure 1: Forming & Cutting Die Pillar Station of Vacuum Forming Machine Let, B= Width of I-section, mm. H= Height of I-section, mm. A= Area of I-section, mm 2. k XX = Radius of gyration of section about X-axis. FOS = Factor of Safety. r = Length of Crank, mm. l = Length of connecting rod, mm. W B = Buckling Load, N. A = Area of Section, mm 2. A = 2 (4t x t) = 11 t 2, mm

4 Moment of Inertia about X-X, I X-X = BH 3 12 = 419 t 4 mm 4 12 Moment of Inertia about Y-Y, I Y-Y = HB 3 12 = 131 t 4 12 Connecting rod is considered like both ends hinged for buckling about X-axis and Both ends fixed for buckling about Y-axis Connecting rod should be equally strong in buckling about both axis. In order to have connecting rod equally strong in both axis. It should satisfy the following conditions, I X-X = 4 I Y-Y. In actual practice, I X-X is kept slightly less than 4 I Y-Y. It is usually taken between 3 and 3.5 and connecting rod is designed for buckling about I X-X. I X-X = 3.2 I Y-Y Since the ratio is in between 3 to 3.5, therefore the I-section chosen is quite satisfactory. Basically the force acting is KN on each connecting rod. Generally Factor of safety is taken between 5 and 6. So Selected Factor of Safety is 5. Therefore, Bucking Load = F x FOS = x 5 = KN Radius of gyration of section about X-axis k XX = I X-X /A = 1.78 t. Length of Crank, r = Die opening size /2 = 164 / 2 = 82 mm Length of Connecting rod, l = 500 mm. According to Rankine s Formula W B (about X-axis) = c.a 1 + a ( l/k xx ) x 10 3 = 350 x11 t x 10 3 = 11 t (1/7500) (600/ 1.78 t) 2 t t t = 0 t 2 = ± ((348.36) 2 + (4 x ) 2 t 2 = or (Taking +ve sign) t = 19 mm Thus Dimensions of connecting rod are Thickness of flange and web of section = 19 mm Width of the section, B = 4 t = 76 mm Height of the section, H = 5 t = 95 mm Depth near Big End, H 1 = 1.25 H = 119 mm Depth near the small end, H 2 = 0.9 H = 86 mm Parameters Table 2: Parameters Values Length of connecting rod Outer Dia. of Crank end Inner Dia. of Crank end Outer Dia. of Small end Inner Dia. of Small end Values 600 mm 280 mm 240 mm 150 mm 120 mm 105

5 METHODOLOGY Modeling of Connecting Rod Connecting rod is modeled on Pro-E Wildfire 4.0 software. The Mathematical Model is imported to ansys software is shown in Figure 3. Steps to Model Connecting Rod Open Pro-E Wildfire 4.0 software enter into sketching plane section draw the sketch of Connecting rod with help of various sketching commands and 3D modeling commands in modeling the connecting rod. Once the Mathematical model is prepared and exported to iges format and imported to Ansys v 11.0 software for analysis purpose. Steps Involved in FEA Meshing Basically in Ansys v 11.0 software it automatically selects the type of mesh. In this case Tetrahedral element is selected for its analysis. For analysis the element size selected is 3mm with fine mesh. Figure 4: Meshed Mathematical Model of Connecting Rod Figure 3: Mathematical Model of Connecting Rod Statistics Nodes Elements Properties The material properties given in below table are entered in Engineering Data with name as Structural Steel. Finite Element Analysis In this study, the connecting rod is designed for compressive yield strength.in this study of FEA of connecting rod the allowable compressive yield strength is compared with Ansys Von- Mises stress. Basically the analysis is in Static Structural Analysis module. Table 3: Material Properties Material Properties of C50 Young s Modulus 2.1e+005 MPa Poisson s Ratio 0.3 Density 7.85e-006 kg/mm³ Yield Strength 350 MPa Tensile Ultimate Strength 700 MPa 106

6 Constraint Two constraints are used in this analysis Displacement Constraint: In both the FE models one end, i.e., the crank end of the connecting rod was fixed and the other end was not allowed to rotate about y and x- axis but free to rotate about z-axis. Also the pin end or the small end is allowed to move freely in transnational direction (in x-y-z) Load Constraint: In the FE models no external force is acting on the big end but on the small end KN of compressive force is applied in the y-direction whereas there is no external force in the x and z direction. (Ramanpreet Singh, 2013). Results Once the individual attachment is done for viewing different results select each attachment for viewing individual results. RESULTS AND DISCUSSION Figure 6: Von-mises Stress for Connecting Rod Figure 5: Loads & Boundary Conditions for Connecting Rod (4) Figure 7: Maximum Shear Stress for Crankshaft Figure 8: Deformation of Connecting Rod Analysis When all loads and displacement are applied analysis would be last step. Select the option called Solve. The software starts analyzing automatically and finally solves the problem. 107

7 Table 4: Material Properties Yield Strength 350 N/mm 2 Theoretical FOS 5 Allowable Stress 70 N/mm 2 Ansys Stress N/mm 2 Working FOS 5.5 The allowable stress is 70 N/mm 2 and FOS is 5. But the Ansys results in Von-Mises stress is N/mm 2 and Working FOS is 5.5. From Analysis we can conform that the design of connecting rod is safe. While from deformation analysis we can see that deformation is maximum at small end and also stress is maximum at small end. Figure 9: Alternating Stresses Table 5 shows the graph of Alternating Stress v/s cycles indicate the life of connecting rod. It shows that connecting rod will have a life span of about 3.16 e+6 cycles. Result for stiffness of connecting rod is as follows Weight of connecting rod : kg Deformation : mm Stiffness = Weight/ Deformation, (3) = Kg/mm CONCLUSION The working factor of safety is nearer to theoretical factor of safety.the Ansys Vonmisses stress is N/mm 2 is nearer to allowable stress value. Hence it seems design of connecting rod is safe. Connecting rod will have a life span of about 3.16 e+6 cycles. And stiffness is about Kg/mm. REFERENCES 1. B Anusha (2013), Comparison of Materials for Two Wheeler Connecting Rod Using Ansys, IJETT, Vol. 4, No. 9. Table 5: Alternating Stress v/s Cycles Cycles Alternating Stress MPa e e e FormechVacuumGuide.pdf 3. K Sudershn Kumar (2012), Modelling and Analysis of Two Wheeler Connecting Rod, IJMER, Vol. 2, No R S Khurmi and J K Gupta (2005), A Textbook of Machine Design, Eurasia Publishing House.. 5. Ramanpreet Singh (2013), Stress Analysis of Orthotropic and Isotropic Connecting Rod Using Finite Element Method, IJMERR, Vol. 2, No

8

Analysis of Crank End of Connecting Rod using Finite Element Method

Analysis of Crank End of Connecting Rod using Finite Element Method Analysis of Crank End of Connecting Rod using Finite Element Method Mohammad Umair Zaki Faculty of Mechanical Engineering Noida International University Greater Noida, India e-mail-umairzaki@yahoo.com

More information

Design optimization of C Frame of Hydraulic Press Machine

Design optimization of C Frame of Hydraulic Press Machine IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727 PP 79-89 www.iosrjournals.org Design optimization of C Frame of Hydraulic Press Machine Ameet B. Hatapakki 1, U D. Gulhane

More information

IJMH - International Journal of Management and Humanities ISSN:

IJMH - International Journal of Management and Humanities ISSN: EXPERIMENTAL STRESS ANALYSIS SPUR GEAR USING ANSYS SOFTWARE T.VADIVELU 1 (Department of Mechanical Engineering, JNTU KAKINADA, Kodad, India, vadimay28@gmail.com) Abstract Spur Gear is one of the most important

More information

ANALYSIS AND OPTIMIZATION OF FLYWHEEL

ANALYSIS AND OPTIMIZATION OF FLYWHEEL Int. J. Mech. Eng. & Rob. Res. 2012 Sushama G Bawane et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 2, July 2012 2012 IJMERR. All Rights Reserved ANALYSIS AND OPTIMIZATION OF FLYWHEEL

More information

Design of Arm & L-bracket and It s Optimization By Using Taguchi Method

Design of Arm & L-bracket and It s Optimization By Using Taguchi Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 28-38 www.iosrjournals.org Design of Arm & L-bracket and It s Optimization By Using Taguchi Method S.

More information

Design Analysis Of Industrial Gear Box Casing.

Design Analysis Of Industrial Gear Box Casing. Design Analysis Of Industrial Gear Box Casing. Balasaheb Sahebrao Vikhe 1 1 Assistant Professor, Dept. of Mechanical Engineering, SVIT College Nasik, Maharashtra, India ---------------------------------------------------------------------***---------------------------------------------------------------------

More information

FEA and Topology Optimization of an Engine Mounting Bracket

FEA and Topology Optimization of an Engine Mounting Bracket International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sanket

More information

Design and development of optimized sprocket for Track hoe

Design and development of optimized sprocket for Track hoe Design and development of optimized sprocket for Track hoe Mr. Laxmikant P.Sutar 1, Prof. Prashant.G. Karajagi 2, Prof. Rahul Kulkarni 3 1 PG Student, Siddhant College of Engineering, Pune, India 2 Assistant

More information

Analysis of ANSI W W 6x9-118,

Analysis of ANSI W W 6x9-118, Page 1 of 8 Analysis of ANSI W W 6x9-118,110236220472 Author: Analysis Created: Analysis Last Modified: Report Created: Introduction Administrator, 08:29:09, 08:29:09 09:26:02 Database: Z:\ENGENHARIA\ESTUDOS

More information

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla

Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla Non-Linear Analysis of Bolted Flush End-Plate Steel Beam-to-Column Connection Nur Ashikin Latip, Redzuan Abdulla 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my Keywords:

More information

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0 Exercise 1 3-Point Bending Using the Static Structural Module of Contents Ansys Workbench 14.0 Learn how to...1 Given...2 Questions...2 Taking advantage of symmetries...2 A. Getting started...3 A.1 Choose

More information

Enhancing Productivity of a Roller Stand through Design Optimization using Manufacturing Simulation

Enhancing Productivity of a Roller Stand through Design Optimization using Manufacturing Simulation Enhancing Productivity of a Roller Stand through Design Optimization using Manufacturing Simulation B.R. Krishna Tej 1, N.Sasank Sai 1 and S.Deepak kumar* 1 Engineering Design and Research Center (EDRC)

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen

Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen Structural Analysis of an Aluminum Spiral Staircase EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen Abstract An old aluminum spiral staircase at Marcos home has been feeling really

More information

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane

TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior Initial Project Space Setup Static Structural ANSYS ZX Plane TUTORIAL 7: Stress Concentrations and Elastic-Plastic (Yielding) Material Behavior In this tutorial you will learn how to recognize and deal with a common modeling issues involving stress concentrations

More information

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS VOL., NO., NOVEMBER 6 ISSN 8968 6-6 Asian Research Publishing Network (ARPN). All rights reserved. COLLAPSE LOAD OF PIPE BENDS WITH ASSUMED AND ACTUAL CROSS SECTIONS UNDER IN-PLANE AND OUT-OF-PLANE MOMENTS

More information

Stress analysis of toroidal shell

Stress analysis of toroidal shell Stress analysis of toroidal shell Cristian PURDEL*, Marcel STERE** *Corresponding author Department of Aerospace Structures INCAS - National Institute for Aerospace Research Elie Carafoli Bdul Iuliu Maniu

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD Haval Kamal Asker Department of Mechanical Engineering, Faculty of Agriculture and Forestry, Duhok University, Duhok,

More information

WP1 NUMERICAL BENCHMARK INVESTIGATION

WP1 NUMERICAL BENCHMARK INVESTIGATION WP1 NUMERICAL BENCHMARK INVESTIGATION 1 Table of contents 1 Introduction... 3 2 1 st example: beam under pure bending... 3 2.1 Definition of load application and boundary conditions... 4 2.2 Definition

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Contents Beam under 3-Pt Bending [Balken unter 3-Pkt-Biegung]... 2 Taking advantage of symmetries... 3 Starting and Configuring ANSYS Workbench... 4 A. Pre-Processing:

More information

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION [1],Sathiyavani S [2], Arun K K [3] 1,2 student, 3 Assistant professor Kumaraguru College of technology, Coimbatore Abstract Structural design optimization

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method

Exercise 1. 3-Point Bending Using the GUI and the Bottom-up-Method Exercise 1 3-Point Bending Using the GUI and the Bottom-up-Method Contents Learn how to... 1 Given... 2 Questions... 2 Taking advantage of symmetries... 2 A. Preprocessor (Setting up the Model)... 3 A.1

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

Static And Modal Analysis Of Rotating Wheel Rim Using Ansys

Static And Modal Analysis Of Rotating Wheel Rim Using Ansys International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 9 ǁ September 2014 ǁ PP.18-23 Static And Modal Analysis Of Rotating Wheel Rim Using

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Optimization of Industrial Gear box Casing

Optimization of Industrial Gear box Casing Optimization of Industrial Gear box Casing Balasaheb Sahebrao Vikhe Assistant Professor, Dept. of Mechanical Engineering, SVIT College Nasik, Maharashtra, India *** Abstract This paper contains the study

More information

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION

CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 68 CHAPTER 4 INCREASING SPUR GEAR TOOTH STRENGTH BY PROFILE MODIFICATION 4.1 INTRODUCTION There is a demand for the gears with higher load carrying capacity and increased fatigue life. Researchers in the

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN

NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Vol 4 No 3 NEW WAVE OF CAD SYSTEMS AND ITS APPLICATION IN DESIGN Ass Lecturer Mahmoud A Hassan Al-Qadisiyah University College of Engineering hasaaneng@yahoocom ABSTRACT This paper provides some lighting

More information

Analysis of Transverse Link under Static and Dynamic Loading Conditions

Analysis of Transverse Link under Static and Dynamic Loading Conditions Analysis of Transverse Link under Static and Dynamic Loading Conditions Rahul D. Sherke *1, A.P Tadamalle *2 * PG Scholar, ME Automotive Engineering, Sinhgad College of Engineering, Vadgaon (BK), Pune,

More information

Exercise 1: 3-Pt Bending using ANSYS Workbench

Exercise 1: 3-Pt Bending using ANSYS Workbench Exercise 1: 3-Pt Bending using ANSYS Workbench Contents Starting and Configuring ANSYS Workbench... 2 1. Starting Windows on the MAC... 2 2. Login into Windows... 2 3. Start ANSYS Workbench... 2 4. Configuring

More information

Topology Optimization and Analysis of Crane Hook Model

Topology Optimization and Analysis of Crane Hook Model RESEARCH ARTICLE Topology Optimization and Analysis of Crane Hook Model Thejomurthy M.C 1, D.S Ramakrishn 2 1 Dept. of Mechanical engineering, CIT, Gubbi, 572216, India 2 Dept. of Mechanical engineering,

More information

Dubey Rohit Kumar, International Journal of Advance Research, Ideas and Innovations in Technology

Dubey Rohit Kumar, International Journal of Advance Research, Ideas and Innovations in Technology ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 1) Report On Studying the Effect of Mesh Density on Finite Element Analysis and Establish an Optimal Mesh Density for Finite Element Analysis of a

More information

Stress analysis of Camshaft by using ANSYS Software

Stress analysis of Camshaft by using ANSYS Software Stress analysis of Camshaft by using ANSYS Software Samta Jain, Mr. Vikas Bansal Rajasthan Technical University, kota (Rajasathan), India Abstract This paper presents the modeling and static structural

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES

OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES OPTIMIZATION OF ENERGY DISSIPATION PROPERTY OF ECCENTRICALLY BRACED STEEL FRAMES M. Ohsaki (Hiroshima Univ.) T. Nakajima (Kyoto Univ. (currently Ohbayashi Corp.)) Background Difficulty in optimization

More information

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Goals In this exercise, we will explore the strengths and weaknesses of different element types (tetrahedrons vs. hexahedrons,

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12 Contact Stress Analysis of Helical Gear by Using AGMA and ANSYS S.Sai Anusha 1 P.Satish Reddy 2 P.Bhaskar 3 M Manoj 4 PG Scholar, Assoc. Professor, Asst Professor, Asst Professor Dept of Mechanical Engineering,

More information

Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections

Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections October 25, 2000 Stiffness Analysis of the Tracker Support Bracket and Its Bolt Connections Tommi Vanhala Helsinki Institute of Physics 1. INTRODUCTION...2 2. STIFFNESS ANALYSES...2 2.1 ENVELOPE...2 2.2

More information

machine design, Vol.9(2017) No.1, ISSN pp

machine design, Vol.9(2017) No.1, ISSN pp machine design, Vol.9(2017) No.1, ISSN 1821-1259 pp. 29-34 Research paper DYNAMIC ANALYSIS AND PARAMETRIC OPTIMISATION OF THE CONNECTING ROD USING AUTODESK INVENTOR Vasile George CIOATĂ 1, * - Imre KISS

More information

Modal Analysis and Optimization of I.C. Engine Connecting Rod Satyendra Singh Bagri 1 Amit Telang 2

Modal Analysis and Optimization of I.C. Engine Connecting Rod Satyendra Singh Bagri 1 Amit Telang 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 Modal Analysis and Optimization of I.C. Engine Connecting Rod Satyendra Singh Bagri 1

More information

Static Characteristics Analysis of ZK Worm and Worm Gear Based on ANSYS Workbench

Static Characteristics Analysis of ZK Worm and Worm Gear Based on ANSYS Workbench Static Characteristics Analysis of ZK Worm and Worm Gear Based on ANSYS Workbench Xu Yun a, Yuankai Meng b, Yinghua Liao c, Yan Shi d School of Mechanical Engineering, Sichuan University of science & engineering,

More information

ANALYSIS AND OPTIMIZATION OF CONNECTING ROD BY FEA

ANALYSIS AND OPTIMIZATION OF CONNECTING ROD BY FEA ANALYSIS AND OPTIMIZATION OF CONNECTING ROD BY FEA 1 Mr.Ajit Lonkar 1 M-Tech Student dept CAD/CAM 1 Narayana Technical Campus, Telangana, India[Affiliated to JNTU, Approved by AICTE] ABSTRACT: The automobile

More information

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY J. Sauvé 1*, M. Dubé 1, F. Dervault 2, G. Corriveau 2 1 Ecole de technologie superieure, Montreal, Canada 2 Airframe stress, Advanced Structures,

More information

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA 1 FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA This tutorial shows the basics of a solid bending, torsional, tension, and shear FEA (Finite Elemental Analysis) model in CATIA. Torsion - page

More information

Crane Hook Design and Analysis

Crane Hook Design and Analysis Crane Hook Design and Analysis G Bhagyaraj 1, K Suryaprakash 2, K Subba Rao 3 1M.Tech. CAD/CAM, Godavari Institute of Engineering and Technology, Rajahmundry 2Associate Professor, Godavari Institute of

More information

PARAMETRIC OPTIMIZATION OF CYLINDRICAL ROLLER BEARING AND COMPARE WITH FEA

PARAMETRIC OPTIMIZATION OF CYLINDRICAL ROLLER BEARING AND COMPARE WITH FEA PARAMETRIC OPTIMIZATION OF CYLINDRICAL ROLLER BEARING AND COMPARE WITH FEA KANTHA SHOBA.M 1 Assistant Professor, Department of Mechanical Engineering, Thanthai Periyar Government Institute of Technology,

More information

Static, Modal and Kinematic Analysis of Hydraulic Excavator

Static, Modal and Kinematic Analysis of Hydraulic Excavator Static, Modal and Kinematic Analysis of Hydraulic Excavator Anil Jadhav Abhijit Kulkarni Tamilnadu,India-632014 Vinayak Kulkarni Prof. Ravi. K Assistant professor Mechanical department Abstract Hydraulic

More information

Structural re-design of engine components

Structural re-design of engine components Structural re-design of engine components Product design cycle Design Development Testing Structural optimization Product knowledge Design freedom 2/18 Structural re-design of engine components Product

More information

Engineering Analysis with

Engineering Analysis with Engineering Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Computational Simulation of Cylindrical Pressure Loading

Computational Simulation of Cylindrical Pressure Loading Computational Simulation of Cylindrical Pressure Loading MEG 795 Special Topics: Energy Methods II Presented By: Nallani Gopi Nov 20, 2003 Department of Mechanical Engineering University of Nevada,Las

More information

Engineering Analysis with SolidWorks Simulation 2012

Engineering Analysis with SolidWorks Simulation 2012 Engineering Analysis with SolidWorks Simulation 2012 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites

More information

Finite Element Modal Analysis and Mesh Optimization of a Typical Turbo Fan Engine Fan Hub Frame

Finite Element Modal Analysis and Mesh Optimization of a Typical Turbo Fan Engine Fan Hub Frame Finite Element Modal Analysis and Mesh Optimization of a Typical Turbo Fan Engine Fan Hub Frame Charles.G.Martin 1 and Dr. A. Arokkiaswamy 2 1,2 Department of Aeronautical Engg, DSCE, Shavige Malleshwara

More information

Modal Analysis of Intermediate Shaft Used in Automobile Gear Box

Modal Analysis of Intermediate Shaft Used in Automobile Gear Box Modal Analysis of Intermediate Shaft Used in Automobile Gear Box Mr. Shekhar Dive PG Student, Mechanical Engineering Department, Siddhant College of Engineering, University of Pune, Pune, Maharashtra,

More information

Module 1.7W: Point Loading of a 3D Cantilever Beam

Module 1.7W: Point Loading of a 3D Cantilever Beam Module 1.7W: Point Loading of a 3D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution 14 Results

More information

3D SolidWorks Tutorial

3D SolidWorks Tutorial ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING 3D SolidWorks Tutorial Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Volume 5, Issue 1 (2017) ISSN International Journal of Advance Research and Innovation

Volume 5, Issue 1 (2017) ISSN International Journal of Advance Research and Innovation Structural Design &Optimization Of An Unmanned Aerial Vehicle Wing For SAE Aero Design Challenge Harsh Raj Chauhan *, Harsh Panwar *, Vikas Rastogi Department of Mechanical Engineering, Delhi Technological

More information

APPLICATION OF STRUCTURAL OPTIMISATION WITH BOSS QUATTRO TO A380 RIB1 OPTIMISATION

APPLICATION OF STRUCTURAL OPTIMISATION WITH BOSS QUATTRO TO A380 RIB1 OPTIMISATION December 2003 FENet Presented by Ghislaine MALHERBE (SAMTECH France) Collaboration with Stéphane Grihon ESANT - (AIRBUS France) Cesare CRUCCAS (SAMTECH France) APPLICATION OF STRUCTURAL OPTIMISATION WITH

More information

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Fernando Prevedello Regis Ataídes Nícolas Spogis Wagner Ortega Guedes Fabiano Armellini

More information

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754 Pavel SOLFRONK a, Jiří SOBOTKA a, Pavel DOUBEK a, Lukáš ZUZÁNEK a a TECHNICAL UNIVERSITY OF LIBEREC,

More information

Design Optimization of Robotic Arms

Design Optimization of Robotic Arms Design Optimization of Robotic Arms 1. Prof. L. S Utpat Professor, Mechanical Engineering Dept., MMCOE, Pune -52 Pune University, Maharashtra, India 2. Prof. Chavan Dattatraya K Professor, Mechanical Engineering

More information

ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANSYS IN TWO WHEELER

ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANSYS IN TWO WHEELER ADVANCED TRANSIENT THERMAL AND STRUCTURAL ANALYSIS OF DISC BRAKE BY USING ANSYS IN TWO WHEELER Mr.Ingale S.P. P.G.Student, Department of Mechanical Engineering, TPCT s College of Engineering Osmanabad,(Maha.)

More information

DETERMINATION OF THE CRITICAL POSITION DURING THE ASSEMBLY OF THE BOILER HEAT EXCHANGER PACKAGE DUE TO THE STRESSES OF THE AUXILIARY FRAME STRUCTURE

DETERMINATION OF THE CRITICAL POSITION DURING THE ASSEMBLY OF THE BOILER HEAT EXCHANGER PACKAGE DUE TO THE STRESSES OF THE AUXILIARY FRAME STRUCTURE DETERMINATION OF THE CRITICAL POSITION DURING THE ASSEMBLY OF THE BOILER HEAT EXCHANGER PACKAGE DUE TO THE STRESSES OF THE AUXILIARY FRAME STRUCTURE D. Bučević-Keran 1*, M. Kuna 2, D. Kozak 1, J. Sertić

More information

Case Study- Importing As-Molded Plastic Part Conditions into CAE tools

Case Study- Importing As-Molded Plastic Part Conditions into CAE tools 1 IEI Innova Engineering 1 Park Plaza Suite 980 Irvine, California 92614 Case Study- Importing As-Molded Plastic Part Conditions into CAE tools 2 CONTENTS CONTENTS... 2 EXECUTIVE SUMMARY... 3 APPROACH...

More information

Analytical, Experimental Determination of Deflection of Curved Beams and its Validation

Analytical, Experimental Determination of Deflection of Curved Beams and its Validation Analytical, Experimental Determination of Deflection of Curved Beams and its Validation Yogesh Gangamwar 1, Sumit Chate 2, Makarand Bhandare 3, Vinit Deo 4, H.N.Deshpande 5 UG Student, Dept. of Mechanical

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Consider the beam in the figure below. It is clamped on the left side and has a point force of 8kN acting

More information

FINITE ELEMENT ANALYSIS AND DYNAMIC ANALYSIS OF THE OUTER BEARING BUSH FROM THE BLADE ADJUSTMENT MECHANISM OF KAPLAN TURBINES

FINITE ELEMENT ANALYSIS AND DYNAMIC ANALYSIS OF THE OUTER BEARING BUSH FROM THE BLADE ADJUSTMENT MECHANISM OF KAPLAN TURBINES The 4th International Conference Computational Mechanics and Virtual Engineering COMEC 2011 20-22 OCTOBER 2011, Brasov, Romania FINITE ELEMENT ANALYSIS AND DYNAMIC ANALYSIS OF THE OUTER BEARING BUSH FROM

More information

DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE

DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE DESIGN AND OPTIMIZATION OF ROTARY TURRET PLATE OF POUCHER MACHINE Jigar G. Patel Institute of Technology, Nirma University, Ahmedabad 382481, India Email:14mmcc17@nirmuni.ac.in Mitesh B. Panchal Mechanical

More information

Optimization of Brake Pedal Using Finite Element Simulation

Optimization of Brake Pedal Using Finite Element Simulation International Journal of Mechanics and Solids. ISSN 0973-1881 Volume 12, Number 1 (2017), pp. 27-40 Research India Publications http://www.ripublication.com/ijms.htm Optimization of Brake Pedal Using Finite

More information

WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD. For ANSYS release 14

WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD. For ANSYS release 14 WORKSHOP 6.3 WELD FATIGUE USING NOMINAL STRESS METHOD For ANSYS release 14 Objective: In this workshop, a weld fatigue analysis on a VKR-beam with a plate on top using the nominal stress method is demonstrated.

More information

Optimal Design of Steel Columns with Axial Load Using Artificial Neural Networks

Optimal Design of Steel Columns with Axial Load Using Artificial Neural Networks 2017 2nd International Conference on Applied Mechanics and Mechatronics Engineering (AMME 2017) ISBN: 978-1-60595-521-6 Optimal Design of Steel Columns with Axial Load Using Artificial Neural Networks

More information

studying of the prying action effect in steel connection

studying of the prying action effect in steel connection studying of the prying action effect in steel connection Saeed Faraji Graduate Student, Department of Civil Engineering, Islamic Azad University, Ahar Branch S-faraji@iau-ahar.ac.ir Paper Reference Number:

More information

Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS

Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS Static Analysis of Bajaj Pulsar 150 CC Crankshaft Using ANSYS Surekha S. Shelke 1, Dr. C. L. Dhamejani 2, A. S. Gadhave 3 1 P.G. Student, Department of Mechanical Engineering, JCOE Kuran 2 Principal, Department

More information

Final project: Design problem

Final project: Design problem ME309 Homework #5 Final project: Design problem Select one of the analysis problems listed below to solve. Your solution, along with a description of your analysis process, should be handed in as a final

More information

Finite Element Modeling for Numerical Simulation of Multi Step Forming of Wheel Disc and Control of Excessive Thinning

Finite Element Modeling for Numerical Simulation of Multi Step Forming of Wheel Disc and Control of Excessive Thinning Finite Element Modeling for Numerical Simulation of Multi Step Forming of Wheel Disc and Control of Excessive Thinning Prashantkumar S.Hiremath 1,a, Shridhar Kurse 2,a, Laxminarayana H.V. 3,a,Vasantha

More information

Lateral Loading of Suction Pile in 3D

Lateral Loading of Suction Pile in 3D Lateral Loading of Suction Pile in 3D Buoy Chain Sea Bed Suction Pile Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering 00 Overview

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

Coupled analysis of material flow and die deflection in direct aluminum extrusion

Coupled analysis of material flow and die deflection in direct aluminum extrusion Coupled analysis of material flow and die deflection in direct aluminum extrusion W. Assaad and H.J.M.Geijselaers Materials innovation institute, The Netherlands w.assaad@m2i.nl Faculty of Engineering

More information

STATIC ANALYSIS OF MULTI-LEAF SPRING USING ANSYS WORKBENCH 16.0

STATIC ANALYSIS OF MULTI-LEAF SPRING USING ANSYS WORKBENCH 16.0 International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 5, September October 2016, pp.241 249, Article ID: IJMET_07_05_025 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=5

More information

Comparison of Bending Stress on Circular and Elliptical Profile Fillet of Helical Gear Using

Comparison of Bending Stress on Circular and Elliptical Profile Fillet of Helical Gear Using Comparison of Bending Stress on Circular and Elliptical Profile Fillet of Helical Gear Using AGMA and ANSYS Bhupendra Kumar Sahu 1, Mahesh Dewangan 2 1 PG Scholar, 2 Associate Professor, 12 Department

More information

DEVELOPMENT OF LEG WHEEL HYBRID HEXAPOD BOT

DEVELOPMENT OF LEG WHEEL HYBRID HEXAPOD BOT DEVELOPMENT OF LEG WHEEL HYBRID HEXAPOD BOT Sai Srinivas Nallamothu, Sai Preetham Sata, P. Sateesh Kumar Reddy, B. Jaswanth Babu ABSTRACT The conventional mobile robotic platforms which either uses wheels

More information

Simulation of AJWSP10033_FOLDED _ST_FR

Simulation of AJWSP10033_FOLDED _ST_FR Phone: 01922 453038 www.hyperon-simulation-and-cad-services.co.uk Simulation of AJWSP10033_FOLDED _ST_FR Date: 06 May 2017 Designer: Study name: AJWSP10033_FOLDED_STATIC Analysis type: Static Description

More information

Technical Report Example (1) Chartered (CEng) Membership

Technical Report Example (1) Chartered (CEng) Membership Technical Report Example (1) Chartered (CEng) Membership A TECHNICAL REPORT IN SUPPORT OF APPLICATION FOR CHARTERED MEMBERSHIP OF IGEM DESIGN OF 600 (103 BAR) 820MM SELF SEALING REPAIR CLAMP AND VERIFICATION

More information

Members: Sponsor: Dalton Hamilton Preston-Eastin Levi Edens Kenneth Mui Brice Abbott

Members: Sponsor: Dalton Hamilton Preston-Eastin Levi Edens Kenneth Mui Brice Abbott Members: Dalton Hamilton Levi Edens Brice Abbott Sponsor: Preston-Eastin Kenneth Mui Mission Statement Wolf Pack Engineering strives to provide our customer with innovative solutions. We take a cost effective

More information

Finite Element Analysis of Particulate composite embedded in Fibrous Composite Layer

Finite Element Analysis of Particulate composite embedded in Fibrous Composite Layer International Research Journal of Engineering and Technology (IRJET) e-issn: 3-006 Volume: 0 Issue: 04 July-01 www.irjet.net p-issn: 3-007 Finite Element Analysis of Particulate composite embedded in Fibrous

More information

Stress Analysis of thick wall bellows using Finite Element Method

Stress Analysis of thick wall bellows using Finite Element Method Stress Analysis of thick wall bellows using Finite Element Method Digambar J. Pachpande Post Graduate Student Department of Mechanical Engineering V.J.T.I. Mumbai, India Prof. G. U. Tembhare Assistant

More information

Topology Optimization of an Engine Bracket Under Harmonic Loads

Topology Optimization of an Engine Bracket Under Harmonic Loads Topology Optimization of an Engine Bracket Under Harmonic Loads R. Helfrich 1, A. Schünemann 1 1: INTES GmbH, Schulze-Delitzsch-Str. 16, 70565 Stuttgart, Germany, www.intes.de, info@intes.de Abstract:

More information

MODELING & ANALYSIS OF CRANKSHAFT

MODELING & ANALYSIS OF CRANKSHAFT MODELING & ANALYSIS OF CRANKSHAFT Mr. K.V.Naveen Kumar B.Tech Department of Mechanical Engineering Marri Laxman Reddy Institute of Technology& Management Hyderabad, T.S naveenmec@yahoo.co.in Mr. T.Balaji

More information

Effect of Change of Spur Gear Tooth Parameter On Contact stress

Effect of Change of Spur Gear Tooth Parameter On Contact stress Effect of Change of Spur Gear Tooth Parameter On Contact stress Nikhil B. Abattini 1, M. M. Mirza 2, P. V. Pawar 3 1 Dept. of Mech. Engineering, Rajarambapu Institute of Technology, Sakharale, Islampur,

More information

STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS

STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS STRENGTH ANALYSIS OF PIN CONNECTIONS USING COMPUTER AIDED SYSTEMS PETR BERNARDIN, VACLAVA LASOVA, FRANTISEK SEDLACEK University of West Bohemia in Pilsen RTI Regional Technological Institute Pilsen, Czech

More information

E91 Machine Design: Lab 2

E91 Machine Design: Lab 2 E91 Machine Design: Lab 2 Analysis of Stresses in Machines with FEA Techniques Julian Leland Swarthmore College, Fall 2011 ABSTRACT In this lab, a 3- ton arbor press was modeled and assembled in Solidworks.

More information

Module 1.3W Distributed Loading of a 1D Cantilever Beam

Module 1.3W Distributed Loading of a 1D Cantilever Beam Module 1.3W Distributed Loading of a 1D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution

More information

MODELLING OF COLD ROLL PROCESS USING ANALYTIC AND FINITE ELEMENT METHODS

MODELLING OF COLD ROLL PROCESS USING ANALYTIC AND FINITE ELEMENT METHODS MODELLING OF COLD ROLL PROCESS USING ANALYTIC AND FINITE ELEMENT METHODS Yunus Ozcelik, Semih Cakil Borusan R&D Kayisdagi Cad, Defne Sok. Buyukhanli Plaza 34750 Istanbul/Turkey e-mail: yozcelik@borusan.com

More information

Analysis and Design of Cantilever Springs

Analysis and Design of Cantilever Springs Analysis and Design of Cantilever Springs Hemendra Singh Shekhawat, Hong Zhou Department of Mechanical Engineering Texas A&M University-Kingsville Kingsville, Texas, USA Abstract Cantilever springs are

More information

Optimization of a Radial Cam of an I.C. Engine by reducing area of contact with follower

Optimization of a Radial Cam of an I.C. Engine by reducing area of contact with follower Optimization of a Radial Cam of an I.C. Engine by reducing area of contact with follower Mr. AmolAchyutraoPande, Asst. Prof. Surendra C. Patil PG Student, Assistant Professor Department Of Mechanical Engineering

More information