Appendix E: Software

Size: px
Start display at page:

Download "Appendix E: Software"

Transcription

1 Appendix E: Software Video Analysis of Motion Analyzing pictures (movies or videos) is a powerful tool for understanding how objects move. Like most forms of data, video is most easily analyzed using a computer and data acquisition software. This appendix will guide a person somewhat familiar with WindowsNT through the use of one such program: the video analysis application written in LabVIEW. LabVIEW is a general-purpose data acquisition programming system. It is widely used in academic research and industry. We will also use LabVIEW to acquire data from other instruments throughout the year. E - 1

2 Using video to analyze motion is a two-step process. The first step is recording a video. This process uses the video software to record the images from the camera and compress the file. The second step is to analyze the video to get a kinematic description of the recorded motion. (1) MAKING VIDEOS After logging into the computer, open the video recording program by double clicking the icon on the desktop labeled VideoRECORDER. A window similar to the picture on the previous page should appear. If the camera is working, you should see a "live" video image of whatever is in front of the camera. (See your instructor if your camera is not functioning and you are sure you turned it on.) By adjusting the lens on the video camera, you can alter both the magnification and the sharpness of the image until the picture quality is as good as possible. The controls are fairly self-explanatory; pressing the Record Video button begins the process of recording a 5- second video image. While the video is recording, the blue Progress bar beneath the video frame grows. Once you have finished recording, you can move through the video by dragging the Frame Number slider control. If you are not pleased with your video recording, delete it by pressing the Dispose button. You may notice that the computer sometimes skips frames. You can identify the dropped frame by playing the video back frame by frame. If the recorded motion does not appear smooth or if the object moves irregularly from frame to frame, then frames are probably missing. If the computer is skipping frames, speak with your instructor. While you are recording your video, you should try to estimate the kinematic variables you observe, such as the initial position, velocities, and acceleration. The time with the unit of second is shown in the VideoRECORDER window, in the box below the Frame Number slider. These values prove very useful for your prediction equations. Be sure to record your estimates in your journal. Once you have recorded a satisfactory video, save it by pressing the Save Video button. You will see a Save window, as shown on the next page. To avoid cluttering the computer, you will only be able to save your video to certain folders on the hard disk. One such folder is the My Documents folder located on the C drive. You should check with your lab instructor for the most suitable place to save your video. In the File name box, you should enter the location of the folder in which you wish to save your video followed by the name that you wish to give to your video. This name should be descriptive enough to be useful to you later (see the picture for an example). E - 2

3 (2) ANALYSIS BASICS Open the video analysis application by clicking the icon labeled VideoTOOL, which is located on the desktop. You should now take a moment to identify several elements of the program. The two most important of these are the Program Controls panel shown to the right and the Instructions box shown below. These two elements of the analysis program work in tandem. The Instructions box will give you directions and tasks to perform. It will also tell you when to select a control in the Program Controls panel. After you select a control, it will gray out and the next control will become available. If you make a mistake, you cannot go backwards! You would have to quit your analysis and reopen the video to begin afresh. You print and/or quit the video analysis from the Program Controls panel. You also have the option to save the data to continue later, or to save a data table. E - 3

4 Be careful not to quit without printing and saving your data! You will have to go back and analyze the data again if you fail to select Print Results before selecting Quit Program or Return to Beginning. Also be sure to save the data (Save All) and save the data table (Save Data Table). CALIBRATION While the computer is a very handy tool, it is not smart enough to identify objects or the sizes of those objects in the videos that you take and analyze. For this reason, you will need to enter this information into the computer. If you are not careful in the calibration process, your analysis will not make any sense. After you open the video that you wish to analyze and select Begin Calibration from the Program Controls panel you will be advised in the Instructions box "To begin Calibration, advance the video to a frame where the first data point will be taken. The time stamp of this frame will be used as the initial time." To advance the video to where you want time t=0 to be, you need to use the video control buttons, shown below. This action is equivalent to starting a stopwatch. Practice with each button until you are proficient with its use. When you are ready to continue with the calibration, locate the object you wish to use to calibrate the size of the video. The best object to use is the object whose motion you are analyzing, but sometimes this is not easy. If you cannot use the object whose motion you are analyzing, you must do your best to use an object that is in the plane of motion of your object being analyzed. Follow the direction in the Instructions box and define the length of an object that you have measured for the computer. Once this is completed, input the scale length with proper units in Calibration Controls box (shown below). Read the directions in the Instructions box carefully. Enter the scale length, and then use the arrows to select the units you are using. Lastly, decide if you want to rotate your coordinate axes. If you choose not to rotate the axes, the computer will choose the lower left-hand corner of the video to be the origin with positive x to the right and positive y up. If you choose to rotate your axis, follow the directions in the Instructions box carefully. Your chosen axes will appear under the Calibration Controls box. This option may also be used to reposition the origin of the coordinate system, should you require it. Once you have completed this process, select "OK" from the Calibration Controls box. E - 4

5 ANALYSIS PREDICTIONS This video analysis relies on your graphical skills to interpret the data from the videos. Before doing your analysis, you should be familiar with both Appendix C: Graphing and Appendix B: Uncertainties. Before analyzing the data, enter your prediction of how you expect the data to behave. This pattern of making predictions before obtaining results is the only reliable way to take data. How else can you know if something has gone wrong? This happens so often that it is given a name (Murphy s Law). It is also a good way to make sure you have learned something, but only if you stop to think about the discrepancies or similarities between your prediction and the results. In order to enter your prediction into the computer, you first need to decide on your coordinate axes, origin, and scale (units) for your motion. Record these in your lab journal. Next you will need to select the generic equation, u(t), which describes the graph you expect for the motion along your x-axis seen in your video. You must choose the appropriate function that matches the predicted curve. The analysis program is equipped with several equations, which are accessible using the pull-down menu on the equation line (shown to the right). You can change the equation to one you would like to use by clicking on the arrows to the left of the equation in the Prediction Equation command box, shown to the right. Holding down the mouse button will give you the menu also shown to the right. After selecting your generic equation, you next need to enter your best approximation for the parameters A and B and C and D where you need them. If you took good notes of these values during the filming of your video, inputting these values should be straightforward. You will also need to decide on the units for these constants at this time. Once you are satisfied that the equation you selected for your motion and the values of the constants are correct, click "Predictions" in the Prediction Equation command box. Your prediction equation will then show up on the graph on the computer screen. If you wish to change your prediction simply repeat the above procedure. When you are satisfied, select the Accept x- (or y-) prediction option from the Program Controls panel. Once you have done this you cannot change your prediction except by starting over. Repeat this procedure for the Y direction. E - 5

6 DATA COLLECTION To collect data, you first need to identify a very specific point on the object whose motion you are analyzing. Next move the cursor over this point and click the green Accept Data Point button in VideoPLAYER window. The computer records this position and time. The computer will automatically advance the video to the next frame leaving a mark on the point you have just selected. Then move the cursor back to the same place on the object and click Accept Data Point button again. So long as you always use the same point on the object, you will get reliable data from your analysis. This process is not always so easy especially if the object is moving rapidly. Because the camera has an interlaced scan of the image, it actually gives you two images. For a rapidly moving object, these images split apart. You need to keep track of which image you are measuring for each picture frame. The data will automatically appear on the appropriate graph on your computer screen each time you accept a data point. If you don t see the data on the graph, you will need to change the scale of the axes. If you are satisfied with your data, choose Analyze Data from the Program Controls panel. FITTING YOUR DATA Deciding which equation best represents your data is the most important part of your data analysis. The actual mechanics of choosing the equation and constants is similar to what you did for your predictions. First you must find your data on your graphs. Usually, you can find your full data set by adjusting the scales of your X-motion and Y- motion plots. This scaling is accomplished by entering the appropriate maximum and minimum values on the vertical axis (as shown to the right) as well as adjusting the time scale. E - 6

7 Secondly, after you find your data, you need to determine the best possible equation to describe this data. After you have decided on the appropriate equation, you need to determine the constants of this equation so that it best fits the data. Although this can be done by trial and error, it is much more efficient to think of how the behavior of the equation you have chosen depends on each parameter. Calculus can be a great help here. As an example of a completed determination of the equation, the X-motion plot above shows both the predicted line (down) and the line that best fits the data (through the circles). Be sure to record the values of your parameters in your journal before you go on to the next stage. Lastly, you need to estimate the uncertainty in your fit by deciding the range of other lines that could also fit your data. This method of estimating your uncertainty is described in Appendix C. Slightly changing the values for each constant in turn will allow you to do this quickly. For example, the X-motion plots below show both the predicted line (down) and two other lines that also fit the data (near the circles). After you have found the uncertainties in your constants, return to your best-fit line and use it as your fit by selecting Accept x- (or y-) fit in the Program Controls panel. E - 7

8 MEASURING CONSTANT MAGNETIC FIELD (THE HALL PROBE APPLICATION) Basics Before you begin, you should ensure that you have read the relevant sections of Appendix D to familiarize yourself with the equipment. The software package that works in tandem with your magnetic field sensor is written in LabVIEW. It allows you to measure and record magnetic field strength as a function of a number of different variables. After logging into the computer, execute the application by double clicking the HallPROBE icon on the desktop. Before you start using the program, you should take a moment to identify several key elements. The two most important of these are the Command Panel, shown to the right, and the Guide Box, shown below. The Guide Box will give you directions and tasks to perform. It will also tell you when to select a command in the Command Panel. After selecting a command, it will gray out and the next command will become available. You can also print and/or quit from the Command Panel or abort your analysis and try again. The primary data output you get is by printing your results, so be careful not to quit without printing or exporting your data. E - 8

9 Calibration The first command is to calibrate the Magnetic Field Sensor. Before selecting this command, you need to decide whether you require high or low amplification. Switch the amplifier box to the appropriate setting also set the amplification switch on the screen to the same setting. The amplification switch on the screen toggles between the two settings by clicking it with the mouse. The two amplification settings are shown below: After selecting the "Calibrate Probe" command, you will be asked to do two tasks. Firstly, you will need to choose the quantity on the x-axis of your data graph. This is accomplished by moving the mouse cursor over to the word "meter" in the red-colored area (shown below) and then pressing the mouse button. You should get a list of choices as shown to the right. By selecting any of these units, you will be making a choice about what you wish to measure. For example, if you choose to use "cm, you will make a graph of magnetic field strength as a function of distance (B vs. x). It is likely you will want to choose a small unit (cm s or mm s) to measure the distance in, since many magnetic fields are not very strong over long distances Selecting "degree" will make a plot of magnetic field strength as a function of angle (B vs. θ). Click "OK" when you are ready to proceed. Secondly, you will need to eliminate the effect of the background magnetic fields. This process is called "zeroing the Hall probe" in the Guide Box. Place the magnetic field sensor wand in the position you would like to take your measurement, but be sure that there are no magnets nearby. Note that power supplies and computers generate magnetic fields, so it is a good idea to keep away from them! When you are ready, select the "First Calibration Value" as shown below. Now rotate the wand 180 degree around its long axis (similar to rolling a pencil) and select "Second Calibration Value." The calibration process is now complete. E - 9

10 Predictions This type of analysis relies on your graphical skills to interpret the data, so you should be familiar with both Appendix D: Graphing, and Appendix C: Uncertainties. The first task is to enter your prediction of the mathematical function you expect to represent your data. Making a prediction before taking data is the best way to determine if anything is going wrong (remember Murphy s Law). It s also a good way to make sure you have learned something, but only if you stop to think about the discrepancies or similarities between your prediction and the results. In order to enter your graphical prediction, you first need to decide on your coordinate axes and scale (units) for your measurements. Record these in your lab journal. Next, you will need to select the generic equation, u(x), which describes the graph you expect for the data. Clicking the equation currently showing in the box will bring up a list of equations to choose from; see the diagrams to the right. After selecting your generic equation, you next need to enter your best approximation for the parameters A, B, C, and/or D. These values should come directly from your prediction equation you did for class. As you enter these values, you should see the red line in the "Plot" box changing. Once you are satisfied that the equation you selected and the values of the constants are correct, select the Prediction button in the Fit Equation command box. Your prediction equation will then show up on the graph on the computer screen. If you do not see the curve representing your prediction, change the scale of the graph axes or use the AutoScale feature (see Finding Data below). If you wish to change your prediction, simply repeat the above procedure. When you are satisfied, select the Accept Prediction option from the Command Panel. Once you have done this you cannot change your prediction except by starting over. Exploration After you have entered your prediction, you can explore the limitations of your magnetic field sensor before you take data. The value of the magnetic field strength is displayed directly under the Guide Box. When you are ready to take data, select Acquire Data from the Command Panel. Data Acquisition Collecting data requires that you enter the x-axis data each time the computer reads in a value for the magnetic field strength. You enter this data using the panel shown to the right. For every x-axis data value E - 10

11 you enter, the analysis program will record the magnetic field strength in gauss on the y-axis of the "Plot". Press "OK" to collect the next data point. Each data point should appear on the graph on the computer screen as you take it. If it doesn t, adjust the scales of your graph axes or use the AutoScale feature (see Finding Data below). If you are satisfied with your data, choose Analyze Data from the Command Panel. Finding Data on the Graph You can find your data on the graph by adjusting the scales of your X- axis and Y-axis plots. This scaling is accomplished by entering the appropriate values into the "Y-Axis Max." and "Y-Axis Min." fields (as shown to the right) as well as adjusting the "X-Axis Max." and "X-Axis Min." fields (also shown to the right). If you cannot locate your data, you can select both "AutoScale Y-axis" and "AutoScale X-Axis" to let the program find the data for you. You can then adjust your axis scales to give you a convenient graph for analysis. Be careful, the AutoScale option will often set the scales in such a way that small fluctuations in the data are magnified into huge fluctuations. Data Fits Deciding which equation best fits your data is the most important part of using this analysis program. While the actual mechanics of choosing the equation and parameters is similar to what you did for your predictions, fitting data is somewhat more complicated. By looking at the behavior of the data on the graph, determine the best possible function to describe this data. After you have decided on the appropriate equation, you need to determine the constants of this equation so that it best fits the data. Although this can be done by trial and error, it is much more efficient to think of how the behavior of the equation you have chosen depends on each parameter. Calculus can be a great help here. This can be a time-consuming task, so be patient. Now you need to estimate the uncertainty in your fit by deciding the range of other lines that could also fit your data. This method of estimating your uncertainty is described in Appendix D. Slightly changing the values for each constant in turn will allow you to do this quickly. After you have computed your uncertainties, return to your best-fit line and use it as your fit by selecting Accept Fit in the Command Panel. E - 11

12 Importing / Exporting Data After you have selected Analyze Data, it is possible to save your data to the computer's hard drive. This feature can come in handy if you need to analyze your data at a later date or if you want to re-analyze your data after you have printed it out. To save your data, simply select Export Data (as shown to the right) and follow the instructions in the windows. Your file will be saved to your section s lab folder. To retrieve this file, restart HallPROBE from the desktop and select Import Data. Last Words These directions are not meant to be exhaustive. You will discover more features as you analyze more data. Be sure to record these features in your lab journal. E - 12

Two-Dimensional Projectile Motion

Two-Dimensional Projectile Motion Two-Dimensional Projectile Motion I. Introduction. This experiment involves the study of motion using a CCD video camera in which a sequence of video frames (a movie ) is recorded onto computer disk and

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Introduction to Motion

Introduction to Motion Date Partners Objectives: Introduction to Motion To investigate how motion appears on a position versus time graph To investigate how motion appears on a velocity versus time graph and the relationship

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

Version 1.1. COPYRIGHT 1999 Tufts University and Vernier Software. ISBN (Windows) ISBN (Macintosh)

Version 1.1. COPYRIGHT 1999 Tufts University and Vernier Software. ISBN (Windows) ISBN (Macintosh) Logger Pro Tutorials Version 1.1 COPYRIGHT 1999 Tufts University and Vernier Software ISBN 0-918731-92-5 (Windows) ISBN 0-918731-91-7 (Macintosh) Distributed by Vernier Software 8565 S.W. Beaverton-Hillsdale

More information

252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties

252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties 252 APPENDIX D EXPERIMENT 1 Introduction to Computer Tools and Uncertainties Objectives To become familiar with the computer programs and utilities that will be used throughout the semester. You will learn

More information

Visual Physics Introductory Lab [Lab 0]

Visual Physics Introductory Lab [Lab 0] Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET

Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET Physics 101, Lab 1: LINEAR KINEMATICS PREDICTION SHEET After reading through the Introduction, Purpose and Principles sections of the lab manual (and skimming through the procedures), answer the following

More information

Visual Physics - Introductory Lab Lab 0

Visual Physics - Introductory Lab Lab 0 Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Department of Physics & Astronomy Lab Manual Undergraduate Labs. A Guide to Logger Pro

Department of Physics & Astronomy Lab Manual Undergraduate Labs. A Guide to Logger Pro A Guide to Logger Pro Logger Pro is the main program used in our physics labs for data collection and analysis. You are encouraged to download Logger Pro to your personal laptop and bring it with you to

More information

Visual Physics Camera Parallax Lab 1

Visual Physics Camera Parallax Lab 1 In this experiment you will be learning how to locate the camera properly in order to identify and minimize the sources of error that are introduced by parallax and perspective. These sources of error

More information

Velocity: A Bat s Eye View of Velocity

Velocity: A Bat s Eye View of Velocity Name School Date Purpose Velocity: A Bat s Eye View of Velocity There are a number of ways of representing motion that we ll find useful. Graphing position, velocity, and acceleration vs. time is often

More information

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( )

Using LoggerPro. Nothing is more terrible than to see ignorance in action. J. W. Goethe ( ) Using LoggerPro Nothing is more terrible than to see ignorance in action. J. W. Goethe (1749-1832) LoggerPro is a general-purpose program for acquiring, graphing and analyzing data. It can accept input

More information

Recitation Handout 10: Experiments in Calculus-Based Kinetics

Recitation Handout 10: Experiments in Calculus-Based Kinetics Math 120 Winter 2009 Recitation Handout 10: Experiments in Calculus-Based Kinetics Today s recitation will focus on curve sketching. These are problems where you information about the first and second

More information

LAB 1: INTRODUCTION TO DATA STUDIO AND ONE-DIMENSIONAL MOTION

LAB 1: INTRODUCTION TO DATA STUDIO AND ONE-DIMENSIONAL MOTION Lab 1 - Introduction to Data Studio and One-Dimensional Motion 5 Name Date Partners LAB 1: INTRODUCTION TO DATA STUDIO AND ONE-DIMENSIONAL MOTION Slow and steady wins the race. Aesop s fable: The Hare

More information

DDX-R Quick Start Guide

DDX-R Quick Start Guide DDX-R Quick Start Guide Imaging Support 1-855-726-9995 www.scilvet.com Contents USING DDX-R... 2 Opening a Patient File... 2 Opening a New Patient File... 3 Screen Layout... 3 ACQUIRING IMAGES ON A PATIENT...

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

Excel Spreadsheets and Graphs

Excel Spreadsheets and Graphs Excel Spreadsheets and Graphs Spreadsheets are useful for making tables and graphs and for doing repeated calculations on a set of data. A blank spreadsheet consists of a number of cells (just blank spaces

More information

Adobe Flash CS3 Reference Flash CS3 Application Window

Adobe Flash CS3 Reference Flash CS3 Application Window Adobe Flash CS3 Reference Flash CS3 Application Window When you load up Flash CS3 and choose to create a new Flash document, the application window should look something like the screenshot below. Layers

More information

Video-Based Motion Analysis

Video-Based Motion Analysis Video-Based Motion Analysis Bruce McKay Saint Ignatius College Introduction This session will cover the basics of recording and producing video clips for analysis. Video analysis provides the opportunity

More information

Pre-Lab Excel Problem

Pre-Lab Excel Problem Pre-Lab Excel Problem Read and follow the instructions carefully! Below you are given a problem which you are to solve using Excel. If you have not used the Excel spreadsheet a limited tutorial is given

More information

Models for Nurses: Quadratic Model ( ) Linear Model Dx ( ) x Models for Doctors:

Models for Nurses: Quadratic Model ( ) Linear Model Dx ( ) x Models for Doctors: The goal of this technology assignment is to graph several formulas in Excel. This assignment assumes that you using Excel 2007. The formula you will graph is a rational function formed from two polynomials,

More information

Your Name: Section: INTRODUCTION TO STATISTICAL REASONING Computer Lab #4 Scatterplots and Regression

Your Name: Section: INTRODUCTION TO STATISTICAL REASONING Computer Lab #4 Scatterplots and Regression Your Name: Section: 36-201 INTRODUCTION TO STATISTICAL REASONING Computer Lab #4 Scatterplots and Regression Objectives: 1. To learn how to interpret scatterplots. Specifically you will investigate, using

More information

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity

PHY 221 Lab 1. Position, Displacement, and Average and Instantaneous Velocity PHY 221 Lab 1 Position, Displacement, and Average and Instantaneous Velocity Name: Partner: Partner: Instructions Before lab, read section 0 in the Introduction, and answer the Pre-Lab Questions on the

More information

FILE ORGANIZATION. GETTING STARTED PAGE 02 Prerequisites What You Will Learn

FILE ORGANIZATION. GETTING STARTED PAGE 02 Prerequisites What You Will Learn FILE ORGANIZATION GETTING STARTED PAGE 02 Prerequisites What You Will Learn PRINCIPLES OF FILE ORGANIZATION PAGE 03 Organization Trees Creating Categories FILES AND FOLDERS PAGE 05 Creating Folders Saving

More information

Using DataQuest on a Handheld

Using DataQuest on a Handheld Using DataQuest on a Handheld Appendix B This appendix gives an overview of using the Vernier DataQuest application on a TI-Nspire handheld. It includes information on accessing the common tools in the

More information

Physics 1050 Experiment 2. Acceleration Due to Gravity

Physics 1050 Experiment 2. Acceleration Due to Gravity Acceleration Due to Gravity Prelab uestions! These questions need to be completed before entering the lab. Show all workings. Prelab 1: For a falling ball which bounces, draw the expected shape of the

More information

BioFuel Graphing instructions using Microsoft Excel 2003 (Microsoft Excel 2007 instructions start on page mei-7)

BioFuel Graphing instructions using Microsoft Excel 2003 (Microsoft Excel 2007 instructions start on page mei-7) BioFuel Graphing instructions using Microsoft Excel 2003 (Microsoft Excel 2007 instructions start on page mei-7) Graph as a XY Scatter Chart, add titles for chart and axes, remove gridlines. A. Select

More information

Capstone Appendix. A guide to your lab computer software

Capstone Appendix. A guide to your lab computer software Capstone Appendix A guide to your lab computer software Important Notes Many of the Images will look slightly different from what you will see in lab. This is because each lab setup is different and so

More information

Physics 1020 Experiment 3. Acceleration of Falling Objects

Physics 1020 Experiment 3. Acceleration of Falling Objects 1 2 Part I: Introduction In this experiment you will study the motion of a falling ball which experiences constant acceleration. You will use a Motion Detector to measure the position of the ball as a

More information

EXCEL SPREADSHEET TUTORIAL

EXCEL SPREADSHEET TUTORIAL EXCEL SPREADSHEET TUTORIAL Note to all 200 level physics students: You will be expected to properly format data tables and graphs in all lab reports, as described in this tutorial. Therefore, you are responsible

More information

Exploring Projectile Motion with Interactive Physics

Exploring Projectile Motion with Interactive Physics Purpose: The purpose of this lab will is to simulate a laboratory exercise using a program known as "Interactive Physics." Such simulations are becoming increasingly common, as they allow dynamic models

More information

Appendix 1: DataStudio with ScienceWorkshop Sensors Tech Tips

Appendix 1: DataStudio with ScienceWorkshop Sensors Tech Tips Appendix 1: DataStudio with ScienceWorkshop Sensors Tech Tips Section 1: Starting an experiment 1.1 Opening a file 1. Open the File menu and select Open Activity. 2. In the Open dialog box, navigate to

More information

KCS Motion. Video Motion Analysis Software

KCS Motion. Video Motion Analysis Software Video Motion Analysis Software Software and supporting material is property of G. Mason, Seattle University, 2007 Overview Overview KCS Motion tracks moving objects in a video clip and analyzes their position,

More information

To Measure a Constant Velocity. Enter.

To Measure a Constant Velocity. Enter. To Measure a Constant Velocity Apparatus calculator, black lead, calculator based ranger (cbr, shown), Physics application this text, the use of the program becomes second nature. At the Vernier Software

More information

All textures produced with Texture Maker. Not Applicable. Beginner.

All textures produced with Texture Maker. Not Applicable. Beginner. Tutorial for Texture Maker 2.8 or above. Note:- Texture Maker is a texture creation tool by Tobias Reichert. For further product information please visit the official site at http://www.texturemaker.com

More information

Appendix C. Vernier Tutorial

Appendix C. Vernier Tutorial C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

More information

Lab 2: Conservation of Momentum

Lab 2: Conservation of Momentum 3 Lab 2: Conservation of Momentum I. Before you come to lab... II. Background III. Introduction A. This lab will give you an opportunity to explore the conservation of momentum in an interesting physical

More information

Lab 1- Introduction to Motion

Lab 1- Introduction to Motion Partner : Purpose Partner 2: Lab - Section: The purpose of this lab is to learn via a motion detector the relationship between position and velocity. Remember that this device measures the position of

More information

Premiere Pro Desktop Layout (NeaseTV 2015 Layout)

Premiere Pro Desktop Layout (NeaseTV 2015 Layout) Premiere Pro 2015 1. Contextually Sensitive Windows - Must be on the correct window in order to do some tasks 2. Contextually Sensitive Menus 3. 1 zillion ways to do something. No 2 people will do everything

More information

On the Web sun.com/aboutsun/comm_invest STAROFFICE 8 DRAW

On the Web sun.com/aboutsun/comm_invest STAROFFICE 8 DRAW STAROFFICE 8 DRAW Graphics They say a picture is worth a thousand words. Pictures are often used along with our words for good reason. They help communicate our thoughts. They give extra information that

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Abstract The objective of this first lab are to learn the use of the computerized Science Workshop interface for data acquisition and to study the simple harmonic motion of a mass-spring

More information

Detailed instructions for video analysis using Logger Pro.

Detailed instructions for video analysis using Logger Pro. Detailed instructions for video analysis using Logger Pro. 1. Begin by locating or creating a video of a projectile (or any moving object). Save it to your computer. Most video file types are accepted,

More information

JAZZ HARMONY User Manual

JAZZ HARMONY User Manual JAZZ HARMONY User Manual Copyright 2017 Imaging. All rights reserved. This manual and the software described herein are protected by copyright laws and international copyright treaties, as well as other

More information

Physics 251 Laboratory Introduction to Spreadsheets

Physics 251 Laboratory Introduction to Spreadsheets Physics 251 Laboratory Introduction to Spreadsheets Pre-Lab: Please do the lab-prep exercises on the web. Introduction Spreadsheets have a wide variety of uses in both the business and academic worlds.

More information

Lab1: Use of Word and Excel

Lab1: Use of Word and Excel Dr. Fritz Wilhelm; physics 230 Lab1: Use of Word and Excel Page 1 of 9 Lab partners: Download this page onto your computer. Also download the template file which you can use whenever you start your lab

More information

Lastly, in case you don t already know this, and don t have Excel on your computers, you can get it for free through IT s website under software.

Lastly, in case you don t already know this, and don t have Excel on your computers, you can get it for free through IT s website under software. Welcome to Basic Excel, presented by STEM Gateway as part of the Essential Academic Skills Enhancement, or EASE, workshop series. Before we begin, I want to make sure we are clear that this is by no means

More information

Windows XP. A Quick Tour of Windows XP Features

Windows XP. A Quick Tour of Windows XP Features Windows XP A Quick Tour of Windows XP Features Windows XP Windows XP is an operating system, which comes in several versions: Home, Media, Professional. The Windows XP computer uses a graphics-based operating

More information

= 3 + (5*4) + (1/2)*(4/2)^2.

= 3 + (5*4) + (1/2)*(4/2)^2. Physics 100 Lab 1: Use of a Spreadsheet to Analyze Data by Kenneth Hahn and Michael Goggin In this lab you will learn how to enter data into a spreadsheet and to manipulate the data in meaningful ways.

More information

ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW

ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW ME 365 EXPERIMENT 3 INTRODUCTION TO LABVIEW Objectives: The goal of this exercise is to introduce the Laboratory Virtual Instrument Engineering Workbench, or LabVIEW software. LabVIEW is the primary software

More information

Using imovie to create a Digital Video Marshall G. Jones Winthrop University Edited by Lynn Cecil

Using imovie to create a Digital Video Marshall G. Jones Winthrop University Edited by Lynn Cecil Using imovie to create a Digital Video Marshall G. Jones Winthrop University Edited by Lynn Cecil When you first start up: 1. Notice the number of your ibook. This is the machine you will need to work

More information

Recipes4Success. Draw and Animate a Rocket Ship. Frames 5 - Drawing Tools

Recipes4Success. Draw and Animate a Rocket Ship. Frames 5 - Drawing Tools Recipes4Success You can use the drawing tools and path animation tools in Frames to create illustrated cartoons. In this Recipe, you will draw and animate a rocket ship. 2012. All Rights Reserved. This

More information

Polarization of light

Polarization of light Polarization of light TWO WEIGHTS RECOMENDED READINGS 1) G. King: Vibrations and Waves, Ch.5, pp. 109-11. Wiley, 009. ) E. Hecht: Optics, Ch.4 and Ch.8. Addison Wesley, 00. 3) PASCO Instruction Manual

More information

Small rectangles (and sometimes squares like this

Small rectangles (and sometimes squares like this Lab exercise 1: Introduction to LabView LabView is software for the real time acquisition, processing and visualization of measured data. A LabView program is called a Virtual Instrument (VI) because it,

More information

Use the slope of a graph of the cart s acceleration versus sin to determine the value of g, the acceleration due to gravity.

Use the slope of a graph of the cart s acceleration versus sin to determine the value of g, the acceleration due to gravity. Name Class Date Activity P03: Acceleration on an Incline (Acceleration Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P03 Acceleration.ds (See end of activity) (See

More information

Adobe Illustrator. Always NAME your project file. It should be specific to you and the project you are working on.

Adobe Illustrator. Always NAME your project file. It should be specific to you and the project you are working on. Adobe Illustrator This packet will serve as a basic introduction to Adobe Illustrator and some of the tools it has to offer. It is recommended that anyone looking to become more familiar with the program

More information

Lab 1 Introduction to R

Lab 1 Introduction to R Lab 1 Introduction to R Date: August 23, 2011 Assignment and Report Due Date: August 30, 2011 Goal: The purpose of this lab is to get R running on your machines and to get you familiar with the basics

More information

AP Physics 1 and 2 Summer Assignment

AP Physics 1 and 2 Summer Assignment AP Physics 1 and 2 Summer Assignment Due: First Day of Class Welcome to AP Physics! You are responsible for the material covered in the first three chapters of your textbook. The questions that follow

More information

Excel Basics Rice Digital Media Commons Guide Written for Microsoft Excel 2010 Windows Edition by Eric Miller

Excel Basics Rice Digital Media Commons Guide Written for Microsoft Excel 2010 Windows Edition by Eric Miller Excel Basics Rice Digital Media Commons Guide Written for Microsoft Excel 2010 Windows Edition by Eric Miller Table of Contents Introduction!... 1 Part 1: Entering Data!... 2 1.a: Typing!... 2 1.b: Editing

More information

Installing and Configuring the Voice UPB Bridge updated 1-Jan-2019

Installing and Configuring the Voice UPB Bridge updated 1-Jan-2019 Installing and Configuring the Voice UPB Bridge updated 1-Jan-2019 Before starting these instructions, you should already have your Voice assistant installed and working. These instructions can be used

More information

Name: Dr. Fritz Wilhelm Lab 1, Presentation of lab reports Page # 1 of 7 5/17/2012 Physics 120 Section: ####

Name: Dr. Fritz Wilhelm Lab 1, Presentation of lab reports Page # 1 of 7 5/17/2012 Physics 120 Section: #### Name: Dr. Fritz Wilhelm Lab 1, Presentation of lab reports Page # 1 of 7 Lab partners: Lab#1 Presentation of lab reports The first thing we do is to create page headers. In Word 2007 do the following:

More information

Intro To Excel Spreadsheet for use in Introductory Sciences

Intro To Excel Spreadsheet for use in Introductory Sciences INTRO TO EXCEL SPREADSHEET (World Population) Objectives: Become familiar with the Excel spreadsheet environment. (Parts 1-5) Learn to create and save a worksheet. (Part 1) Perform simple calculations,

More information

A basic introduction to imovie 2 From importing video to editing to exporting video. Created by: Leslie Arakaki Clinton Iwami.

A basic introduction to imovie 2 From importing video to editing to exporting video. Created by: Leslie Arakaki Clinton Iwami. A basic introduction to imovie 2 From importing video to editing to exporting video Created by: Leslie Arakaki Clinton Iwami LEI Aloha Grant Page 1 Table of Contents The beginning... 3 Eyeball view:...

More information

I/ Video Capture 1. Remove the len s cover 2. Turn on Computer 3. Open the XCAP For Window icon OK

I/ Video Capture 1. Remove the len s cover 2. Turn on Computer 3. Open the XCAP For Window icon OK I/ Video Capture 1. Remove the len s cover 2. Turn on Computer 3. Open the XCAP For Window icon OK 4. Select live to connect CAMERA to Software Adjusting the value in Frame Rate box to increase or decrease

More information

NCMail: Microsoft Outlook User s Guide

NCMail: Microsoft Outlook User s Guide NCMail: Microsoft Outlook 2007 Email User s Guide Revision 1.1 3/9/2009 This document covers how to use Microsoft Outlook 2007 for accessing your email with the NCMail Exchange email system. The syntax

More information

How to make a Work Profile for Windows 10

How to make a Work Profile for Windows 10 How to make a Work Profile for Windows 10 Setting up a new profile for Windows 10 requires you to navigate some screens that may lead you to create the wrong type of account. By following this guide, we

More information

Exploring Parametric Equations With the Human Cannonball

Exploring Parametric Equations With the Human Cannonball Grade level: 9-12 Exploring Parametric Equations With the Human Cannonball by Lisa Blank, Math & Science Teacher, Lyme Central School, Chaumont, NY Activity overview Students will explore the use of parametric

More information

Lutheran High North Technology The Finder

Lutheran High North Technology  The Finder Lutheran High North Technology shanarussell@lutheranhighnorth.org www.lutheranhighnorth.org/technology The Finder Your Mac s filing system is called the finder. In this document, we will explore different

More information

Lesson 1 Parametric Modeling Fundamentals

Lesson 1 Parametric Modeling Fundamentals 1-1 Lesson 1 Parametric Modeling Fundamentals Create Simple Parametric Models. Understand the Basic Parametric Modeling Process. Create and Profile Rough Sketches. Understand the "Shape before size" approach.

More information

Carestream Vita user quick guide. Software version 3.2 From April 2012

Carestream Vita user quick guide. Software version 3.2 From April 2012 Carestream Vita user quick guide Software version 3.2 From April 2012 1 Carestream Vita user quick guide Software version 3.2 from April 2012 1. To switch your Vita on Press the power button on the PC

More information

Basic Computer and Mouse Skills Windows 10

Basic Computer and Mouse Skills Windows 10 Basic Computer and Mouse Skills Windows 10 Hardware--is a term for the physical parts of the computer. The computer consists of four basic pieces of hardware. The Monitor The monitor displays the content

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

WORD BASICS: MICROSOFT OFFICE 2010

WORD BASICS: MICROSOFT OFFICE 2010 WORD BASICS: MICROSOFT OFFICE 2010 GETTING STARTED PAGE 02 Prerequisites What You Will Learn USING MICROSOFT WORD PAGE 03 Microsoft Word Components The Keyboard SIMPLE TASKS IN MICROSOFT WORD PAGE 08 Typing

More information

Microsoft Excel 2007 Lesson 7: Charts and Comments

Microsoft Excel 2007 Lesson 7: Charts and Comments Microsoft Excel 2007 Lesson 7: Charts and Comments Open Example.xlsx if it is not already open. Click on the Example 3 tab to see the worksheet for this lesson. This is essentially the same worksheet that

More information

From Motion diagrams to Position and Velocity Graphs

From Motion diagrams to Position and Velocity Graphs From Motion diagrams to Position and Velocity Graphs Name: Group Members: Date: TA s Name: Apparatus: Aluminum track and a support, cart, plastic ruler, tape timer, and pencil Objectives: 1) To be familiar

More information

Beginning Paint 3D A Step by Step Tutorial. By Len Nasman

Beginning Paint 3D A Step by Step Tutorial. By Len Nasman A Step by Step Tutorial By Len Nasman Table of Contents Introduction... 3 The Paint 3D User Interface...4 Creating 2D Shapes...5 Drawing Lines with Paint 3D...6 Straight Lines...6 Multi-Point Curves...6

More information

Opening the Program. Movie Maker II 1

Opening the Program. Movie Maker II 1 1 Opening the Program To open the Movie Maker II application, use the Start Programs Movie Maker combination from the desktop. Alternatively, you can create a shortcut on the desktop. After executing this

More information

Determination of Drag Coefficient

Determination of Drag Coefficient DEPARTMENT OF MECHANICAL, INDUSTRIAL AND MANUFACTURING ENGINEERING MIMU 505 - MEASUREMENT AND ANALYSIS Determination of Drag Coefficient You will need to bring a zip disk or USB storage device to the lab

More information

OCAD 6 for Schools. A basic help guide. Free download wnloads/freeware

OCAD 6 for Schools. A basic help guide. Free download  wnloads/freeware OCAD 6 for Schools A basic help guide Free download http://www.ocad.com/en/do wnloads/freeware Author S J Peck 01473-461395 simon589@btinternet.com Page 1 1. Introduction This guide is meant to give a

More information

Your screen may look different from mine below but that is OK.

Your screen may look different from mine below but that is OK. How to Make the Akumal Beach WebCam Your Desktop Image Special thanks to Grump for the original idea This has only been tested on Microsoft Windows XP If you have some other version of Windows it may or

More information

Getting Started with LabVIEW Virtual Instruments

Getting Started with LabVIEW Virtual Instruments Getting Started with LabVIEW Virtual Instruments Approximate Time You can complete this exercise in approximately 30 minutes. Background LabVIEW programs are called virtual instruments, or VIs, because

More information

Polygon Modeling Basics Chapter 1 - Vertices

Polygon Modeling Basics Chapter 1 - Vertices Polygon Modeling Basics Chapter 1 - Vertices In this tutorial we will cover the basic tools necessary for Polygon Modeling using the Vertex sub-object selection. It is less of a how to tutorial and more

More information

Math 2250 Lab #3: Landing on Target

Math 2250 Lab #3: Landing on Target Math 2250 Lab #3: Landing on Target 1. INTRODUCTION TO THE LAB PROGRAM. Here are some general notes and ideas which will help you with the lab. The purpose of the lab program is to expose you to problems

More information

Randy H. Shih. Jack Zecher PUBLICATIONS

Randy H. Shih. Jack Zecher   PUBLICATIONS Randy H. Shih Jack Zecher PUBLICATIONS WWW.SDCACAD.COM AutoCAD LT 2000 MultiMedia Tutorial 1-1 Lesson 1 Geometric Construction Basics! " # 1-2 AutoCAD LT 2000 MultiMedia Tutorial Introduction Learning

More information

Polarization of Light

Polarization of Light Polarization of Light Introduction Light, viewed classically, is a transverse electromagnetic wave. Namely, the underlying oscillation (in this case oscillating electric and magnetic fields) is along directions

More information

How to use Excel Spreadsheets for Graphing

How to use Excel Spreadsheets for Graphing How to use Excel Spreadsheets for Graphing 1. Click on the Excel Program on the Desktop 2. You will notice that a screen similar to the above screen comes up. A spreadsheet is divided into Columns (A,

More information

Lab 2 One Dimensional Motion L2-1 $%&'(((((((((((((((((((((((()%*'(((((((((((((((+%,*-',.((((((((((((((((((((((((((((((((! L02-1 Name Date!

Lab 2 One Dimensional Motion L2-1 $%&'(((((((((((((((((((((((()%*'(((((((((((((((+%,*-',.((((((((((((((((((((((((((((((((! L02-1 Name Date! ! "#!! Lab 2 One Dimensional Motion L2-1 $%&'(((((((((((((((((((((((()%*'(((((((((((((((+%,*-',.((((((((((((((((((((((((((((((((! L2-1 Name Date! Partners Name Date Partners "#$!%&! Lab LAB 22 -'()!*+,)(-+'(#"!,'.+'(!

More information

Lesson 6: Manipulating Equations

Lesson 6: Manipulating Equations Lesson 6: Manipulating Equations Manipulating equations is probably one of the most important skills to master in a high school physics course. Although it is based on familiar (and fairly simple) math

More information

Instructions for Using the Databases

Instructions for Using the Databases Appendix D Instructions for Using the Databases Two sets of databases have been created for you if you choose to use the Documenting Our Work forms. One set is in Access and one set is in Excel. They are

More information

Fire TV Quick Start BJM **DISCLAIMER**

Fire TV Quick Start BJM **DISCLAIMER** Fire TV Quick Start BJM **DISCLAIMER** All content is delivered by the creators of the APPS and ADD- ONS. There is no condoning the content of the APPS and ADD- ONS. There is no assumption of liability

More information

Mini Racer Competition.

Mini Racer Competition. Mini Racer Competition. Introduction This Module provides the rules and different levels of competition for the Mini Racer. It also provides a solid model of the track and a sample car along with instructions

More information

TLMC SHORT CLASS: THESIS FORMATTING

TLMC SHORT CLASS: THESIS FORMATTING Table of Contents Introduction... 2 Getting Help... 2 Tips... 2 Working with Styles... 3 Applying a Style... 3 Creating A New Style... 3 Setting Margins... 4 Adding Page Numbers... 5 Step 1: Using Sections

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

A Brief Introduction of how to use Audacity

A Brief Introduction of how to use Audacity A Brief Introduction of how to use Audacity Introduction To enable yourself to start Podcasting you need to have all the tools that make the process possible. An integral part of that process is the recording

More information

Homework Assignment 9 LabVIEW tutorial

Homework Assignment 9 LabVIEW tutorial Homework Assignment 9 LabVIEW tutorial Due date: Wednesday, December 8 (midnight) For this homework assignment, you will complete a tutorial on the LabVIEW data acquistion software. This can be done on

More information

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g Free Fall Objective Students will work in groups to investigate free fall acceleration on the Earth. Students will measure the fundamental physical constant, g, and evaluate the dependence of free fall

More information

Installing a Custom AutoCAD Toolbar (CUI interface)

Installing a Custom AutoCAD Toolbar (CUI interface) Installing a Custom AutoCAD Toolbar (CUI interface) AxciScape produces AutoCAD script files which must be Run within AutoCAD. You can do this by typing SCRIPT into the command line and then select the

More information

IOP Horizons in Physics. Department of Physics University of Limerick

IOP Horizons in Physics. Department of Physics University of Limerick IOP Horizons in Physics Department of Physics University of Limerick 1 Import Video Using the Video tab Import the video you want to analyse. Your video may not have the correct orientation. If so filters

More information

Using Liberty Instruments PRAXIS for Room Sound Convolution Rev 9/12/2004

Using Liberty Instruments PRAXIS for Room Sound Convolution Rev 9/12/2004 Using Liberty Instruments PRAXIS for Room Sound Convolution Rev 9/12/2004 Overview Room Sound Convolution is an operation that allows you to measure, save, and later recreate a representation of the sound

More information

The iworx 214 and LabScribe V2.0 Tutorial. Overview

The iworx 214 and LabScribe V2.0 Tutorial. Overview The iworx 214 and LabScribe V2.0 Overview Figure T-1-1: The front and rear panels of IWX/214. The data acquisition unit used in the iworx teaching kits is the IWX/214 (Figure T-1-1 on page T-1-1). The

More information