Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Size: px
Start display at page:

Download "Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee"

Transcription

1 Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee

2 Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element in A. Sets are the most fundamental discrete structure on which all other discrete structures are built. Examples: A = {a, b, c} N = {0, 1, 2,..., 99}, all positive integers below 100 Mukulika Ghosh Parasol Lab - Texas A&M University 2/27

3 Common Sets Common Sets N = 0, 1, 2, 3,..., set of natural numbers. Z =..., 2, 1, 0, 1, 2,..., set of integers. R set of real numbers, C set of complex numbers. Mukulika Ghosh Parasol Lab - Texas A&M University 3/27

4 Empty Set Empty Set Empty set does not have any member and is denoted by. Example: Empty directory in file structure. Question: What does { } mean? Mukulika Ghosh Parasol Lab - Texas A&M University 4/27

5 Set Builder Notation Set Builder Notation The set builder notation describes all elements having certain properties (even they can formed from elements from other sets). Q = {p/q R p Z, q Z, and q 0} [a, b] = {x a <= x <= b, a < b and x, a, b R} [a, b) = {x a <= x < b, a < b and x, a, b R} (a, b] = {x a < x <= b, a < b and x, a, b R} (a, b) = {x a < x < b, a < b and x, a, b R} Mukulika Ghosh Parasol Lab - Texas A&M University 5/27

6 Equal Sets Equal Sets Two sets (A and B) are considered equal (A = B) if and only if they have the same elements ( x(x A x B). To prove A = B, it is sufficient to show both x(x A x B) and x(x B x A) hold. Mukulika Ghosh Parasol Lab - Texas A&M University 6/27

7 Subset Subset A set A is a subset of B, written A B, if every element of A is also an element of B ( x(x A x B)). Example: Z R A = {1, 2}, B = {0, 1, 1, 2}, A B Mukulika Ghosh Parasol Lab - Texas A&M University 7/27

8 Subset Prove that for every set S, we have S. Proof: We have to show that ( x(x x S)) is true. Since the empty set does not contain any elements, the premise is always false; hence, the implication x x S is always true. Therefore, ( x(x x S)) is true; hence, the claim follows. Mukulika Ghosh Parasol Lab - Texas A&M University 8/27

9 Exercise 1 Exercise 1 Answer the following: 1. Use set builder notation to define the set { 3, 2, 1, 0, 1, 2, 3}. 2. If A = {2, 4, 6}, B = {2, 6}, C = {4, 6} and D = {4, 6, 8}, then determine which of these sets are subsets of which other of these sets. 3. State true/false : { } { }. 4. State true/false : {{ }}. 5. State true/false : If A = B, then A B and B A. Mukulika Ghosh Parasol Lab - Texas A&M University 9/27

10 Cardinality of Sets Cardinality of Sets Let S be a set with a finite number of elements. We say that the set has cardinality n if and only if S contains n elements. We write S to denote the cardinality of the set. Example: A = {1, 2, 3}, then A = 3. What is the cardinality of ( )? Mukulika Ghosh Parasol Lab - Texas A&M University 10/27

11 Power Sets Power Sets Given a set S, the power set P (S) of S is the set of all subsets of S. Example: P ({1}) = {, {1}} P ({1, 2}) = {, {1}, {2}, {1, 2}} P ( ) = { } since every set contains the empty set as a subset, even the empty set. P ({ }) = {, { }}. Question: Determine P ({, { }}) Mukulika Ghosh Parasol Lab - Texas A&M University 11/27

12 Cartesian Product Cartesian Product Let A and B be sets. The cartesian product of A and B, denote A B, is the set of all pairs (a, b) with a A and b B. A B = {(a, b) a A b B} Example: Let A = {1, 2} and B = {a, b}, then A B = {(1, a), (1, b), (2, a), (2, b)}. Question: What is the catersian product of A = {1, 2} and empty set? Mukulika Ghosh Parasol Lab - Texas A&M University 12/27

13 Exercise 2 Exercise 2 Let A = {a, b, c} and B = {0, 1}. Answer the following: 1. What is cardinality of sets A and B? 2. Determine P (A) and P (B). 3. What is A B? Mukulika Ghosh Parasol Lab - Texas A&M University 13/27

14 Set Operations Set Operations Let A and B be two sets. The union of Aand B, denoted A B, is the set that contains those elements that are in A or in B, or in both. The intersection of Aand B, denoted A B, is the set that contains those elements that are in both A and B. The difference between A and B, denoted A B or A\B, is the set that contains those elements that are in A but not in B (A B = {x A x / B}). Mukulika Ghosh Parasol Lab - Texas A&M University 14/27

15 Set Operations Example: A = {1, 2, 3}, B = {2, 4, 6} A B = {1, 2, 3, 4, 6} A B = {2} A B = {1, 3} B A = {4, 6} Mukulika Ghosh Parasol Lab - Texas A&M University 15/27

16 Set Operations Exercise 3 Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h}. Find: 1. A B 2. A B 3. A B 4. B A Mukulika Ghosh Parasol Lab - Texas A&M University 16/27

17 Universe and Complement Universe and Complement A set which has all the elements in the universe of discourse is called a universal set and is denoted by U. The complement of set A, denoted A c or Ā, is given by U A. Example: Let the universal set be set of all letters in English alphabets, and V be set of all vowels. The complement of V ( V ) is set of all consonants. Mukulika Ghosh Parasol Lab - Texas A&M University 17/27

18 Set Identities Set Identities Let U be universal set. Identity Laws: A U = A, A = A Domination Laws: A U = U, A = Idempotent Laws: A A = A, A A = A Commutative Laws: A B = B A, A B = B A Associative Laws: A (B C) = (A B) C, A (B C) = (A B) C Distributive Laws: A (B C) = (A B) (A C), A (B C) = (A B) (A C) Mukulika Ghosh Parasol Lab - Texas A&M University 18/27

19 De Morgan s Law De Morgan s Law A B = Ā B A B = {x x / A B} by definition of complement (1) = {x (x A B)} by definition of / (2) = {x (x A x B)} by definition of intersection (3) = {x (x A) (x B)} by De Morgan s law (4) = {x (x / A) (x / B)} by definition of / (5) = {x (x Ā) (x B)} by definition of complement (6) = {x x Ā x B} by definition of union (7) = Ā B by set builder notation (8) Mukulika Ghosh Parasol Lab - Texas A&M University 19/27

20 Exercise 4 Exercise 4 Simplify the equation using set identity laws if A, B and C are sets (A B) (B C). Mukulika Ghosh Parasol Lab - Texas A&M University 20/27

21 Generalized Unions and Intersections Generalized Unions and Intersections The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection. nk=1 A k = A 1 A 2... A n The intersection of a collection of sets is the set that contains those elements that are members of all sets in the collection. nk=1 A k = A 1 A 2... A n Mukulika Ghosh Parasol Lab - Texas A&M University 21/27

22 Generalized Unions and Intersections Example: For i = 1, 2,..., let A i = {i, i + 1, i + 2,...} ni=1 A i = n i=1 {i, i + 1, i + 2,...} = {1, 2, 3,...} ni=1 A i = n i=1 {i, i + 1, i + 2,...} = {n, n + 1, n + 2,...} = A n Mukulika Ghosh Parasol Lab - Texas A&M University 22/27

23 Exercise 5 Exercise 5 Let A i = {..., 2, 1, 0, 1,..., i}. Find: 1. n i=1 A i 2. n i=1 A i Mukulika Ghosh Parasol Lab - Texas A&M University 23/27

24 Computer Representation of Sets Computer Representation of Sets Suppose that the universal set U is small. Order the elements of U, say a 1, a 2,..., a n. Represent a subset A of U by a bit string of length n. The k-th bit is equal to 1 if and only if a k is contained in A. Mukulika Ghosh Parasol Lab - Texas A&M University 24/27

25 Computer Representation of Sets Example: Let U = {1, 2, 3, 4, 5, 6} be the universal set. 1 6 Represent the subset A = {1, 2} by a bit string of length Mukulika Ghosh Parasol Lab - Texas A&M University 25/27

26 Computer Representation of Sets Operations Let A and B be sets represented by the bit strings a and b, respectively. Ā is represented by negating the bits of a. The A B is represented by (a k b k ) k=1..n The A B is represented by (a k b k ) k=1..n Mukulika Ghosh Parasol Lab - Texas A&M University 26/27

27 Computer Representation of Sets Usage The bit string representation of sets is particularly efficient if the size of the universal set can be represented with a few machine words. If many set operations beside union, intersection, and complement are needed, then this representation might not be such a good choice. Mukulika Ghosh Parasol Lab - Texas A&M University 27/27

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2) Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to

More information

Recursion and Structural Induction

Recursion and Structural Induction Recursion and Structural Induction Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Recursively Defined Functions Recursively Defined Functions Suppose we have a function with the set of non-negative

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture 2: Basic Structures: Set Theory MING GAO DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 18, 2017 Outline 1 Set Concepts 2 Set Operations 3 Application

More information

c) the set of students at your school who either are sophomores or are taking discrete mathematics

c) the set of students at your school who either are sophomores or are taking discrete mathematics Exercises Exercises Page 136 1. Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets. a) A B

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2. Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.3) TOPICS Discrete math Set Definition Set Operations Tuples Digital computers are based on discrete units of data (bits). Therefore,

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Sets and set operations. Lecture 5 ICOM 4075

Sets and set operations. Lecture 5 ICOM 4075 Sets and set operations Lecture 5 ICOM 4075 Reviewing sets s defined in a previous lecture, a setis a collection of objects that constitute the elementsof the set We say that a set containsits elements,

More information

Sets and set operations

Sets and set operations CS 44 Discrete Mathematics for CS Lecture Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 3: Due today Homework 4: Due next week on Friday,

More information

Logic and Proof course Solutions to exercises from chapter 6

Logic and Proof course Solutions to exercises from chapter 6 Logic and roof course Solutions to exercises from chapter 6 Fairouz Kamareddine 6.1 (a) We prove it as follows: Assume == Q and Q == R and R == S then by Transitivity of == R and R == S. Again, by Transitivity

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

Sets. Sets. Subset, universe. Specifying sets, membership. Examples: Specifying a set using a predicate. Examples

Sets. Sets. Subset, universe. Specifying sets, membership. Examples: Specifying a set using a predicate. Examples Sets 2/36 We will not give a precise definition of what is a set, but we will say precisely what you can do with it. Sets Lectures 7 and 8 (hapter 16) (Think of a set as a collection of things of which

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

Sets. {1, 2, 3, Calvin}.

Sets. {1, 2, 3, Calvin}. ets 2-24-2007 Roughly speaking, a set is a collection of objects. he objects are called the members or the elements of the set. et theory is the basis for mathematics, and there are a number of axiom systems

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.3 Counting Elements of Disjoint Sets: The Addition Rule Copyright Cengage Learning. All rights reserved. Counting

More information

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

More information

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets

Figure 1: From Left to Right, General Venn Diagrams for One, Two, and Three Sets 2.3. VENN DIAGRAMS & SET OPERATIONS In this section we introduce Venn diagrams and define four basic operations on sets. We also present some important properties related to these operations. Venn Diagrams

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS 2-1Numeration Systems Hindu-Arabic Numeration System Tally Numeration System Egyptian Numeration System Babylonian Numeration System Mayan Numeration System Roman Numeration System Other Number Base Systems

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology A is a collection of objects or things. The objects belonging to the are called the, or. - : there is a way of determining for sure whether a particular item is an element of

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009

TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009 TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009 Recitation #12 Question: Use Prim s algorithm to find a minimum spanning tree for the given weighted graph. Step 1. Start from the

More information

Intersection of sets *

Intersection of sets * OpenStax-CNX module: m15196 1 Intersection of sets * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 We have pointed out that a set

More information

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper.

Algebra of Sets. Aditya Ghosh. April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. Algebra of Sets Aditya Ghosh April 6, 2018 It is recommended that while reading it, sit with a pen and a paper. 1 The Basics This article is only about the algebra of sets, and does not deal with the foundations

More information

Math Week in Review #5

Math Week in Review #5 Math 141 Spring 2006 c Heather Ramsey Page 1 Math 141 - Week in Review #5 Section 4.1 - Simplex Method for Standard Maximization Problems A standard maximization problem is a linear programming problem

More information

Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets.

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets. Sets A B C This Lecture We will first introduce some basic set theory before we do counting. Basic Definitions Operations on Sets Set Identities Defining Sets Definition: A set is an unordered collection

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

Today s Topics. What is a set?

Today s Topics. What is a set? Today s Topics Introduction to set theory What is a set? Set notation Basic set operations What is a set? Definition: A set is an unordered collection of objects Examples: Sets can contain items of mixed

More information

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set Outline CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets rthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright rthur G. Werschulz, 2017.

More information

The Language of Sets and Functions

The Language of Sets and Functions MAT067 University of California, Davis Winter 2007 The Language of Sets and Functions Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 7, 2007) 1 The Language of Sets 1.1 Definition and Notation

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math Week in Review #5. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both. Math 166 Fall 2006 c Heather Ramsey Page 1 Math 166 - Week in Review #5 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that can

More information

Relational Database: The Relational Data Model; Operations on Database Relations

Relational Database: The Relational Data Model; Operations on Database Relations Relational Database: The Relational Data Model; Operations on Database Relations Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Overview

More information

Algebra of Sets (Mathematics & Logic A)

Algebra of Sets (Mathematics & Logic A) Algebra of Sets (Mathematics & Logic A) RWK/MRQ October 28, 2002 Note. These notes are adapted (with thanks) from notes given last year by my colleague Dr Martyn Quick. Please feel free to ask me (not

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T

CS 1200 Discrete Math Math Preliminaries. A.R. Hurson 323 CS Building, Missouri S&T CS 1200 Discrete Math A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Course Objective: Mathematical way of thinking in order to solve problems 2 Variable: holder. A variable is simply a place

More information

Question7.How many proper subsets in all are there if a set contains (a) 7 elements (b) 4 elements

Question7.How many proper subsets in all are there if a set contains (a) 7 elements (b) 4 elements Question1. Write the following sets in roster form: 1. A={z: z=3x-8, x W and x0 and x is a multiple of 3 less than 100} Question2. Write the following

More information

Chapter 2: Sets. Diana Pell. In the roster method: elements are listed between braces, with commas between the elements

Chapter 2: Sets. Diana Pell. In the roster method: elements are listed between braces, with commas between the elements Chapter 2: Sets Diana Pell 2.1: The Nature of Sets Set: any collection of elements. Elements: objects of the set. In the roster method: elements are listed between braces, with commas between the elements

More information

Section Sets and Set Operations

Section Sets and Set Operations Section 6.1 - Sets and Set Operations Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

More information

1 Sets, Fields, and Events

1 Sets, Fields, and Events CHAPTER 1 Sets, Fields, and Events B 1.1 SET DEFINITIONS The concept of sets play an important role in probability. We will define a set in the following paragraph. Definition of Set A set is a collection

More information

LECTURE 8: SETS. Software Engineering Mike Wooldridge

LECTURE 8: SETS. Software Engineering Mike Wooldridge LECTURE 8: SETS Mike Wooldridge 1 What is a Set? The concept of a set is used throughout mathematics; its formal definition matches closely our intuitive understanding of the word. Definition: A set is

More information

2.3 Algebraic properties of set operations

2.3 Algebraic properties of set operations CHAPTER 2. SETS 38 2.3 Algebraic properties of set operations When a mathematician thinks of algebraic properties what they mean is this: we have two things and we combine them to make a third; what sorts

More information

Set theory is a branch of mathematics that studies sets. Sets are a collection of objects.

Set theory is a branch of mathematics that studies sets. Sets are a collection of objects. Set Theory Set theory is a branch of mathematics that studies sets. Sets are a collection of objects. Often, all members of a set have similar properties, such as odd numbers less than 10 or students in

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

LECTURE 2 An Introduction to Boolean Algebra

LECTURE 2 An Introduction to Boolean Algebra IST 210: Boot Camp Ritendra Datta LECTURE 2 An Introduction to Boolean Algebra 2.1. Outline of Lecture Fundamentals Negation, Conjunction, and Disjunction Laws of Boolean Algebra Constructing Truth Tables

More information

Math Summer 2012

Math Summer 2012 Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

More information

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth Computer Science and Mathematics Part I: Fundamental Mathematical Concepts Winfried Kurth http://www.uni-forst.gwdg.de/~wkurth/csm17_home.htm 1. Mathematical Logic Propositions - can be either true or

More information

What is a Set? Set Theory. Set Notation. Standard Sets. Standard Sets. Part 1.1. Organizing Information

What is a Set? Set Theory. Set Notation. Standard Sets. Standard Sets. Part 1.1. Organizing Information Set Theory What is a Set? Part 1.1 Organizing Information What is a Set? Set Notation A set is an unordered collection of objects The collection objects are also called members or "elements" One of the

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

COMS 1003 Fall Introduction to Computer Programming in C. Bits, Boolean Logic & Discrete Math. September 13 th

COMS 1003 Fall Introduction to Computer Programming in C. Bits, Boolean Logic & Discrete Math. September 13 th COMS 1003 Fall 2005 Introduction to Computer Programming in C Bits, Boolean Logic & Discrete Math September 13 th Hello World! Logistics See the website: http://www.cs.columbia.edu/~locasto/ Course Web

More information

CS February 17

CS February 17 Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F 1 Logical Operations 1.1 And The and operator is a binary operator, denoted as, &,, or sometimes by just concatenating symbols, is true only if both parameters are true. A B A B F T F F F F The expression

More information

MATH 54 - LECTURE 4 DAN CRYTSER

MATH 54 - LECTURE 4 DAN CRYTSER MATH 54 - LECTURE 4 DAN CRYTSER Introduction In this lecture we review properties and examples of bases and subbases. Then we consider ordered sets and the natural order topology that one can lay on an

More information

In this section we take an aside from the normal discussion in algebra.

In this section we take an aside from the normal discussion in algebra. 1.5 Set Notation In this section we take an aside from the normal discussion in algebra. We want to take a look at the topic of sets and set notation. The reason we want to do this is so that as we encounter

More information

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.3 1.4 of Rosen cse235@cse.unl.edu Introduction

More information

Tutorial 3 Q&A. En la pregunta 7 de la sección 2.2 el cual dice: 7. Prove the domination laws in Table 1 by showing that: a)a U = U b)a =

Tutorial 3 Q&A. En la pregunta 7 de la sección 2.2 el cual dice: 7. Prove the domination laws in Table 1 by showing that: a)a U = U b)a = Tutorial 3 Q&A Question 1: 1) Can the range be considered a subset of a function's codomain? No, not always. There are cases that it is like that, but there are many that not. 2) Why is it that if the

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

Ch 3.4 The Integers and Division

Ch 3.4 The Integers and Division Integers and Division 1 Ch 3.4 The Integers and Division This area of discrete mathematics belongs to the area of Number Theory. Some applications of the concepts in this section include generating pseudorandom

More information

CS314: FORMAL LANGUAGES AND AUTOMATA THEORY L. NADA ALZABEN. Lecture 1: Introduction

CS314: FORMAL LANGUAGES AND AUTOMATA THEORY L. NADA ALZABEN. Lecture 1: Introduction CS314: FORMAL LANGUAGES AND AUTOMATA THEORY L. NADA ALZABEN Lecture 1: Introduction Introduction to the course 2 Required Text Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, BY MICHAEL

More information

Algorithm. Algorithm Analysis. Algorithm. Algorithm. Analyzing Sorting Algorithms (Insertion Sort) Analyzing Algorithms 8/31/2017

Algorithm. Algorithm Analysis. Algorithm. Algorithm. Analyzing Sorting Algorithms (Insertion Sort) Analyzing Algorithms 8/31/2017 8/3/07 Analysis Introduction to Analysis Model of Analysis Mathematical Preliminaries for Analysis Set Notation Asymptotic Analysis What is an algorithm? An algorithm is any well-defined computational

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Appendix Set Notation and Concepts

Appendix Set Notation and Concepts Appendix Set Notation and Concepts In mathematics you don t understand things. You just get used to them. John von Neumann (1903 1957) This appendix is primarily a brief run-through of basic concepts from

More information

Let A(x) be x is an element of A, and B(x) be x is an element of B.

Let A(x) be x is an element of A, and B(x) be x is an element of B. Homework 6. CSE 240, Fall, 2014 Due, Tuesday October 28. Can turn in at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Given two arbitrary

More information

4 Mathematical Data Types

4 Mathematical Data Types mcs 2015/5/18 1:43 page 81 #89 4 Mathematical Data Types We have assumed that you ve already been introduced to the concepts of sets, sequences, and functions, and we ve used them informally several times

More information

Definition. A set is a collection of objects. The objects in a set are elements.

Definition. A set is a collection of objects. The objects in a set are elements. Section 1.1: Sets Definition A set is a collection of objects. The objects in a set are elements. Definition A set is a collection of objects. The objects in a set are elements. Examples: {1, cat, ψ} (Sets

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

Introduction. Sets and the Real Number System

Introduction. Sets and the Real Number System Sets: Basic Terms and Operations Introduction Sets and the Real Number System Definition (Set) A set is a well-defined collection of objects. The objects which form a set are called its members or Elements.

More information