x Boundary Intercepts Test (0,0) Conclusion 2x+3y=12 (0,4), (6,0) 0>12 False 2x-y=2 (0,-2), (1,0) 0<2 True

Size: px
Start display at page:

Download "x Boundary Intercepts Test (0,0) Conclusion 2x+3y=12 (0,4), (6,0) 0>12 False 2x-y=2 (0,-2), (1,0) 0<2 True"

Transcription

1 MATH 34 (Finite Mathematics or Business Math I) Lecture Notes MATH 34 Module 3 Notes: SYSTEMS OF INEQUALITIES & LINEAR PROGRAMMING 3. GRAPHING SYSTEMS OF INEQUALITIES Simple Systems of Linear Inequalities We will start out small and work our way up the chain. Below are a couple of systems of linear inequalities. Guidelines For Solving A System Of Linear Inequalities. Graph each inequality using the methods from the previous section.. Shade each region with a different color pencil. (map pencils are good) 3. Identify the overlapping region and shade that region darker than the others. That region is called the feasible region. (I will also identify the vertices of the region, because this is important for solving linear programming problems. The vertices are called corner points.) 3y ) x y x Boundary Intercepts Test (0,0) Conclusion x+3y= (0,4), (6,0) 0> False x-y= (0,-), (,0) 0< True x+3y > x- y System Unbounded region since it goes on and on. Summary: The feasible region is the darker green area. All points within that region are solutions to both inequalities. This is a visual representation of the solution set. Where the two lines intersect is called a corner point. Two find the corner point, solve the system: x 3y x y You can solve this system using matrices or the more primitive addition method. The solution is (9/4,5/) = (.5,.5)

2 y 0 ) x y 8 MATH 34 (Finite Mathematics or Business Math I) Lecture Notes x Boundary Intercepts Test (0,0) Conclusion x+y=0 (0,0), (5,0) 0 0 True x+y 0 x+y=8 (0,4), (8,0) 0 8 True x+y 8 System Unbounded region since it goes on and on. Summary: The feasible region is the darker green area. All points within that region are solutions to both inequalities. This is a visual representation of the solution set. Where the two lines intersect is called a corner point. Two find the corner point, solve the system: x y 0 x y 8 You can solve this system using matrices or the more primitive addition method. The solution is (4,). This the corner point. TEACHER S NOTE: When you graph a system of linear inequalities, make sure you emphasize the overlapping area. Definition of Corner Point: A corner point of a solution region is a point in the solution region that is the intersection of two boundary lines. (It must be within the boundary or on the boundary.) Notice the shaded region to the right. The arrows are pointing to the corner points. There is one other corner point. Do you see it? It is the origin (0,0). The list of corner points are: (0,0), (0,0), (5,8), (9,4), (,0)

3 More Complicated System 3) 3x 4x x 0 MATH 34 (Finite Mathematics or Business Math I) Lecture Notes x 4x 4 System Boundaries Intercepts Testing Conclusion x +4x 4 x +4x =4 (0,6), (,0) 04 True 3x 3x +3x 3x +3x = (0,7), (7,0) 0 True 4x +x 0 4x +x =0 (0,0), (5,0) 00 False ) x+4x4 ) x+4x4 and 3x+3x 3) 4x+x 0 Now let s inlay #3 on # to complete our graph. The feasible region is the darkest purple region that continues to go down, down, down. There is only one corner point (3,4), where the lines 3x+3x and 4x+x 0 intersect. 3

4 MATH 34 (Finite Mathematics or Business Math I) Lecture Notes Systems of Linear Inequalities Restricted to the First Quadrant 4) y x y 3 x 5y 50 x, y 0 x System Boundaries Intercepts Testing (0,0) Conclusion x+y x+y = (0,), (,0) 04 True x+y 3 x+y =3 (0,3), (3,0) 03 True x+5y50 x+5y=50 (0,0), (5,0) 050 True ) x+y ) x+y and x+y 3 3) x+y, x+y 3, x+5y50 4) x+y, x+y 3, x+5y50, x 0, y 0 The last two constraints restrict our feasible region to the first quadrant giving us the picture below. Note: At this point the region is the darkest purple region that is unbounded. (5,0) is not in the region. I left it visible because it was one of the intercepts of the last boundary I added. We have not limited the region to the first quadrant yet. That comes in the next picture. Notice the region has 5 corner points. (0,0), (0,0),(5,8),(9,4),(,0) The points (5,8),(9,4) are results of solving the systems of lines that give those points. 4

5 Practice Problem: x 3x 4x 4x 3x x x, y (Solution at the right) MATH 34 (Finite Mathematics or Business Math I) Lecture Notes Solution should be the triangle bounded within corner points (3,4), (5,0), (7,0) A Note About Linear Programming: Linear Programming is a process where a function is optimized based on the points restricted to a specific region. For example, suppose we needed to Maximize a revenue function R=50x+00x ; where x represent 3 speed bikes and x represents 5 speed bikes and we could only use values within the above triangular region. The region contains many points. It turns out that the maximum must occur at one of the corner points. So, we can plug each point in and see which gives the maximum. Corner Point R=50x+00x (5,0) R=$750 (7,0) R=$050 (3,4) R=$50 (optimal solution) We could also minimize a function using this method. Note that the minimum is R=$750 We would need to study further to understand this topic. Application: A patient in a hospital is required to have at least 84 units of drug A and 0 units of drug B each day (we will assume an overdose is harmless). Each gram of substance M contains 0 units of drug A and 8 units of drug B. Each gram of substance N contains units of drug A and 4 units of drug B. How many grams of substance M and N can be mixed to meet the minimum daily requirements of each drug? Solution: Let x= number of grams of substance M and y be the number of grams of substance N. Total of Inequality Minimum System of Inequalities Each Drug ( ) Requirements 0x y 84 0x+y 84 Drug A 8x+4y 0 Drug B 8x 4 y 0 x and y must also be greater than or equal to zero. We cannot mix a negative amount of M or N. x, y 0 5

6 MATH 34 (Finite Mathematics or Business Math I) Lecture Notes Linear Programming: Linear programming is optimizing an objective function while given certain limiting conditions {constraints}. We will learn several methods to solve a linear programming {LP} problem in this chapter. The first such method is the graphing or geometric method. Solving Linear Programming Problems Geometrically: This method is best when there are only two variables. It is very difficult to graph inequalities in 3 dimensions and you cannot graph in 4 dimensions. We will learn another method later that will allow us to solve LP problems of more than variables. Fundamental Theorem of Linear Programming: If a linear programming problem has an optimal solution, it must occur at one or more corner points. {This means that we only have to check the corner points for the optimal solution.} Properties of Linear Programming Problems: ) If the region is bounded, there exists a maximum and a minimum. a. Consider the following request: Loan me at least $ but no more than $. This is bounded. The minimum loan is $ and the maximum loan is $. ) If the region is unbounded, there exists a minimum but no maximum. a. Consider the following request: Loan me at least $. This is unbounded. The minimum loan is $ but no maximum exists. 3) If the region has no solution, there is neither a maximum nor a minimum. a. Consider the following request: Loan me at least $ but no more than $. This has no solution, therefore there can be no min nor max. Identifying the parts of a LP problem. Maximize: P Subject To : 5x x x x x x, x 3x x and x are called decision variables. Ob jective Function constraint constraint nonnegative constraints Note: In this chapter, you need to adapt to the use of x and x. Just treat x as x and x as y. Steps in solving an LP problem, geometrically see next section ) Graph the region (feasible region). ) Identify the corner points. 3) Evaluate the objective function at each corner point. 4) Interpret the optimal solution {maximum or minimum and where it occurs} We will solve linear programming problems in the next section. 6

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

Graphing Linear Inequalities in Two Variables.

Graphing Linear Inequalities in Two Variables. Many applications of mathematics involve systems of inequalities rather than systems of equations. We will discuss solving (graphing) a single linear inequality in two variables and a system of linear

More information

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved.

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved. 5 Systems of Equations and Inequalities Copyright Cengage Learning. All rights reserved. 5.5 Systems of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question : How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

3x + y 50. y=10. x=15 3x+y=50. 2x + 3y = 40

3x + y 50. y=10. x=15 3x+y=50. 2x + 3y = 40 Section 3.3: Linear programming: A geometric approach In addition to constraints, linear programming problems usually involve some quantity to maximize or minimize such as profits or costs. The quantity

More information

Mathematics for Business and Economics - I. Chapter7 Linear Inequality Systems and Linear Programming (Lecture11)

Mathematics for Business and Economics - I. Chapter7 Linear Inequality Systems and Linear Programming (Lecture11) Mathematics for Business and Economics - I Chapter7 Linear Inequality Systems and Linear Programming (Lecture11) A linear inequality in two variables is an inequality that can be written in the form Ax

More information

Chapter 3 Linear Programming: A Geometric Approach

Chapter 3 Linear Programming: A Geometric Approach Chapter 3 Linear Programming: A Geometric Approach Section 3.1 Graphing Systems of Linear Inequalities in Two Variables y 4x + 3y = 12 4 3 4 x 3 y 12 x y 0 x y = 0 2 1 P(, ) 12 12 7 7 1 1 2 3 x We ve seen

More information

WEEK 4 REVIEW. Graphing Systems of Linear Inequalities (3.1)

WEEK 4 REVIEW. Graphing Systems of Linear Inequalities (3.1) WEEK 4 REVIEW Graphing Systems of Linear Inequalities (3.1) Linear Programming Problems (3.2) Checklist for Exam 1 Review Sample Exam 1 Graphing Linear Inequalities Graph the following system of inequalities.

More information

Linear Programming: A Geometric Approach

Linear Programming: A Geometric Approach Chapter 3 Linear Programming: A Geometric Approach 3.1 Graphing Systems of Linear Inequalities in Two Variables The general form for a line is ax + by + c =0. The general form for a linear inequality is

More information

Section Graphing Systems of Linear Inequalities

Section Graphing Systems of Linear Inequalities Section 3.1 - Graphing Systems of Linear Inequalities Example 1: Find the graphical solution of the inequality y x 0. Example 2: Find the graphical solution of the inequality 5x 3y < 15. 1 How to find

More information

Chapter 1 & 2. Homework Ch 1 & 2

Chapter 1 & 2. Homework Ch 1 & 2 Chapter 1 & 2 1-1 Relations & Functions 1-2 Compostion of Functions 1-3 Graphs Linear Eqns 1-4 Writing Linear Functions 1-5 Parallel & Perpendicular Lines 1-7 Piecewise Functions 1-8 Linear Inequalities

More information

CHAPTER 4 Linear Programming with Two Variables

CHAPTER 4 Linear Programming with Two Variables CHAPTER 4 Linear Programming with Two Variables In this chapter, we will study systems of linear inequalities. They are similar to linear systems of equations, but have inequalitites instead of equalities.

More information

a) Alternative Optima, b) Infeasible(or non existing) solution, c) unbounded solution.

a) Alternative Optima, b) Infeasible(or non existing) solution, c) unbounded solution. Unit 1 Lesson 5. : Special cases of LPP Learning Outcomes Special cases of linear programming problems Alternative Optima Infeasible Solution Unboundedness In the previous lecture we have discussed some

More information

Linear Programming Problems: Geometric Solutions

Linear Programming Problems: Geometric Solutions Linear Programming Problems: Geometric s Terminology Linear programming problems: problems where we must find the optimum (minimum or maximum) value of a function, subject to certain restrictions. Objective

More information

Math 20 Practice Exam #2 Problems and Their Solutions!

Math 20 Practice Exam #2 Problems and Their Solutions! Math 20 Practice Exam #2 Problems and Their Solutions! #1) Solve the linear system by graphing: Isolate for in both equations. Graph the two lines using the slope-intercept method. The two lines intersect

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED DETERMINING THE INTERSECTIONS USING THE GRAPHING CALCULATOR

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED DETERMINING THE INTERSECTIONS USING THE GRAPHING CALCULATOR FOM 11 T15 INTERSECTIONS & OPTIMIZATION PROBLEMS - 1 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) INTERSECTION = a set of coordinates of the point on the grid where two or more graphed lines touch

More information

Graphical Methods in Linear Programming

Graphical Methods in Linear Programming Appendix 2 Graphical Methods in Linear Programming We can use graphical methods to solve linear optimization problems involving two variables. When there are two variables in the problem, we can refer

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

Concept: Solving Inequalities Name:

Concept: Solving Inequalities Name: Concept: Solving Inequalities Name: You should have completed Equations Section 7 Part A: Solving Inequalities before beginning this handout. COMPUTER COMPONENT Instructions: In follow the Content Menu

More information

Answer Section ID: A MULTIPLE CHOICE

Answer Section ID: A MULTIPLE CHOICE FOUNDATIONS MATH 11 - CHAPTER 6 - PRETEST Answer Section parent/guardian signature MULTIPLE CHOICE 1. ANS: C 2. ANS: B 3. ANS: B 4. ANS: C REF: Lesson 6.2 TOP: Exploring graphs of systems of linear inequalities

More information

UNIT 2 LINEAR PROGRAMMING PROBLEMS

UNIT 2 LINEAR PROGRAMMING PROBLEMS UNIT 2 LINEAR PROGRAMMING PROBLEMS Structure 2.1 Introduction Objectives 2.2 Linear Programming Problem (LPP) 2.3 Mathematical Formulation of LPP 2.4 Graphical Solution of Linear Programming Problems 2.5

More information

UNIT 6 MODELLING DECISION PROBLEMS (LP)

UNIT 6 MODELLING DECISION PROBLEMS (LP) UNIT 6 MODELLING DECISION This unit: PROBLEMS (LP) Introduces the linear programming (LP) technique to solve decision problems 1 INTRODUCTION TO LINEAR PROGRAMMING A Linear Programming model seeks to maximize

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

5-8. Systems of Linear Inequalities. Vocabulary. Lesson. Mental Math

5-8. Systems of Linear Inequalities. Vocabulary. Lesson. Mental Math Lesson 5-8 Systems of Linear Inequalities Vocabulary feasible set, feasible region BIG IDEA The solution to a system of linear inequalities in two variables is either the empty set, the interior of a polygon,

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

Mathematics. Linear Programming

Mathematics. Linear Programming Mathematics Linear Programming Table of Content 1. Linear inequations. 2. Terms of Linear Programming. 3. Mathematical formulation of a linear programming problem. 4. Graphical solution of two variable

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

MA30SA Applied Math Unit D - Linear Programming Revd:

MA30SA Applied Math Unit D - Linear Programming Revd: 1 Introduction to Linear Programming MA30SA Applied Math Unit D - Linear Programming Revd: 120051212 1. Linear programming is a very important skill. It is a brilliant method for establishing optimum solutions

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

II. Linear Programming

II. Linear Programming II. Linear Programming A Quick Example Suppose we own and manage a small manufacturing facility that produced television sets. - What would be our organization s immediate goal? - On what would our relative

More information

GRAPHING LINEAR INEQUALITIES AND FEASIBLE REGIONS

GRAPHING LINEAR INEQUALITIES AND FEASIBLE REGIONS SECTION 3.1: GRAPHING LINEAR INEQUALITIES AND FEASIBLE REGIONS We start with a reminder of the smart way to graph a Linear Equation for the typical example we see in this course, namely using BOTH X- and

More information

Using Linear Programming for Management Decisions

Using Linear Programming for Management Decisions Using Linear Programming for Management Decisions By Tim Wright Linear programming creates mathematical models from real-world business problems to maximize profits, reduce costs and allocate resources.

More information

Solving linear programming

Solving linear programming Solving linear programming (From Last week s Introduction) Consider a manufacturer of tables and chairs. They want to maximize profits. They sell tables for a profit of $30 per table and a profit of $10

More information

Example Graph the inequality 2x-3y 12. Answer - start with the = part. Graph the line 2x - 3y = 12. Linear Programming: A Geometric Approach

Example Graph the inequality 2x-3y 12. Answer - start with the = part. Graph the line 2x - 3y = 12. Linear Programming: A Geometric Approach Linear Programming: A Geometric Approach 3.1: Graphing Systems of Linear Inequalities in Two Variables Example Graph the inequality 2x-3y 12. Answer - start with the = part. Graph the line 2x - 3y = 12.

More information

Linear Programming. Meaning of Linear Programming. Basic Terminology

Linear Programming. Meaning of Linear Programming. Basic Terminology Linear Programming Linear Programming (LP) is a versatile technique for assigning a fixed amount of resources among competing factors, in such a way that some objective is optimized and other defined conditions

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

LINEAR PROGRAMMING. Chapter Overview

LINEAR PROGRAMMING. Chapter Overview Chapter 12 LINEAR PROGRAMMING 12.1 Overview 12.1.1 An Optimisation Problem A problem which seeks to maximise or minimise a function is called an optimisation problem. An optimisation problem may involve

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Linear Programming. ICM Unit 3 Day 1 Part 1

Linear Programming. ICM Unit 3 Day 1 Part 1 Linear Programming ICM Unit 3 Day 1 Part 1 Arrival: Tools of the Trade Pencils Grab a couple to SHARE with your partner. Graph Paper Two pieces per student for today. Ruler One per student. Get out a NEW

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

September 10- September 15

September 10- September 15 September 10- September 15 You will be given a sheet of paper to write your bell work on. If you need more room you may use an extra sheet of paper, but be sure to staple the scratch paper to the Bell

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

1 GIAPETTO S WOODCARVING PROBLEM

1 GIAPETTO S WOODCARVING PROBLEM 1 GIAPETTO S WOODCARVING PROBLEM EZGİ ÇALLI OBJECTIVES CCSS.MATH.CONTENT.HSA.REI.D.12: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of

More information

Section 3.1 Graphing Systems of Linear Inequalities in Two Variables

Section 3.1 Graphing Systems of Linear Inequalities in Two Variables Section 3.1 Graphing Systems of Linear Inequalities in Two Variables Procedure for Graphing Linear Inequalities: 1. Draw the graph of the equation obtained for the given inequality by replacing the inequality

More information

Graphing Method. Graph of x + y < > y 10. x

Graphing Method. Graph of x + y < > y 10. x Graphing Method Eample: Graph the inequalities on the same plane: + < 6 and 2 - > 4. Before we graph them simultaneousl, let s look at them separatel. 10-10 10 Graph of + < 6. ---> -10 Graphing Method

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Intro. To Graphing Linear Equations

Intro. To Graphing Linear Equations Intro. To Graphing Linear Equations The Coordinate Plane A. The coordinate plane has 4 quadrants. B. Each point in the coordinate plain has an x-coordinate (the abscissa) and a y-coordinate (the ordinate).

More information

Chapter 4. Linear Programming

Chapter 4. Linear Programming Chapter 4 Linear Programming For All Practical Purposes: Effective Teaching Occasionally during the semester remind students about your office hours. Some students can perceive that they are bothering

More information

Linear Programming & Graphic Solution. Dr. Monther Tarawneh

Linear Programming & Graphic Solution. Dr. Monther Tarawneh Linear Programming & Graphic Solution Dr. Monther Tarawneh In this Lecture This topic concentrates on model formulation and computations in linear programming (LP). To illustrate the use of LP, real world

More information

Linear Programming: Introduction

Linear Programming: Introduction CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016 Lalla Mouatadid Linear Programming: Introduction A bit of a historical background about linear programming, that I stole from Jeff Erickson

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear inequalities are important because we often want to minimize or maximize a quantity (called the objective function) subject to certain constraints (linear inequalities).

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Math 1313 Prerequisites/Test 1 Review

Math 1313 Prerequisites/Test 1 Review Math 1313 Prerequisites/Test 1 Review Test 1 (Prerequisite Test) is the only exam that can be done from ANYWHERE online. Two attempts. See Online Assignments in your CASA account. Note the deadline too.

More information

Modelling of LP-problems (2WO09)

Modelling of LP-problems (2WO09) Modelling of LP-problems (2WO09) assignor: Judith Keijsper room: HG 9.31 email: J.C.M.Keijsper@tue.nl course info : http://www.win.tue.nl/ jkeijspe Technische Universiteit Eindhoven meeting 1 J.Keijsper

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

3.1 Graphing Linear Inequalities

3.1 Graphing Linear Inequalities 3.1 Graphing Linear Inequalities I. Inequalities A. Introduction Many mathematical descriptions of real situations are best expressed as inequalities rather than equations. For example, a firm might be

More information

Introduction to Linear Programing Problems

Introduction to Linear Programing Problems Paper: Linear Programming and Theory of Games Lesson: Introduction to Linear Programing Problems Lesson Developers: DR. MANOJ KUMAR VARSHNEY, College/Department: Department of Statistics, Hindu College,

More information

3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System

3.1. 3x 4y = 12 3(0) 4y = 12. 3x 4y = 12 3x 4(0) = y = x 0 = 12. 4y = 12 y = 3. 3x = 12 x = 4. The Rectangular Coordinate System 3. The Rectangular Coordinate System Interpret a line graph. Objectives Interpret a line graph. Plot ordered pairs. 3 Find ordered pairs that satisfy a given equation. 4 Graph lines. 5 Find x- and y-intercepts.

More information

Appendix A Using a Graphing Calculator. Section 4: The CALCULATE Menu

Appendix A Using a Graphing Calculator. Section 4: The CALCULATE Menu Appendix A Using a Graphing Calculator Section 4: The CALCULATE Menu The CALC menu provides access to many features that will be regularly used in the class. value returns a single y value when the user

More information

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES

Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES UNIT LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES PREREQUISITE SKILLS: students must know how to graph points on the coordinate plane students must understand ratios, rates and unit rate VOCABULARY:

More information

Unit 0: Extending Algebra 1 Concepts

Unit 0: Extending Algebra 1 Concepts 1 What is a Function? Unit 0: Extending Algebra 1 Concepts Definition: ---Function Notation--- Example: f(x) = x 2 1 Mapping Diagram Use the Vertical Line Test Interval Notation A convenient and compact

More information

Ahigh school curriculum in Algebra 2 contains both solving systems of linear equations,

Ahigh school curriculum in Algebra 2 contains both solving systems of linear equations, The Simplex Method for Systems of Linear Inequalities Todd O. Moyer, Towson University Abstract: This article details the application of the Simplex Method for an Algebra 2 class. Students typically learn

More information

5. In the Cartesian plane, a line runs through the points (5, 6) and (-2, -2). What is the slope of the line?

5. In the Cartesian plane, a line runs through the points (5, 6) and (-2, -2). What is the slope of the line? Slope review Using two points to find the slope In mathematics, the slope of a line is often called m. We can find the slope if we have two points on the line. We'll call the first point and the second

More information

I will illustrate the concepts using the example below.

I will illustrate the concepts using the example below. Linear Programming Notes More Tutorials at www.littledumbdoctor.com Linear Programming Notes I will illustrate the concepts using the example below. A farmer plants two crops, oats and corn, on 100 acres.

More information

Lecture 14. Resource Allocation involving Continuous Variables (Linear Programming) 1.040/1.401/ESD.018 Project Management.

Lecture 14. Resource Allocation involving Continuous Variables (Linear Programming) 1.040/1.401/ESD.018 Project Management. 1.040/1.401/ESD.018 Project Management Lecture 14 Resource Allocation involving Continuous Variables (Linear Programming) April 2, 2007 Samuel Labi and Fred Moavenzadeh Massachusetts Institute of Technology

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

State the domain and range of the relation. EX: {(-1,1), (1,5), (0,3)} 1 P a g e Province Mathematics Southwest TN Community College

State the domain and range of the relation. EX: {(-1,1), (1,5), (0,3)} 1 P a g e Province Mathematics Southwest TN Community College A relation is a set of ordered pairs of real numbers. The domain, D, of a relation is the set of all first coordinates of the ordered pairs in the relation (the xs). The range, R, of a relation is the

More information

Chapter 2--An Introduction to Linear Programming

Chapter 2--An Introduction to Linear Programming Chapter 2--An Introduction to Linear Programming 1. The maximization or minimization of a quantity is the A. goal of management science. B. decision for decision analysis. C. constraint of operations research.

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Appendix F: Systems of Inequalities

Appendix F: Systems of Inequalities A0 Appendi F Sstems of Inequalities Appendi F: Sstems of Inequalities F. Solving Sstems of Inequalities The Graph of an Inequalit The statements < and are inequalities in two variables. An ordered pair

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Econ 172A - Slides from Lecture 2

Econ 172A - Slides from Lecture 2 Econ 205 Sobel Econ 172A - Slides from Lecture 2 Joel Sobel September 28, 2010 Announcements 1. Sections this evening (Peterson 110, 8-9 or 9-10). 2. Podcasts available when I remember to use microphone.

More information

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120 Whitman-Hanson Regional High School provides all students with a high- quality education in order to develop reflective, concerned citizens and contributing members of the global community. Course Number

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

Lecture 9: Linear Programming

Lecture 9: Linear Programming Lecture 9: Linear Programming A common optimization problem involves finding the maximum of a linear function of N variables N Z = a i x i i= 1 (the objective function ) where the x i are all non-negative

More information

The big picture and a math review

The big picture and a math review The big picture and a math review Intermediate Micro Topic 1 Mathematical appendix of Varian The big picture Microeconomics Study of decision-making under scarcity Individuals households firms investors

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 16 Cutting Plane Algorithm We shall continue the discussion on integer programming,

More information

Chapter 2 - An Introduction to Linear Programming

Chapter 2 - An Introduction to Linear Programming True / False 1. Increasing the right-hand side of a nonbinding constraint will not cause a change in the optimal solution. TOPICS: Introduction 2. In a linear programming problem, the objective function

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

Algebra I Notes Unit Six: Graphing Linear Equations and Inequalities in Two Variables, Absolute Value Functions

Algebra I Notes Unit Six: Graphing Linear Equations and Inequalities in Two Variables, Absolute Value Functions Sllabus Objective.4 The student will graph linear equations and find possible solutions to those equations using coordinate geometr. Coordinate Plane a plane formed b two real number lines (axes) that

More information

BACK TO MATH LET S START EASY.

BACK TO MATH LET S START EASY. BACK TO MATH LET S START EASY. Of all rectangles of the same perimeter, which one has the largest area? (Yes, you have all solved this problem before, in Calc I. Apologies if this insults your intelligence.

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

AM 121: Intro to Optimization Models and Methods Fall 2017

AM 121: Intro to Optimization Models and Methods Fall 2017 AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 10: Dual Simplex Yiling Chen SEAS Lesson Plan Interpret primal simplex in terms of pivots on the corresponding dual tableau Dictionaries

More information

Solutions to assignment 3

Solutions to assignment 3 Math 9 Solutions to assignment Due: : Noon on Thursday, October, 5.. Find the minimum of the function f, y, z) + y + z subject to the condition + y + z 4. Solution. Let s define g, y, z) + y + z, so the

More information

30. Constrained Optimization

30. Constrained Optimization 30. Constrained Optimization The graph of z = f(x, y) is represented by a surface in R 3. Normally, x and y are chosen independently of one another so that one may roam over the entire surface of f (within

More information

Exploring Hyperplane Arrangements and their Regions

Exploring Hyperplane Arrangements and their Regions Exploring Hyperplane Arrangements and their Regions Jonathan Haapala Abstract This paper studies the Linial, Coxeter, Shi, and Nil hyperplane arrangements and explores ideas of how to count their regions.

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems]

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] 1 of 9 25/04/2016 13:15 Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] [Notes] [Practice Calculus III - Notes

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information