Recent Research Results. Evolutionary Trees Distance Methods

Size: px
Start display at page:

Download "Recent Research Results. Evolutionary Trees Distance Methods"

Transcription

1 Recent Research Results Evolutionary Trees Distance Methods

2

3 Indo-European Languages After Tandy Warnow

4 What is the purpose? Understand evolutionary history (relationship between species). Uderstand how various functions evolved. Understand forces and constraints on evolution. To do multiple alignment.

5 Multiple Alignment Evolutionary Tree Cat: GCGAGTAGAGCGTA Dog: CCGGTCGACGAA Frog: CAAGTCTCACGGAT Wolf: CCTGCCGACGA Bird: AGTCGCACGGTT Cat: GCGAGTAG-AGCGTA- Dog: -CCGGTCG-A-CGAA- Frog: -CAAGTCTCA-CGGAT Wolf: -CCTGCCG-A-CG-A- Bird: ---AGTCGCA-CGGTT Align Compute distances Construct tree

6 Evolutionary Tree Multiple Alignment Align along edges of the tree using pairwise alignment

7 Solution Methods

8 Some Complications Convergence or parallel evolution e.g. presence of wings in birds and bats. Assume that there is no convergence. Can often be achieved by excluding characters causing problems. Reversals, e.g. snakes loss of legs. Assume that there is no reversals. Can often be achieved by excluding characters causing problems.

9 General Methods Distance-based methods. Maximum parsimony method. Maximum likelihood methods. Consensus methods.

10 Distance-Based Methods Distances between all pairs of species are determined. If species are represented by DNA or protein sequences, the distances may depend on the number of substitutions, insertions and delitions needed to get one sequence from another. Tree is computed from the resulting distance matrix such that the distances in the tree fit the distances in the matrix as good as possible.

11 Maximum Parsimony Methods Principle of Parsimony: When given the choice between two explanations, one simple and one complex, choose the simple one. Character-based methods, f. ex. "number of legs", eukaryote vs. prokaryote organisms, bases in aligned DNA or amino acids in protein sequences. The problem is to find a tree that requires minimum number of changes.

12 Maximum Likelihood Methods A C G T A 1 u ap c bp g cp t uap c ubp g ucp t C udp a 1 u dp a ep g fp t uep g ufp t G ugp a uhp c 1 u gp a hp c ip t uip t T ujp a ukp c ulp g 1 u jp a kp c lp g base frequencies: p a, p c, p g, p t mutation rate: u frequencies of change of any base to any other: a, b, c, d, e, f, g, h, i, j, k, l.

13 Maximum Likelihood Methods n species: consider a topology with n leaves. Consider each base position for a given topology. Consider each possible assignment of bases to inner nodes. Compute the product of transition rates along all edges. Add up the products of all possible assignments. Add up for all base positions. This is the likelihood of particular topology. Repeat for every topology and select the one with maximum likelihood.

14 Consensus Methods A set of leaf-labeled trees (possibly weighted) is used to generate a tree. In some situations the trees have the same leaves but different topologies. It for example frequently happens that choosing different DNA- or protein sequences for the same family of species results in different evolutionary trees. In other situations, each tree spans only (small) subsets of species. The objective is then to find a tree spanning all species and agreeing in some way with the small trees.

15 Introduction to Distance Methods Distance methods reconstruct trees (rooted or unrooted) from a set of pairwise distances between the sequences. Introduced by Cavalli-Sforza and Edwards [1967] Fitch and Margoliash [1967] Influenced by clustering algorithms of Sokal and Sneath [1963]

16 Metric Spaces M is a set. d: M M R is a function. d is a distance function iff d(u,v) > 0 for all u,v M, u v, d(u,u) = 0 for all u M, d(u,v) = d(v,u) for all u,v M, d(u,v) d(u,w)+d(w,v) for all u,v,w M. A set M with a distance function d is called a metric space.

17 Tree Metrics T is a tree with edge weights and with elements of the set M as its leaves. Define d T (u,v) for all u,v in M as the length of the unique path from u to v in T. It can be shown that (M,d T ) is a metric space provided that edge weights are strictly positive.

18 Additive Distance Functions Given a distance function d on a set M. Does there exist a tree T with elements of M as leaves realizing d? If it is the case, d is said to be additive.

19 Four Points Condition (M,d) is a metric space. d is additive iff for every set of four different elements i, j, k,l M, two of the sums d ij +d kl, d ik +d jl, d il +d jk are the same and greater than or equal to the third sum. This condition is called four points condition. Necessity: Sufficiency: Constructive proof.

20 Sufficiency Given a metric space (M,d). Is there a weighted tree T with elements of M as its leaves such that d T (u,v) = d(u,v) for all u, v in M? Obvious for M =2. How about M =3?

21 Sufficiency for m=3 x + y = d 12, x+ z = d 13, y + z = d 23 2x + y + z = d 12 + d 13 ==> x = [d 12 + d 13 d 23 ] / 2 x + 2y + z = d 12 + d 23 ==> y = [d 12 + d 23 - d 13 ] / 2 x + y + 2z = d 13 + d 23 ==> z = [d 13 + d 23 d 12 ] / 2 Note that x, y, z 0. Can be 0! Solution is unique.

22 Sufficiency for m = 4 Solve for #1, #2, #4. Steiner point s 4 is somewhere on the path from #1 to #2. If s 4!= s, add an edge from s 4 to #4. If it overlaps, solve for s, #3 and #4. Assume not unique. So there are two trees with s 4 placed in different places, This implies that there are 2 different trees for #1, #3 and #4, a contradiction.

23 Sufficiency for m > 4 Assume that we have a unique tree for k species, k 4. The process is similar to what was done for 4 species.

24 Uniqueness Is the solution unique? Topology is unique. Assume that there are 2 distinct topologies. There must exist 3 leaves x, y, z such that the partitions induced by them in these two topologies are different. Assume that x and a fourth leaf w are in the same partition subset in one topology while there are in different partition subsets in the second topology. This implies that there are 2 different trees realizing the distances for four species x, y, z, w. A contradiction.

25 Uniqueness Is the solution unique? Edge weights are unique. Assume that there are two solutions with the same topology where the edge incident with a leaf v has different lengths. Let s be the Steiner point incident to this edge. This s defines a 3-set partition (one set consisting of v alone). Taking any x and y from the other two sets gives two distinct solutions, a contradiction. An interior edge in a fixed topology defines a 4-set partition. Assume that there are two solutions with the same topology but with different lengths of the selected interior edge. Taking any set of 4 leaves one from each partition set must give a unique solution, a contradiction.

26 Ultrametric Distance Functions A tree T in a metric space (M,d) where d is ultrametric has the following property: there is a way to place a root on T so that for all nodes in M, their distance to the root is the same. Such T is referred to as a molecular clock tree. d is ultrametric ==> d additive (M,d) is ultrametric iff every set of three elements i,j,k M, two of the distances coincide and are greater than or equal to the third one. (M,d) is ultrametric iff in the corresponding complete weighted graph G, the largest-weight edge in any cycle is not unique.

27 Sandwich Problem Given two distance functions d l and d u on a set M, d l (a,b) d u (a,b) for all species a, b. Does there exist an ultrametric tree T with elements of M as leaves such that d l (a,b) d T (a,b) d u (a,b) for all species a, b? Lower and upper bounds can be given by two weighted graphs G l and G u. Edges not present in G l have weight 0. Edges not present in G u have weight. If such an ultrametric T exists, it can be found in polynomial time. M. Farach, S. Kannan and T. Warnow, A robust model for finding evolutionary trees, Algorithmica 13 (1995)

28 Unweighted Pair Group Method Using Averages - UPGMA Find species i and j with the smallest distance M(i, j). Create a new node (i, j ) and connect it to i and j by branches of length M(i, j) / 2. Compute the distance between the new ij group and all other groups (except i and j ) by using M ij, k = n i M i, k n j M j, k n ij n ij Delete the columns and rows of the data matrix that correspond to groups i and j, and add a column and row for group ij. If there is only one item in the data matrix, stop. Otherwise repeat.

29 UPGMA - Example

30

31

32

33

34

35

36 UPGMA Another Example

37 Neighbor Joining r i = d ik M 2 r 1 =11 3 4, r 2 =10 1 4, r 3 =12 3 4, r 4 =13 3 4,r 5 =11 1 4, r 6 = D ij =d ij r j r i

38 Neighbor Joining Species 1 and 3 are replaced by a new species 7 at distance: d 17 =½(d 13 + r 1 - r 3 ) = 1 d 37 =½(d 13 + r 3 - r 1 ) = 2 d 27 =½(d 12 + d 23 - d 13 ) = 7 d 47 =½(d 14 + d 34 - d 13 ) = 13 d 57 =½(d 15 + d 35 - d 13 ) = 9 d 67 =½(d 16 + d 36 - d 13 ) = 11

39 Neighbor Joining

40 Multidimensional Scaling (MDS) Method of representing a given collection of dissimilarities between pairs of objects as distances between points in a multidimensional metric space. Obvious application: visual representation of objects in 2- or 3-dimensional Euclidean space such that distances between points in the space match the original dissimilarites between objects as close as possible. Our application: species represented as points in higher dimensional Euclidean space so that dissimilarities are captured as closely as possible by distances. Low-cost Steiner trees could be good evolutionary trees.

41 Classical MDS - Overview Δ: matrix of dissimilarities which actually are distances in some higher-dimensional Euclidean space. Δ2 : matrix of squared dissimilarities. H = I n n T : centering matrix. B = ½HΔ2 H: inner product matrix. Spectral decomposion B=VΛV T where Λ is a diagonal matrix of eigenvalues λ 1 λ 2... λ n 0, V is corresponding matrix of normalized eigenvectors. d: number of non-zero eigenvalues. Λ d : diagonal matrix of the first d eigenvalues. Let V d denote the first d columns of V. Then X = V d Λ d ½ is the coordinate matrix for objects.

42 Δ: metric matrix of dissimilarities (not necessarily distances in some higher-dimensional Euclidean space). Classical MDS can be used to compute X (discarding negative eigenvalues). If negative eigenvalues are small (close to zero) then X is fairly accurate. In order to reduce the dimension d, small positive eigenvalues can be discarded.

43 Steiner Tree Problem Given n points in d-dimensional space, find a shortest network spanning them.

44 Heuristic Construct MST Local improvements: pair of edges meeting at angles less than 120 degrees. Shortcutting: pick a pair of nonadjacent vertices. Consider the longest edge on the path between them in the current tree. If the distance between the nonadjacent vertices is less than the length of the longest edge, shortcut and apply local improvements. Postprocessing: terminals of degree greater than 1 and Steiner points of degree greater than 3 have their degrees reduced by introducing appropriate Steiner points.

45 MSD-Steiner Heuristic

46 Validation Methods Reconstruction of known phylogenies rare, small and/or easy. Computational simulation: Given a tree and intial root sequence, use appropriate probabilistic model of evolution to generate leaf sequences. Apply any of the distance methods and compare with the tree used in the simulation. J. Stoye, D. Evers and F. Meyer, ROSE: Generating sequence families, Bioinformatcs 17 (1998)

47 Comparison of Trees Comparison of trees partition metric: removing an edge in simulation tree or solution tree gives a cut. Number of cuts induced by one tree but not by the other tree. This can be at most 2n-6. Can be determined in linear time. Sensitive when applied to very similar trees.

48 Computational Experience How well does MDS retains the information needed to obtain good phylogenetic trees? Are short Euclidean Steiner trees good phylogenetic trees? How do phylogentic trees obtained by the Steiner method compare to other methods?

49 Quality of MDS (see Fig. 1a) Apply Neighbor Joining to the original distance matrices and to the MDS matrices (for increasing number of dimensions. For sufficient number of dimensions, the same phylogenetic trees are obtained. Number of dimension to obtain good phylogenetic trees seems to be bounded, e.g. 20, dimensions are typically needed for problem instances of size 50. ROSE's relatedness parameter seems not to affect the number of dimensions. Conclusion: The information needed to obtain good phylogenetic trees is preserved when using MDS.

50 Steiner Trees as Phylogenetic Trees (Fig. 2a) As the lengths of Steiner trees decrease to 85% of the lengths of MSTs, their partition metric distances to the correct trees start to decrease. This behavior is observed for all dimensions higher than ½ of the maximal dimension.

51 Direct Comparison of NJ and Steiner (Fig. 1b) These two methods seem comparable. It is possible that the way instances are generated by ROSE favors NJ.

52 Homework Critical assessment of the paper Method MDS Steiner tree heuristic Validation, use of ROSE Evaluation Problem instances Interpretation of results

Evolutionary tree reconstruction (Chapter 10)

Evolutionary tree reconstruction (Chapter 10) Evolutionary tree reconstruction (Chapter 10) Early Evolutionary Studies Anatomical features were the dominant criteria used to derive evolutionary relationships between species since Darwin till early

More information

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees

What is a phylogenetic tree? Algorithms for Computational Biology. Phylogenetics Summary. Di erent types of phylogenetic trees What is a phylogenetic tree? Algorithms for Computational Biology Zsuzsanna Lipták speciation events Masters in Molecular and Medical Biotechnology a.a. 25/6, fall term Phylogenetics Summary wolf cat lion

More information

Introduction to Trees

Introduction to Trees Introduction to Trees Tandy Warnow December 28, 2016 Introduction to Trees Tandy Warnow Clades of a rooted tree Every node v in a leaf-labelled rooted tree defines a subset of the leafset that is below

More information

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst

Phylogenetics. Introduction to Bioinformatics Dortmund, Lectures: Sven Rahmann. Exercises: Udo Feldkamp, Michael Wurst Phylogenetics Introduction to Bioinformatics Dortmund, 16.-20.07.2007 Lectures: Sven Rahmann Exercises: Udo Feldkamp, Michael Wurst 1 Phylogenetics phylum = tree phylogenetics: reconstruction of evolutionary

More information

11/17/2009 Comp 590/Comp Fall

11/17/2009 Comp 590/Comp Fall Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 Problem Set #5 will be available tonight 11/17/2009 Comp 590/Comp 790-90 Fall 2009 1 Clique Graphs A clique is a graph with every vertex connected

More information

Distance-based Phylogenetic Methods Near a Polytomy

Distance-based Phylogenetic Methods Near a Polytomy Distance-based Phylogenetic Methods Near a Polytomy Ruth Davidson and Seth Sullivant NCSU UIUC May 21, 2014 2 Phylogenetic trees model the common evolutionary history of a group of species Leaves = extant

More information

Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony

Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony Molecular Evolution & Phylogenetics Complexity of the search space, distance matrix methods, maximum parsimony Basic Bioinformatics Workshop, ILRI Addis Ababa, 12 December 2017 Learning Objectives understand

More information

Codon models. In reality we use codon model Amino acid substitution rates meet nucleotide models Codon(nucleotide triplet)

Codon models. In reality we use codon model Amino acid substitution rates meet nucleotide models Codon(nucleotide triplet) Phylogeny Codon models Last lecture: poor man s way of calculating dn/ds (Ka/Ks) Tabulate synonymous/non- synonymous substitutions Normalize by the possibilities Transform to genetic distance K JC or K

More information

Algorithms for Bioinformatics

Algorithms for Bioinformatics Adapted from slides by Leena Salmena and Veli Mäkinen, which are partly from http: //bix.ucsd.edu/bioalgorithms/slides.php. 582670 Algorithms for Bioinformatics Lecture 6: Distance based clustering and

More information

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment

CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment CISC 889 Bioinformatics (Spring 2003) Multiple Sequence Alignment Courtesy of jalview 1 Motivations Collective statistic Protein families Identification and representation of conserved sequence features

More information

EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES

EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES EVOLUTIONARY DISTANCES INFERRING PHYLOGENIES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 28 th November 2007 OUTLINE 1 INFERRING

More information

Phylogenetic Trees Lecture 12. Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau

Phylogenetic Trees Lecture 12. Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau Phylogenetic Trees Lecture 12 Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau. Maximum Parsimony. Last week we presented Fitch algorithm for (unweighted) Maximum Parsimony:

More information

CS 581. Tandy Warnow

CS 581. Tandy Warnow CS 581 Tandy Warnow This week Maximum parsimony: solving it on small datasets Maximum Likelihood optimization problem Felsenstein s pruning algorithm Bayesian MCMC methods Research opportunities Maximum

More information

Terminology. A phylogeny is the evolutionary history of an organism

Terminology. A phylogeny is the evolutionary history of an organism Phylogeny Terminology A phylogeny is the evolutionary history of an organism A taxon (plural: taxa) is a group of (one or more) organisms, which a taxonomist adjudges to be a unit. A definition? from Wikipedia

More information

Lecture 20: Clustering and Evolution

Lecture 20: Clustering and Evolution Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 11/12/2013 Comp 465 Fall 2013 1 Clique Graphs A clique is a graph where every vertex is connected via an edge to every other vertex A clique

More information

Lecture 20: Clustering and Evolution

Lecture 20: Clustering and Evolution Lecture 20: Clustering and Evolution Study Chapter 10.4 10.8 11/11/2014 Comp 555 Bioalgorithms (Fall 2014) 1 Clique Graphs A clique is a graph where every vertex is connected via an edge to every other

More information

Parsimony-Based Approaches to Inferring Phylogenetic Trees

Parsimony-Based Approaches to Inferring Phylogenetic Trees Parsimony-Based Approaches to Inferring Phylogenetic Trees BMI/CS 576 www.biostat.wisc.edu/bmi576.html Mark Craven craven@biostat.wisc.edu Fall 0 Phylogenetic tree approaches! three general types! distance:

More information

4/4/16 Comp 555 Spring

4/4/16 Comp 555 Spring 4/4/16 Comp 555 Spring 2016 1 A clique is a graph where every vertex is connected via an edge to every other vertex A clique graph is a graph where each connected component is a clique The concept of clustering

More information

GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment

GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment GLOBEX Bioinformatics (Summer 2015) Multiple Sequence Alignment Scoring Dynamic Programming algorithms Heuristic algorithms CLUSTAL W Courtesy of jalview Motivations Collective (or aggregate) statistic

More information

Olivier Gascuel Arbres formels et Arbre de la Vie Conférence ENS Cachan, septembre Arbres formels et Arbre de la Vie.

Olivier Gascuel Arbres formels et Arbre de la Vie Conférence ENS Cachan, septembre Arbres formels et Arbre de la Vie. Arbres formels et Arbre de la Vie Olivier Gascuel Centre National de la Recherche Scientifique LIRMM, Montpellier, France www.lirmm.fr/gascuel 10 permanent researchers 2 technical staff 3 postdocs, 10

More information

CSE 549: Computational Biology

CSE 549: Computational Biology CSE 549: Computational Biology Phylogenomics 1 slides marked with * by Carl Kingsford Tree of Life 2 * H5N1 Influenza Strains Salzberg, Kingsford, et al., 2007 3 * H5N1 Influenza Strains The 2007 outbreak

More information

Sequence clustering. Introduction. Clustering basics. Hierarchical clustering

Sequence clustering. Introduction. Clustering basics. Hierarchical clustering Sequence clustering Introduction Data clustering is one of the key tools used in various incarnations of data-mining - trying to make sense of large datasets. It is, thus, natural to ask whether clustering

More information

On the Optimality of the Neighbor Joining Algorithm

On the Optimality of the Neighbor Joining Algorithm On the Optimality of the Neighbor Joining Algorithm Ruriko Yoshida Dept. of Statistics University of Kentucky Joint work with K. Eickmeyer, P. Huggins, and L. Pachter www.ms.uky.edu/ ruriko Louisville

More information

Distance based tree reconstruction. Hierarchical clustering (UPGMA) Neighbor-Joining (NJ)

Distance based tree reconstruction. Hierarchical clustering (UPGMA) Neighbor-Joining (NJ) Distance based tree reconstruction Hierarchical clustering (UPGMA) Neighbor-Joining (NJ) All organisms have evolved from a common ancestor. Infer the evolutionary tree (tree topology and edge lengths)

More information

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such)

Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences Phylogeny methods, part 1 (Parsimony and such) Genetics/MBT 541 Spring, 2002 Lecture 1 Joe Felsenstein Department of Genome Sciences joe@gs Phylogeny methods, part 1 (Parsimony and such) Methods of reconstructing phylogenies (evolutionary trees) Parsimony

More information

Scaling species tree estimation methods to large datasets using NJMerge

Scaling species tree estimation methods to large datasets using NJMerge Scaling species tree estimation methods to large datasets using NJMerge Erin Molloy and Tandy Warnow {emolloy2, warnow}@illinois.edu University of Illinois at Urbana Champaign 2018 Phylogenomics Software

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

BMI/CS 576 Fall 2015 Midterm Exam

BMI/CS 576 Fall 2015 Midterm Exam BMI/CS 576 Fall 2015 Midterm Exam Prof. Colin Dewey Tuesday, October 27th, 2015 11:00am-12:15pm Name: KEY Write your answers on these pages and show your work. You may use the back sides of pages as necessary.

More information

Distance Methods. "PRINCIPLES OF PHYLOGENETICS" Spring 2006

Distance Methods. PRINCIPLES OF PHYLOGENETICS Spring 2006 Integrative Biology 200A University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS" Spring 2006 Distance Methods Due at the end of class: - Distance matrices and trees for two different distance

More information

The worst case complexity of Maximum Parsimony

The worst case complexity of Maximum Parsimony he worst case complexity of Maximum Parsimony mir armel Noa Musa-Lempel Dekel sur Michal Ziv-Ukelson Ben-urion University June 2, 20 / 2 What s a phylogeny Phylogenies: raph-like structures whose topology

More information

Special course in Computer Science: Advanced Text Algorithms

Special course in Computer Science: Advanced Text Algorithms Special course in Computer Science: Advanced Text Algorithms Lecture 8: Multiple alignments Elena Czeizler and Ion Petre Department of IT, Abo Akademi Computational Biomodelling Laboratory http://www.users.abo.fi/ipetre/textalg

More information

Reconstructing long sequences from overlapping sequence fragment. Searching databases for related sequences and subsequences

Reconstructing long sequences from overlapping sequence fragment. Searching databases for related sequences and subsequences SEQUENCE ALIGNMENT ALGORITHMS 1 Why compare sequences? Reconstructing long sequences from overlapping sequence fragment Searching databases for related sequences and subsequences Storing, retrieving and

More information

Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters

Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters Designing parallel algorithms for constructing large phylogenetic trees on Blue Waters Erin Molloy University of Illinois at Urbana Champaign General Allocation (PI: Tandy Warnow) Exploratory Allocation

More information

Introduction to Computational Phylogenetics

Introduction to Computational Phylogenetics Introduction to Computational Phylogenetics Tandy Warnow The University of Texas at Austin No Institute Given This textbook is a draft, and should not be distributed. Much of what is in this textbook appeared

More information

human chimp mouse rat

human chimp mouse rat Michael rudno These notes are based on earlier notes by Tomas abak Phylogenetic Trees Phylogenetic Trees demonstrate the amoun of evolution, and order of divergence for several genomes. Phylogenetic trees

More information

Lecture: Bioinformatics

Lecture: Bioinformatics Lecture: Bioinformatics ENS Sacley, 2018 Some slides graciously provided by Daniel Huson & Celine Scornavacca Phylogenetic Trees - Motivation 2 / 31 2 / 31 Phylogenetic Trees - Motivation Motivation -

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA).

Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA). Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA). The UPGMA is the simplest method of tree construction. It was originally developed for

More information

Sequence length requirements. Tandy Warnow Department of Computer Science The University of Texas at Austin

Sequence length requirements. Tandy Warnow Department of Computer Science The University of Texas at Austin Sequence length requirements Tandy Warnow Department of Computer Science The University of Texas at Austin Part 1: Absolute Fast Convergence DNA Sequence Evolution AAGGCCT AAGACTT TGGACTT -3 mil yrs -2

More information

DISTANCE BASED METHODS IN PHYLOGENTIC TREE CONSTRUCTION

DISTANCE BASED METHODS IN PHYLOGENTIC TREE CONSTRUCTION DISTANCE BASED METHODS IN PHYLOGENTIC TREE CONSTRUCTION CHUANG PENG DEPARTMENT OF MATHEMATICS MOREHOUSE COLLEGE ATLANTA, GA 30314 Abstract. One of the most fundamental aspects of bioinformatics in understanding

More information

Salvador Capella-Gutiérrez, Jose M. Silla-Martínez and Toni Gabaldón

Salvador Capella-Gutiérrez, Jose M. Silla-Martínez and Toni Gabaldón trimal: a tool for automated alignment trimming in large-scale phylogenetics analyses Salvador Capella-Gutiérrez, Jose M. Silla-Martínez and Toni Gabaldón Version 1.2b Index of contents 1. General features

More information

Seeing the wood for the trees: Analysing multiple alternative phylogenies

Seeing the wood for the trees: Analysing multiple alternative phylogenies Seeing the wood for the trees: Analysing multiple alternative phylogenies Tom M. W. Nye, Newcastle University tom.nye@ncl.ac.uk Isaac Newton Institute, 17 December 2007 Multiple alternative phylogenies

More information

Parsimony methods. Chapter 1

Parsimony methods. Chapter 1 Chapter 1 Parsimony methods Parsimony methods are the easiest ones to explain, and were also among the first methods for inferring phylogenies. The issues that they raise also involve many of the phenomena

More information

3. Cluster analysis Overview

3. Cluster analysis Overview Université Laval Analyse multivariable - mars-avril 2008 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

More information

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University

Graphs: Introduction. Ali Shokoufandeh, Department of Computer Science, Drexel University Graphs: Introduction Ali Shokoufandeh, Department of Computer Science, Drexel University Overview of this talk Introduction: Notations and Definitions Graphs and Modeling Algorithmic Graph Theory and Combinatorial

More information

Lesson 2 7 Graph Partitioning

Lesson 2 7 Graph Partitioning Lesson 2 7 Graph Partitioning The Graph Partitioning Problem Look at the problem from a different angle: Let s multiply a sparse matrix A by a vector X. Recall the duality between matrices and graphs:

More information

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1

DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens. Katherine St. John City University of New York 1 DIMACS Tutorial on Phylogenetic Trees and Rapidly Evolving Pathogens Katherine St. John City University of New York 1 Thanks to the DIMACS Staff Linda Casals Walter Morris Nicole Clark Katherine St. John

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

Clustering of Proteins

Clustering of Proteins Melroy Saldanha saldanha@stanford.edu CS 273 Project Report Clustering of Proteins Introduction Numerous genome-sequencing projects have led to a huge growth in the size of protein databases. Manual annotation

More information

Multiple Sequence Alignment. Mark Whitsitt - NCSA

Multiple Sequence Alignment. Mark Whitsitt - NCSA Multiple Sequence Alignment Mark Whitsitt - NCSA What is a Multiple Sequence Alignment (MA)? GMHGTVYANYAVDSSDLLLAFGVRFDDRVTGKLEAFASRAKIVHIDIDSAEIGKNKQPHV GMHGTVYANYAVEHSDLLLAFGVRFDDRVTGKLEAFASRAKIVHIDIDSAEIGKNKTPHV

More information

Multiple Sequence Alignment Gene Finding, Conserved Elements

Multiple Sequence Alignment Gene Finding, Conserved Elements Multiple Sequence Alignment Gene Finding, Conserved Elements Definition Given N sequences x 1, x 2,, x N : Insert gaps (-) in each sequence x i, such that All sequences have the same length L Score of

More information

Introduction to Triangulated Graphs. Tandy Warnow

Introduction to Triangulated Graphs. Tandy Warnow Introduction to Triangulated Graphs Tandy Warnow Topics for today Triangulated graphs: theorems and algorithms (Chapters 11.3 and 11.9) Examples of triangulated graphs in phylogeny estimation (Chapters

More information

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota

PROTEIN MULTIPLE ALIGNMENT MOTIVATION: BACKGROUND: Marina Sirota Marina Sirota MOTIVATION: PROTEIN MULTIPLE ALIGNMENT To study evolution on the genetic level across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University

Profiles and Multiple Alignments. COMP 571 Luay Nakhleh, Rice University Profiles and Multiple Alignments COMP 571 Luay Nakhleh, Rice University Outline Profiles and sequence logos Profile hidden Markov models Aligning profiles Multiple sequence alignment by gradual sequence

More information

Behavioral Data Mining. Lecture 18 Clustering

Behavioral Data Mining. Lecture 18 Clustering Behavioral Data Mining Lecture 18 Clustering Outline Why? Cluster quality K-means Spectral clustering Generative Models Rationale Given a set {X i } for i = 1,,n, a clustering is a partition of the X i

More information

Cost Partitioning Techniques for Multiple Sequence Alignment. Mirko Riesterer,

Cost Partitioning Techniques for Multiple Sequence Alignment. Mirko Riesterer, Cost Partitioning Techniques for Multiple Sequence Alignment Mirko Riesterer, 10.09.18 Agenda. 1 Introduction 2 Formal Definition 3 Solving MSA 4 Combining Multiple Pattern Databases 5 Cost Partitioning

More information

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony Jean-Michel Richer 1 and Adrien Goëffon 2 and Jin-Kao Hao 1 1 University of Angers, LERIA, 2 Bd Lavoisier, 49045 Anger Cedex 01,

More information

Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea

Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea Descent w/modification Descent w/modification Descent w/modification Descent w/modification CPU Descent w/modification Descent w/modification Phylogenetics on CUDA (Parallel) Architectures Bradly Alicea

More information

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanfordedu) February 6, 2018 Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 In the

More information

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees

A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees A New Algorithm for the Reconstruction of Near-Perfect Binary Phylogenetic Trees Kedar Dhamdhere, Srinath Sridhar, Guy E. Blelloch, Eran Halperin R. Ravi and Russell Schwartz March 17, 2005 CMU-CS-05-119

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2015 1 Sequence Alignment Dannie Durand Pairwise Sequence Alignment The goal of pairwise sequence alignment is to establish a correspondence between the

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

3. Cluster analysis Overview

3. Cluster analysis Overview Université Laval Multivariate analysis - February 2006 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

More information

Generation of distancebased phylogenetic trees

Generation of distancebased phylogenetic trees primer for practical phylogenetic data gathering. Uconn EEB3899-007. Spring 2015 Session 12 Generation of distancebased phylogenetic trees Rafael Medina (rafael.medina.bry@gmail.com) Yang Liu (yang.liu@uconn.edu)

More information

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology 9/9/ I9 Introduction to Bioinformatics, Clustering algorithms Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Data mining tasks Predictive tasks vs descriptive tasks Example

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 06: Multiple Sequence Alignment https://upload.wikimedia.org/wikipedia/commons/thumb/7/79/rplp0_90_clustalw_aln.gif/575px-rplp0_90_clustalw_aln.gif Slides

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

CLC Phylogeny Module User manual

CLC Phylogeny Module User manual CLC Phylogeny Module User manual User manual for Phylogeny Module 1.0 Windows, Mac OS X and Linux September 13, 2013 This software is for research purposes only. CLC bio Silkeborgvej 2 Prismet DK-8000

More information

PHYLOGENETIC TREE BUILDING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE

PHYLOGENETIC TREE BUILDING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE - 21 - PHYLOGENETIC TREE BUILDING USING A NOVEL COMPRESSION-BASED NON-SYMMETRIC DISSIMILARITY MEASURE R. BUSA-FEKETE 1 A. KOCSOR 1 * CS. BAGYINKA 2 1 Research Group on Artificial Intelligence of the Hungarian

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

Special course in Computer Science: Advanced Text Algorithms

Special course in Computer Science: Advanced Text Algorithms Special course in Computer Science: Advanced Text Algorithms Lecture 6: Alignments Elena Czeizler and Ion Petre Department of IT, Abo Akademi Computational Biomodelling Laboratory http://www.users.abo.fi/ipetre/textalg

More information

Approximation Algorithms

Approximation Algorithms 18.433 Combinatorial Optimization Approximation Algorithms November 20,25 Lecturer: Santosh Vempala 1 Approximation Algorithms Any known algorithm that finds the solution to an NP-hard optimization problem

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

Computational Molecular Biology

Computational Molecular Biology Computational Molecular Biology Erwin M. Bakker Lecture 2 Materials used from R. Shamir [2] and H.J. Hoogeboom [4]. 1 Molecular Biology Sequences DNA A, T, C, G RNA A, U, C, G Protein A, R, D, N, C E,

More information

Solutions for the Exam 6 January 2014

Solutions for the Exam 6 January 2014 Mastermath and LNMB Course: Discrete Optimization Solutions for the Exam 6 January 2014 Utrecht University, Educatorium, 13:30 16:30 The examination lasts 3 hours. Grading will be done before January 20,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 5 Inference

More information

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony

A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony Jean-Michel Richer 1,AdrienGoëffon 2, and Jin-Kao Hao 1 1 University of Angers, LERIA, 2 Bd Lavoisier, 49045 Anger Cedex 01, France

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information

1. Evolutionary Tree Reconstruction 2. Two Hypotheses for Human Evolution 3. Did we evolve from Neanderthals? 4. Distance-Based Phylogeny 5.

1. Evolutionary Tree Reconstruction 2. Two Hypotheses for Human Evolution 3. Did we evolve from Neanderthals? 4. Distance-Based Phylogeny 5. Molecular Evolution 1. Evolutionary Tree Reconstruction 2. Two Hypotheses for Human Evolution 3. Did we evolve from Neanderthals? 4. Distance-Based Phylogeny 5. Neighbor Joining Algorithm 6. Additive Phylogeny

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

Stephen Scott.

Stephen Scott. 1 / 33 sscott@cse.unl.edu 2 / 33 Start with a set of sequences In each column, residues are homolgous Residues occupy similar positions in 3D structure Residues diverge from a common ancestral residue

More information

Dynamic Programming for Phylogenetic Estimation

Dynamic Programming for Phylogenetic Estimation 1 / 45 Dynamic Programming for Phylogenetic Estimation CS598AGB Pranjal Vachaspati University of Illinois at Urbana-Champaign 2 / 45 Coalescent-based Species Tree Estimation Find evolutionary tree for

More information

Notes 4 : Approximating Maximum Parsimony

Notes 4 : Approximating Maximum Parsimony Notes 4 : Approximating Maximum Parsimony MATH 833 - Fall 2012 Lecturer: Sebastien Roch References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9] 1 Coping with NP-completeness Local search heuristics.

More information

Improvement of Distance-Based Phylogenetic Methods by a Local Maximum Likelihood Approach Using Triplets

Improvement of Distance-Based Phylogenetic Methods by a Local Maximum Likelihood Approach Using Triplets Improvement of Distance-Based Phylogenetic Methods by a Local Maximum Likelihood Approach Using Triplets Vincent Ranwez and Olivier Gascuel Département Informatique Fondamentale et Applications, LIRMM,

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 2 Part 4: Dividing Networks into Clusters The problem l Graph partitioning

More information

Systematics - Bio 615

Systematics - Bio 615 The 10 Willis (The commandments as given by Willi Hennig after coming down from the Mountain) 1. Thou shalt not paraphyle. 2. Thou shalt not weight. 3. Thou shalt not publish unresolved nodes. 4. Thou

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 2: Global properties of Euclidean Steiner Trees and GeoSteiner Marcus Brazil

More information

Modularity CMSC 858L

Modularity CMSC 858L Modularity CMSC 858L Module-detection for Function Prediction Biological networks generally modular (Hartwell+, 1999) We can try to find the modules within a network. Once we find modules, we can look

More information

Cluster Analysis. Angela Montanari and Laura Anderlucci

Cluster Analysis. Angela Montanari and Laura Anderlucci Cluster Analysis Angela Montanari and Laura Anderlucci 1 Introduction Clustering a set of n objects into k groups is usually moved by the aim of identifying internally homogenous groups according to a

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\ Data Preprocessing Javier Béjar BY: $\ URL - Spring 2018 C CS - MAI 1/78 Introduction Data representation Unstructured datasets: Examples described by a flat set of attributes: attribute-value matrix Structured

More information

FastJoin, an improved neighbor-joining algorithm

FastJoin, an improved neighbor-joining algorithm Methodology FastJoin, an improved neighbor-joining algorithm J. Wang, M.-Z. Guo and L.L. Xing School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, P.R. China

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Definitions. Matt Mauldin

Definitions. Matt Mauldin Combining Data Sets Matt Mauldin Definitions Character Independence: changes in character states are independent of others Character Correlation: changes in character states occur together Character Congruence:

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

1. R. Durbin, S. Eddy, A. Krogh und G. Mitchison: Biological sequence analysis, Cambridge, 1998

1. R. Durbin, S. Eddy, A. Krogh und G. Mitchison: Biological sequence analysis, Cambridge, 1998 7 Multiple Sequence Alignment The exposition was prepared by Clemens GrÃP pl, based on earlier versions by Daniel Huson, Knut Reinert, and Gunnar Klau. It is based on the following sources, which are all

More information

of the Balanced Minimum Evolution Polytope Ruriko Yoshida

of the Balanced Minimum Evolution Polytope Ruriko Yoshida Optimality of the Neighbor Joining Algorithm and Faces of the Balanced Minimum Evolution Polytope Ruriko Yoshida Figure 19.1 Genomes 3 ( Garland Science 2007) Origins of Species Tree (or web) of life eukarya

More information