A methodology for the rigorous verification of plasma simulation codes

Size: px
Start display at page:

Download "A methodology for the rigorous verification of plasma simulation codes"

Transcription

1 A methodology for the rigorous verification of plasma simulation codes Fabio Riva P. Ricci, C. Beadle, F.D. Halpern, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, P. Paruta, C. Wersal École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Switzerland 58th Annual Meeting of the APS Division of Plasma Physics, San Jose, California, November 4 th 2016

2 1 Verification Procedures How to rigorously ensure that a simulation code is bug-free? Code Verification How to estimate the numerical uncertainty affecting simulation results? Solution Verification

3 2 1. Simple tests Code Verification Techniques Energy conservation, convergence (without a known exact solution) 2. Code-to-code comparison (benchmarking) NOT RIGOROUS Example: Cyclone test case 3. Convergence tests Do results converge to the exact solution? 4. Order of accuracy tests Do results converge to the exact solution at the expected rate? RIGOROUS, but require analytical solution

4 1. Simple tests Code Verification Techniques Energy conservation, convergence (without a known exact solution) 2. Code-to-code comparison (benchmarking) NOT RIGOROUS Example: Cyclone test case 3. Convergence tests Do results converge to the exact solution? 4. Order of accuracy tests Do results converge to the exact solution at the expected rate? RIGOROUS, but require analytical solution The only procedure ensuring both convergence and correct numerical implementation 2

5 3 Order of accuracy test Model: Solve, with discretization parameter Compute the numerical error

6 3 Order of accuracy test Model: Solve, with discretization parameter Compute the numerical error If, with the order of accuracy, the code is verified

7 4 Method of Manufactured Solutions Solve Model: but unknown

8 4 Method of Manufactured Solutions Solve Model: but unknown MMS developed by CFD community for verifying codes based on finite difference schemes [Roache et al., AIAA J. (1984); Oberkampf et al., AIAA J. (1998)]

9 4 Method of Manufactured Solutions Solve Model: but unknown Method of Manufactured Solutions (MMS): 1. Choose and compute 2. Define 3. Solve 4. Obtain

10 4 Method of Manufactured Solutions Solve Model: but unknown Method of Manufactured Solutions (MMS): 1. Choose and compute 2. Define 3. Solve 4. Obtain If the code is verified

11 Method of Manufactured Solutions Model: unknown Solve but Method of Manufactured Solutions (MMS): 1. Choose and compute 2. Define 3. Solve 4. Obtain While arbitrary, numerical error should excite all terms in equations and ensure no dominating component in 4

12 5 First MMS plasma simulation code verification GBS: 3D fluid code used to simulate SOL plasma turbulence [Ricci et al., PPCF (2012)] Drift-reduced Braginskii equations: Continuity equation: Numerical scheme: RK4 for time integration 2 nd order finite differences for spatial derivatives Arakawa scheme for advection terms

13 6 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute

14 6 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute

15 6 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute Refine the grid Obtain for

16 6 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute Refine the grid Obtain for Verify that

17 6 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute Refine the grid Obtain for Verify that Define the observed order of accuracy

18 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute Refine the grid Obtain for Verify that Define the observed order of accuracy Verify that 6

19 Verification of GBS [Riva et al., PoP (2014)] Choose Compute Choose Define Obtain for Compute Refine the grid Obtain for Verify that Define the observed order of accuracy Verify that 6

20 Choose Compute GBS is verified! Choose Define Obtain for Compute Refine the grid Obtain for Verify that Define the observed order of accuracy Verification of GBS [Riva et al., PoP (2014)] First application of MMS for the verification of a plasma simulation code based on finite difference schemes [Riva et al., PoP (2014)] MMS now routinely used to verify plasma turbulence codes [Tamain et al., JCP (2016); Dudson et al., PoP (2016); ] Verify that 6

21 Particle-In-Cell (PIC) codes [Daughton et al., Nature (2011)] [Fasoli et al., Nature (2016)] [Gordon et al., PRL (2008)] 7

22 8 The PIC algorithm A simple model:

23 8 The PIC algorithm A simple model: Introduce markers (superparticles) and approximate with satisfying equations of motion

24 8 The PIC algorithm A simple model: Introduce markers (superparticles) and approximate with satisfying equations of motion randomly generated numerical results affected by statistical uncertainty

25 9 The modified model: MMS for a PIC simulation code with randomly generated statistical uncertainty on

26 9 The modified model: MMS for a PIC simulation code with Markers randomly generated statistical uncertainty on

27 9 The modified model: MMS for a PIC simulation code How to compare with? with How to account for the statistical uncertainty?

28 Cumulative distribution function 10

29 10 Cumulative distribution function CDF = EDF

30 10 Cumulative distribution function CDF = EDF

31 11 Kolmogorov Smirnov statistic Distance between and defined as EDF CDF

32 Kolmogorov Smirnov statistic 11

33 Kolmogorov Smirnov statistic 11

34 Kolmogorov Smirnov statistic 11

35 Kolmogorov Smirnov statistic [Kolmogorov, G. Ist. Ital. Attuari. (1933); Smirnov, Ann. Math. Stat. (1948)] 11

36 How to generalize to 2D case? 12

37 12 How to generalize to 2D case? CDF = EDF

38 12 How to generalize to 2D case? CDF EDF

39 12 How to generalize to 2D case? CDF EDF

40 12 How to generalize to 2D case? CDF [Peacock, MNRAS (1983)] EDF

41 12 How to generalize to 2D case? CDF How to compute the supremum? EDF

42 13 How to compute? EDF EDF CDF

43 13 How to compute? EDF EDF CDF

44 13 How to compute? EDF EDF CDF Not defined for Extremely demanding - Brute force: - Range counting-tree:

45 14 How we overcome Peakock issues? Generalized to non constant Investigated other definitions of EDF - Consider only marker CDF coordinates, k-d trees: - Distribute sampling points with Monte-Carlo Method - Compute distance only at the boundaries EDF [Riva et al., to be submitted to PoP]

46 15 The PIC simulation code Model equations: Interpolation scheme ( ): first-order weighting (CIC PIC) Poisson solver ( ): second order centered finite differences Time integration ( ): Leapfrog integration scheme

47 15 The PIC simulation code Model equations: Expected numerical error: Interpolation scheme ( ): first-order weighting (CIC PIC) Poisson solver ( ): second order centered finite differences Time integration ( ): Leapfrog integration scheme

48 16 Results: PIC code verification Choose Compute Choose Define Compute for different Verify Notice: is affected by statistical uncertainty Repeat simulations with different random number generator seeds

49 16 Results: PIC code verification Choose Compute Choose Define Compute for different Verify

50 16 Results: PIC code verification Choose Compute Choose Define Compute for different Verify The PIC simulation code is verified! First PIC code verification with MMS [Riva et al., to be submitted to PoP]

51 17 Verification Procedures How to rigorously ensure that a simulation code is bug-free? Code Verification How to estimate the numerical uncertainty affecting simulation results? Solution Verification

52 18 Sources of numerical uncertainties 1. Round-off Finite number of digits 2. Iterative schemes Termination with finite residual 3. Finite statistics E.g. a finite number of markers in representing a distribution function 4. Discretization Grids with finite resolution 5. Post-processing tools Evaluating observables from simulation results

53 18 Sources of numerical uncertainties 1. Round-off Finite number of digits 2. Iterative schemes Termination with finite residual 3. Finite statistics E.g. a finite number of markers in representing a distribution function 4. Discretization Grids with finite resolution 5. Post-processing tools Evaluating observables from simulation results

54 19 Two-stream instability Linear growth rate and its uncertainty?

55 20 Post-processing uncertainty Choose and perform a simulation

56 20 Post-processing uncertainty Choose Get and perform a simulation

57 20 Post-processing uncertainty Choose Get and perform a simulation

58 20 Post-processing uncertainty Choose Get and perform a simulation Post-processing uncertainty

59 21 Statistical uncertainty Choose Repeat with different seeds and perform a simulation

60 21 Statistical uncertainty Choose Repeat with different seeds and perform a simulation Statistical uncertainty

61 22 Discretization uncertainty Choose Repeat with different and perform a simulation

62 22 Discretization uncertainty Choose Repeat with different and perform a simulation Use of high order estimate (Richardson extrapolation)

63 22 Discretization uncertainty Choose Repeat with different and perform a simulation Use of high order estimate (Richardson extrapolation) Discretization uncertainty

64 23 Numerical uncertainty Numerical uncertainty = post-processing + statistical + discretization

65 23 Numerical uncertainty Numerical uncertainty = post-processing + statistical + discretization

66 24 Conclusions We provided rigorous methodologies to verify plasma simulations, a crucial issue in plasma physics MMS is a methodology now routinely used to rigorously verify plasma simulation codes based on finite differences schemes Overcoming the difficulty of comparing distribution functions with markers affected by statistical noise, we now generalized MMS to PIC codes verification We provided a methodology to rigorously estimate the uncertainties affecting simulation results due to finite statistics and discretization

67 25 Open questions MMS with shocks and discontinuities MMS for simulation codes involving adaptive mesh refinements Uncertainty propagation

68 Conclusions We provided rigorous methodologies to verify plasma simulations, a crucial issue in plasma physics MMS is a methodology now routinely used to rigorously verify plasma simulation codes based on finite differences schemes Overcoming the difficulty of comparing distribution functions with markers affected by statistical noise, we now generalized MMS to PIC codes verification We provided a methodology to rigorously estimate the uncertainties affecting simulation results due to finite statistics and discretization

69 Backup slides

70 1 Verification & Validation REALITY OBSERVATIONS MODEL QUALIFICATION EXPERIMENTAL DATA VALIDATION ANALYSIS INTERPRETATION MODEL CODING SIMULATION CODE COMPUTATION NUMERICAL RESULTS CODE VERIFICATION SOLUTION VERIFICATION

71 2 The PIC algorithm A simple model: charge to the grid Equations of motion Poisson equation interpolation to particles

72 3 MMS for a PIC simulation code The modified model: charge to the grid Equations of motion Poisson equation interpolation to particles

73 4 Implementing MMS in PIC codes Manufactured solution: Source terms: Poisson's equation: Weighted function: Initial condition: Equations of motion:

74 The Kolmogorov Smirnov statistic CDF: Indicator function: 1 CDF EDF EDF: KS statistic: 0 Under null hypothesis: almost surely and where is the Brownian bridge

75 6 A useful property 1D independent of integration direction:

76 2D cumulative distribution functions 7

77 2D empirical distribution functions 8

78 Multidimensional case 9

79 10 Two-dimensional Peacock test Generalization of the KS statistic [J.A. Peacock 1983]:

80 Different approaches 11

81 12 Interpolation scheme: first-order weighting (CIC PIC) Interpolation function: Interpolation: particles grid Numerical scheme Poisson solver: second order centered finite differences Interpolation: grid particles Time integration: Leapfrog integration scheme

82 Results: scan, and small 13

83 Results: scan, small 14

84 Results: scan, small 14

85 Results: scan, small 14

86 Results: scan, small 15

87 Results: scan, small 15

88 Results: scan, small 15

89 16 Results: PIC code verification for

90 17 Results: PIC code verification For we expect

91 18 Monte-Carlo Method Use Monte-Carlo method to estimate

92 19 An alternative approach Decoupling the different dimensions:

93 19 An alternative approach Decoupling the different dimensions:

94 20 Statistical errors, the principles How to estimate the statistical uncertainty affecting a quantity? Assumptions: randomly distributed from Unknown, finite mean Unknown, finite variance Perform observations Law of large numbers Central limit theorem

95 21 Estimate of statistical uncertainties Perform simulations with particles Assume Estimate with particles For one simulation with particles:

96 22 Statistical error affecting a functional Functional with uncorrelated and For

97 Chaotic regimes? 23

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Ben Grier Clemson University Richard Figliola, Larry

More information

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech

Multi-Mesh CFD. Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech Multi-Mesh CFD Chris Roy Chip Jackson (1 st year PhD student) Aerospace and Ocean Engineering Department Virginia Tech cjroy@vt.edu May 21, 2014 CCAS Program Review, Columbus, OH 1 Motivation Automated

More information

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality Judd Kaiser ANSYS Inc. judd.kaiser@ansys.com 2005 ANSYS, Inc. 1 ANSYS, Inc. Proprietary Overview

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard Dimitri P. Tselepidakis & Lewis Collins ASME 2012 Verification and Validation Symposium May 3 rd, 2012 1 Outline

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA Adaptive Mesh Astrophysical Fluid Simulations on GPU San Jose 10/2/2009 Peng Wang, NVIDIA Overview Astrophysical motivation & the Enzo code Finite volume method and adaptive mesh refinement (AMR) CUDA

More information

Introduction to Computational Mathematics

Introduction to Computational Mathematics Introduction to Computational Mathematics Introduction Computational Mathematics: Concerned with the design, analysis, and implementation of algorithms for the numerical solution of problems that have

More information

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly!

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly! : LA- UR 11-05852 Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly! Tariq Aslam! Los Alamos National Laboratory! WX-9: Shock and Detonation Physics! Slide 1 Background:!

More information

CFD Project Workflow Guide

CFD Project Workflow Guide CFD Project Workflow Guide Contents Select a problem with known results for proof-of-concept testing... 1 Set up and run a coarse test case... 2 Select and calibrate numerical methods... 3 Minimize & quantify

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts

Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts Fabio Kasper Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts Rodrigo Decker, Oscar Sgrott Jr., Henry F. Meier Waldir Martignoni Agenda Introduction The Test Bench Case

More information

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization Sirisha Rangavajhala

More information

http://miccom-center.org Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics) Presenter: Jiyuan Li, The University of Chicago 2017 Summer School 1 What is Continuum-Particle Simulation?

More information

DNV GL s 16th Technology Week

DNV GL s 16th Technology Week OIL & GAS DNV GL s 16th Technology Week Advanced Simulation for Offshore Application: Application of CFD for Computing VIM of Floating Structures 1 SAFER, SMARTER, GREENER OUTLINE Introduction Elements

More information

Three dimensional modeling using ponderomotive guiding center solver

Three dimensional modeling using ponderomotive guiding center solver Three dimensional modeling using ponderomotive guiding center solver Anton Helm 1 ahelm@ipfn.tecnico.ulisboa.pt Ricardo Fonseca 1,2, Jorge Vieira 1, Luis Silva 1 1 GoLP / Instituto de Plasmas e Fusão Nuclear

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

ITU/FAA Faculty of Aeronautics and Astronautics

ITU/FAA Faculty of Aeronautics and Astronautics S. Banu YILMAZ, Mehmet SAHIN, M. Fevzi UNAL, Istanbul Technical University, 34469, Maslak/Istanbul, TURKEY 65th Annual Meeting of the APS Division of Fluid Dynamics November 18-20, 2012, San Diego, CA

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

Code Verification: Past, Present, and Future

Code Verification: Past, Present, and Future Code Verification: Past Present and Future Chris Roy (cjroy@vt.edu) Professor and Assistant Department Head For Graduate Studies Aerospace and Ocean Engineering Department Virginia Tech Keynote Lecture

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

1 Past Research and Achievements

1 Past Research and Achievements Parallel Mesh Generation and Adaptation using MAdLib T. K. Sheel MEMA, Universite Catholique de Louvain Batiment Euler, Louvain-La-Neuve, BELGIUM Email: tarun.sheel@uclouvain.be 1 Past Research and Achievements

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Just the Facts Small-Sliding Contact in ANSYS Mechanical

Just the Facts Small-Sliding Contact in ANSYS Mechanical Just the Facts Small-Sliding Contact in ANSYS Mechanical ANSYS, Inc. 2600 ANSYS Drive Canonsburg, PA 15317 29 March 2018 Although this document provides information that customers may find useful, it is

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

Principles of benchmark studies (Verification & Validation)

Principles of benchmark studies (Verification & Validation) COST TU0904 Integrated Fire Engineering and Response MC and WG s meetings 2012 October 8 9, Zadar, CROATIA Principles of benchmark studies (Verification & Validation) Les aw Kwa niewski Warsaw University

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

UNCERTAINTIES FOR A TRANSONIC DIFFUSER PROBLEM. William H. Mason, and Layne T. Watson

UNCERTAINTIES FOR A TRANSONIC DIFFUSER PROBLEM. William H. Mason, and Layne T. Watson QUANTITATIVE RELATIVE COMPARISON OF CFD SIMULATION UNCERTAINTIES FOR A TRANSONIC DIFFUSER PROBLEM Serhat Hosder, Bernard Grossman, Raphael T. Haftka, William H. Mason, and Layne T. Watson Multidisciplinary

More information

A complete methodology for the implementation of XFEM models. Team: - Carlos Hernán Villanueva - Kai Yu

A complete methodology for the implementation of XFEM models. Team: - Carlos Hernán Villanueva - Kai Yu A complete methodology for the implementation of XFEM models Team: - Carlos Hernán Villanueva - Kai Yu Problem Statement QUAD4 DISCONTINUITY Problem Statement Traditional FEM Mesh generates discrete representation

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

Modeling with Uncertainty Interval Computations Using Fuzzy Sets

Modeling with Uncertainty Interval Computations Using Fuzzy Sets Modeling with Uncertainty Interval Computations Using Fuzzy Sets J. Honda, R. Tankelevich Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO, U.S.A. Abstract A new method

More information

Fluid Mechanics Simulation Essentials R2014X

Fluid Mechanics Simulation Essentials R2014X Fluid Mechanics Simulation Essentials R2014X About this Course Course objectives Upon completion of this course you will be able to: Set up and create CFD, CHT and FSI models in the 3DEXPERIENCE Platform

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia Applied Mechanics and Materials Vol. 393 (2013) pp 305-310 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.393.305 The Implementation of Cell-Centred Finite Volume Method

More information

A numerical microscope for plasma physics

A numerical microscope for plasma physics A numerical microscope for plasma physics A new simulation capability developed for heavy-ion inertial fusion energy research will accelerate plasma physics and particle beam modeling, with application

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways Latif Bouhadji ASL-AQFlow Inc., Sidney, British Columbia, Canada Email: lbouhadji@aslenv.com ABSTRACT Turbulent flows over a spillway

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

Particle Tracing Module

Particle Tracing Module Particle Tracing Module Particle Tracing Module Released with version 4.2a in October 2011 Add-on to COMSOL Multiphysics Combines with any COMSOL Multiphysics Module Particle Tracing Particle tracing

More information

Using Integral Surfaces to Visualize CFD Data

Using Integral Surfaces to Visualize CFD Data Using Integral Surfaces to Visualize CFD Data Tony Mcloughlin, Matthew Edmunds,, Mark W. Jones, Guoning Chen, Eugene Zhang 1 1 Overview Flow Visualization with Integral Surfaces: Introduction to flow visualization

More information

3D Modeling of Urban Areas for Built Environment CFD Applications

3D Modeling of Urban Areas for Built Environment CFD Applications 3D Modeling of Urban Areas for Built Environment CFD Applications using C A.W.M. (Jos) van Schijndel Eindhoven University of Technology P.O. Box 513; 5600 MB Eindhoven; Netherlands, A.W.M.v.Schijndel@tue.nl

More information

Efficiency of adaptive mesh algorithms

Efficiency of adaptive mesh algorithms Efficiency of adaptive mesh algorithms 23.11.2012 Jörn Behrens KlimaCampus, Universität Hamburg http://www.katrina.noaa.gov/satellite/images/katrina-08-28-2005-1545z.jpg Model for adaptive efficiency 10

More information

A High Quality, Eulerian 3D Fluid Solver in C++ A Senior Project. presented to. the Faculty of the Computer Science Department of

A High Quality, Eulerian 3D Fluid Solver in C++ A Senior Project. presented to. the Faculty of the Computer Science Department of A High Quality, Eulerian 3D Fluid Solver in C++ A Senior Project presented to the Faculty of the Computer Science Department of California Polytechnic State University, San Luis Obispo In Partial Fulfillment

More information

A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES

A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES Khalil Bensassi, and Herman Deconinck Von Karman Institute for Fluid Dynamics Aeronautics & Aerospace

More information

Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations)

Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations) School of Mechanical Aerospace and Civil Engineering University of Manchester First Year Transfer Report Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations)

More information

High-Order Finite Difference Schemes for computational MHD

High-Order Finite Difference Schemes for computational MHD High-Order Finite Difference Schemes for computational MHD A. Mignone 1, P. Tzeferacos 1 and G. Bodo 2 [1] Dipartimento di Fisica Generale, Turin University, ITALY [2] INAF Astronomic Observatory of Turin,,

More information

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t An implicit WENO scheme for steady-state computation of scalar hyperbolic equations Sigal Gottlieb Mathematics Department University of Massachusetts at Dartmouth 85 Old Westport Road North Dartmouth,

More information

Flow Visualization with Integral Surfaces

Flow Visualization with Integral Surfaces Flow Visualization with Integral Surfaces Visual and Interactive Computing Group Department of Computer Science Swansea University R.S.Laramee@swansea.ac.uk 1 1 Overview Flow Visualization with Integral

More information

The Finite Element Method

The Finite Element Method The Finite Element Method A Practical Course G. R. Liu and S. S. Quek Chapter 1: Computational modeling An overview 1 CONTENTS INTRODUCTION PHYSICAL PROBLEMS IN ENGINEERING COMPUTATIONAL MODELLING USING

More information

Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media. Vincent Pegoraro Ingo Wald Steven G. Parker

Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media. Vincent Pegoraro Ingo Wald Steven G. Parker Sequential Monte Carlo Adaptation in Low-Anisotropy Participating Media Vincent Pegoraro Ingo Wald Steven G. Parker Outline Introduction Related Work Monte Carlo Integration Radiative Energy Transfer SMC

More information

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended)

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Pavlos Andreadis, February 2 nd 2018 1 Markov Decision Processes A finite Markov Decision Process

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

New formulations of the semi-lagrangian method for Vlasov-type equations

New formulations of the semi-lagrangian method for Vlasov-type equations New formulations of the semi-lagrangian method for Vlasov-type equations Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 17 September 2008 In collaboration

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke 1 3 Robert Strzodka 2 Stefan Turek 1 dominik.goeddeke@math.uni-dortmund.de 1 Mathematics III: Applied Mathematics and Numerics, University

More information

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids

Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids Advective and conservative semi-lagrangian schemes on uniform and non-uniform grids M. Mehrenberger Université de Strasbourg and Max-Planck Institut für Plasmaphysik 5 September 2013 M. Mehrenberger (UDS

More information

Monte Carlo Methods; Combinatorial Search

Monte Carlo Methods; Combinatorial Search Monte Carlo Methods; Combinatorial Search Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 22, 2012 CPD (DEI / IST) Parallel and

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Joe Wingbermuehle, (A paper written under the guidance of Prof. Raj Jain)

Joe Wingbermuehle, (A paper written under the guidance of Prof. Raj Jain) 1 of 11 5/4/2011 4:49 PM Joe Wingbermuehle, wingbej@wustl.edu (A paper written under the guidance of Prof. Raj Jain) Download The Auto-Pipe system allows one to evaluate various resource mappings and topologies

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS Felix Muggli a, Laurent Chatagny a, Jonas Lätt b a Sulzer Markets & Technology

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

Analytical Solution and Direct Numerical Simulations of Particulate Turbulent Flows in a Channel. Manjura Maula Nayamatullah

Analytical Solution and Direct Numerical Simulations of Particulate Turbulent Flows in a Channel. Manjura Maula Nayamatullah Analytical Solution and Direct Numerical Simulations of Particulate Turbulent Flows in a Channel Manjura Maula Nayamatullah Analytical solution and direct numerical simulations of particulate turbulent

More information

Characteristic Aspects of SPH Solutions

Characteristic Aspects of SPH Solutions Characteristic Aspects of SPH Solutions for Free Surface Problems: Source and Possible Treatment of High Frequency Numerical Oscillations of Local Loads. A. Colagrossi*, D. Le Touzé & G.Colicchio* *INSEAN

More information

computational Fluid Dynamics - Prof. V. Esfahanian

computational Fluid Dynamics - Prof. V. Esfahanian Three boards categories: Experimental Theoretical Computational Crucial to know all three: Each has their advantages and disadvantages. Require validation and verification. School of Mechanical Engineering

More information

Pressure Drop Evaluation in a Pilot Plant Hydrocyclone

Pressure Drop Evaluation in a Pilot Plant Hydrocyclone Pressure Drop Evaluation in a Pilot Plant Hydrocyclone Fabio Kasper, M.Sc. Emilio Paladino, D.Sc. Marcus Reis, M.Sc. ESSS Carlos A. Capela Moraes, D.Sc. Dárley C. Melo, M.Sc. Petrobras Research Center

More information

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans Introduction Company STAR-CCM+ Agenda Wind engineering at CD-adapco STAR-CCM+ & EnviroWizard Developments for Offshore Simulation CD-adapco:

More information

UNCERTAINTY QUANTIFICATION ON A REAL CASE WITH TELEMAC-2D

UNCERTAINTY QUANTIFICATION ON A REAL CASE WITH TELEMAC-2D UNCERTAINTY QUANTIFICATION ON A REAL CASE WITH TELEMAC-2D Cédric Goeury, Thomas David, Riadh Ata, Sébastien Boyaval, Yoann Audouin, Nicole Goutal, Anne-Laure Popelin, Mathieu Couplet, Michael Baudin, Renaud

More information

Testing Random- Number Generators

Testing Random- Number Generators Testing Random- Number Generators Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 27-1 Overview

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

Aurélien Thinat Stéphane Cordier 1, François Cany

Aurélien Thinat Stéphane Cordier 1, François Cany SimHydro 2012:New trends in simulation - Hydroinformatics and 3D modeling, 12-14 September 2012, Nice Aurélien Thinat, Stéphane Cordier, François Cany Application of OpenFOAM to the study of wave loads

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Decision Support Risk handout. Simulating Spreadsheet models

Decision Support Risk handout. Simulating Spreadsheet models Decision Support Models @ Risk handout Simulating Spreadsheet models using @RISK 1. Step 1 1.1. Open Excel and @RISK enabling any macros if prompted 1.2. There are four on line help options available.

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

The powerlaw package: a general overview

The powerlaw package: a general overview The powerlaw package: a general overview Colin S. Gillespie Last updated: August 29, 2017 The powerlaw package provides code to fit heavy tailed distributions, including discrete and continuous power-law

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Statistical Methods - Karsten Heeger heeger@wisc.edu Course Schedule and Reading course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS

Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS Lecture 1 GENERAL INTRODUCTION: HISTORICAL BACKGROUND AND SPECTRUM OF APPLICATIONS 1.1 INTRODUCTION Analysis of physical problems in any area of engineering and science involves a multipronged approach:

More information

High-order, conservative, finite difference schemes for computational MHD

High-order, conservative, finite difference schemes for computational MHD High-order, conservative, finite difference schemes for computational MHD A. Mignone 1, P. Tzeferacos 1 and G. Bodo 2 [1] Dipartimento di Fisica Generale, Turin University, ITALY [2] INAF Astronomic Observatory

More information

AREPO: a moving-mesh code for cosmological hydrodynamical simulations

AREPO: a moving-mesh code for cosmological hydrodynamical simulations AREPO: a moving-mesh code for cosmological hydrodynamical simulations E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh Springel, 2010 arxiv:0901.4107 Rubens

More information

A Random Number Based Method for Monte Carlo Integration

A Random Number Based Method for Monte Carlo Integration A Random Number Based Method for Monte Carlo Integration J Wang and G Harrell Department Math and CS, Valdosta State University, Valdosta, Georgia, USA Abstract - A new method is proposed for Monte Carlo

More information

Massively Parallel Computation for Three-Dimensional Monte Carlo Semiconductor Device Simulation

Massively Parallel Computation for Three-Dimensional Monte Carlo Semiconductor Device Simulation L SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4 Edited by W. Fichtner, D. Aemmer - Zurich (Switzerland) September 12-14,1991 - Hartung-Gorre Massively Parallel Computation for Three-Dimensional

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information