Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical information

Size: px
Start display at page:

Download "Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical information"

Transcription

1 Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical information Peter Lelièvre, Angela Carter-McAuslan, Cassandra Tycholiz, Colin Farquharson and Charles Hurich Memorial University, Department of Earth Sciences, St. John s, Newfoundland, Canada GAC-MAC Annual Meeting, SS14, May 28, 2012

2 The common Earth model Geological and geophysical models Instructured meshes Motivation: The common Earth model Lelièvre et al., Unstructured grid modelling (2 / 24)

3 The common Earth model Geological and geophysical models Instructured meshes Motivation: The common Earth model Earth models used for mineral exploration or other subsurface investigations should be consistent with all available geological and geophysical information Lelièvre et al., Unstructured grid modelling (2 / 24)

4 The common Earth model Geological and geophysical models Instructured meshes Motivation: The common Earth model Earth models used for mineral exploration or other subsurface investigations should be consistent with all available geological and geophysical information provides the means to unify geological and geophysical data towards the development of a common Earth model Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (2 / 24)

5 The common Earth model Geological and geophysical models Instructured meshes Forward problem Earth model (e.g. density) Survey data (e.g. gravity) Inverse problem Lelièvre et al., Unstructured grid modelling (3 / 24)

6 The common Earth model Geological and geophysical models Instructured meshes Incorporation of geological and geophysical data into inversions is always an iterative process Lelièvre et al., Unstructured grid modelling (4 / 24)

7 The common Earth model Geological and geophysical models Instructured meshes Incorporation of geological and geophysical data into inversions is always an iterative process Geophysical Data Inversion Earth Model Geological Data Lelièvre et al., Unstructured grid modelling (4 / 24)

8 The common Earth model Geological and geophysical models Instructured meshes Incorporation of geological and geophysical data into inversions is always an iterative process Geophysical Data Inversion Earth Model Geological Data More information reduce non-uniqueness higher potential to resolve deeper features Lelièvre et al., Unstructured grid modelling (4 / 24)

9 Geological models Motivation The common Earth model Geological and geophysical models Instructured meshes 3D geological ore deposit models are commonly created during delineation drilling: Lelièvre et al., Unstructured grid modelling (5 / 24)

10 Geological models Motivation The common Earth model Geological and geophysical models Instructured meshes 3D geological ore deposit models are commonly created during delineation drilling: visualization calculate volumes of ore reserves accuracy is crucial to determine if deposit is economical Lelièvre et al., Unstructured grid modelling (5 / 24)

11 Geological models Motivation The common Earth model Geological and geophysical models Instructured meshes 3D geological ore deposit models are commonly created during delineation drilling: visualization calculate volumes of ore reserves accuracy is crucial to determine if deposit is economical typically comprise wireframe surfaces of connected triangles that represent geological contacts Lelièvre et al., Unstructured grid modelling (5 / 24)

12 Geophysical models The common Earth model Geological and geophysical models Instructured meshes In contrast, most current 3D geophysical modelling is performed on rectilinear meshes: Lelièvre et al., Unstructured grid modelling (6 / 24)

13 Geophysical models The common Earth model Geological and geophysical models Instructured meshes In contrast, most current 3D geophysical modelling is performed on rectilinear meshes: simplifies the development of numerical methods Lelièvre et al., Unstructured grid modelling (6 / 24)

14 Geophysical models The common Earth model Geological and geophysical models Instructured meshes In contrast, most current 3D geophysical modelling is performed on rectilinear meshes: simplifies the development of numerical methods incompatible with wireframe geological models: - can be impossible to adequately model complicated geology - produce pixellated representations 55x82x31=139,810 cells and stair-casing still evident Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (6 / 24)

15 Geophysical models The common Earth model Geological and geophysical models Instructured meshes In contrast, most current 3D geophysical modelling is performed on rectilinear meshes: simplifies the development of numerical methods incompatible with wireframe geological models: - can be impossible to adequately model complicated geology - produce pixellated representations 55x82x31=139,810 cells and stair-casing still evident Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (7 / 24)

16 Why unstructured meshes? The common Earth model Geological and geophysical models Instructured meshes Incompatibility: most current 3D geological Earth models comprise wireframe surfaces (tessellated triangles) most current 3D geophysical modelling is performed on rectilinear meshes (rectangular prisms) Lelièvre et al., Unstructured grid modelling (8 / 24)

17 Unstructured meshes The common Earth model Geological and geophysical models Instructured meshes Unstructured meshes provide: efficient generation of complicated geometries significant reduction in problem size (57,132 vs. 139,810) Lelièvre et al., Unstructured grid modelling (9 / 24)

18 Unstructured meshes The common Earth model Geological and geophysical models Instructured meshes Unstructured meshes provide: efficient generation of complicated geometries significant reduction in problem size (57,132 vs. 139,810) Lelièvre et al., Unstructured grid modelling (9 / 24)

19 Unstructured meshes The common Earth model Geological and geophysical models Instructured meshes Unstructured meshes provide: efficient generation of complicated geometries significant reduction in problem size (57,132 vs. 139,810) Lelièvre et al., Unstructured grid modelling (10 / 24)

20 Unstructured meshes The common Earth model Geological and geophysical models Instructured meshes Advantages: efficient generation of complicated geometries significant reduction in problem size Lelièvre et al., Unstructured grid modelling (11 / 24)

21 Unstructured meshes The common Earth model Geological and geophysical models Instructured meshes Advantages: efficient generation of complicated geometries significant reduction in problem size Challenges: create, manipulate and visualize Earth models mathematics of numerical modelling Lelièvre et al., Unstructured grid modelling (11 / 24)

22 Creation and manipulation Forward modelling Inverse modelling Computational challenges Wireframe creation, manipulation and visualization Gocad FacetModeller (FacetModeller) Blender ParaView (ParaView) Lelièvre et al., Unstructured grid modelling (12 / 24)

23 Creation and manipulation Forward modelling Inverse modelling Computational challenges Volumetric discretization of wireframes 2D: Triangle (J. R. Shewchuck) 3D: TetGen (H. Si) Lelièvre et al., Unstructured grid modelling (13 / 24)

24 Creation and manipulation Forward modelling Inverse modelling Computational challenges Volumetric discretization of wireframes 2D: Triangle (J. R. Shewchuck) 3D: TetGen (H. Si) the triangular wireframe surface facets become the faces of tetrahedra in the volumetric model Lelièvre et al., Unstructured grid modelling (13 / 24)

25 Creation and manipulation Forward modelling Inverse modelling Computational challenges Volumetric discretization of wireframes 2D: Triangle (J. R. Shewchuck) 3D: TetGen (H. Si) the triangular wireframe surface facets become the faces of tetrahedra in the volumetric model geological and geophysical models can share the same modelling mesh; they can be the same model Lelièvre et al., Unstructured grid modelling (13 / 24)

26 Creation and manipulation Forward modelling Inverse modelling Computational challenges Forward modelling on unstructured meshes We have developed modelling methods for various data types: gravity (Hormoz Jahandari) gravity gradiometry (Cassandra Tycholiz) magnetics (Cassandra Tycholiz) seismic first-arrivals (Peter Lelièvre) geoelectric (Amir Javaheri) electromagnetic (Hormoz Jahandari, Masoud Ansari) Lelièvre et al., Unstructured grid modelling (14 / 24)

27 Creation and manipulation Forward modelling Inverse modelling Computational challenges Standard deterministic inversion approach Objective function Φ = Φ d + βφ m Data misfit Φ d = i ( d pred i ) 2 (m) di obs σ i Model structure (regularization) Φ m = [smallness term] + [smoothness term] Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (15 / 24)

28 Regularization Motivation Creation and manipulation Forward modelling Inverse modelling Computational challenges The same regularization is possible on unstructured or rectilinear meshes provided that appropriate matrix operators can be created regular rectilinear triangular unstructured Lelièvre et al., Unstructured grid modelling (16 / 24)

29 Computational challenges Creation and manipulation Forward modelling Inverse modelling Computational challenges Algorithms can be designed that exploit mesh structure: sparsity structure of spatial matrix operators compression of full sensitivity matrices regular rectilinear triangular unstructured Lelièvre et al., Unstructured grid modelling (17 / 24)

30 Voisey s Bay example Voisey s Bay Gravity gradiometry data Inversion results nickel-copper-cobalt sulfide deposit north-east coast of Labrador, Canada Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (18 / 24)

31 Gravity gradiometry (tensor) data Voisey s Bay Gravity gradiometry data Inversion results noisy zz-component noise plus signal from extension Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (19 / 24)

32 True model Motivation Voisey s Bay Gravity gradiometry data Inversion results Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (20 / 24)

33 Unconstrained inversion Voisey s Bay Gravity gradiometry data Inversion results (gravity gradiometry data only) Recovery of shallow sulphide body only Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (21 / 24)

34 Geologically-constrained inversion Voisey s Bay Gravity gradiometry data Inversion results (gneiss-troctolite surface and appropriate bounds) Indication of extension refine geological model; collect downhole data Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (22 / 24)

35 Motivation Acknowledgements most current 3D geological Earth models comprise wireframe surfaces Lelièvre et al., Unstructured grid modelling (23 / 24)

36 Motivation Acknowledgements most current 3D geological Earth models comprise wireframe surfaces in contrast, most current 3D geophysical modelling is performed on rectilinear meshes Lelièvre et al., Unstructured grid modelling (23 / 24)

37 Motivation Acknowledgements most current 3D geological Earth models comprise wireframe surfaces in contrast, most current 3D geophysical modelling is performed on rectilinear meshes working with unstructured meshes allows for efficient incorporation of complicated a priori geometries (forward modelling; constrained inversions) Lelièvre et al., plelievre@mun.ca Unstructured grid modelling (23 / 24)

38 Acknowledgements Motivation Acknowledgements ACOA (Atlantic Canada Opportunities Agency) NSERC (Natural Sciences and Engineering Research Council of Canada) Vale Lelièvre et al., Unstructured grid modelling (24 / 24)

39 Additional Slides Follow Lelièvre et al., Unstructured grid modelling (25 / 24)

40 Rectilinear meshes may require infeasibly many cells for adequate representation pixellated representation 256 cells Lelièvre et al., Unstructured grid modelling (26 / 24)

41 Quadtree & octree meshes need fewer cells and are still structured pixellated representation 946 cells (4096 in underlying regular mesh) Lelièvre et al., Unstructured grid modelling (27 / 24)

42 Unstructured triangular & tetrahedral meshes efficient generation of complicated geometries significant reduction in problem size 183 cells Lelièvre et al., Unstructured grid modelling (28 / 24)

Testing Joint Inversion Code with Geologically Realistic Models

Testing Joint Inversion Code with Geologically Realistic Models Testing Joint Inversion Code with Geologically Realistic Models Angela Carter-McAuslan, Peter Lelièvre, Gary Blades, Colin Farquharson GAC-MAC Joint Annual Meeting May 27 th, 2012 Background Joint Inversion

More information

Lithological and surface geometry joint inversions using multi-objective global optimization methods

Lithological and surface geometry joint inversions using multi-objective global optimization methods Lithological and surface geometry joint inversions using multi-objective global optimization methods Peter G. Lelièvre 1, Rodrigo Bijani and Colin G. Farquharson 1 plelievre@mun.ca http://www.esd.mun.ca/~peter/home.html

More information

3D Potential Field Inversion for Wireframe Surface Geometry

3D Potential Field Inversion for Wireframe Surface Geometry 3D Potential Field Inversion for Wireframe Surface Geometry Peter G. Lelièvre 1, Colin G. Farquharson 1 and Rodrigo Bijani 2 plelievre@mun.ca http://www.esd.mun.ca/~peter/home.html http://www.esd.mun.ca/~farq

More information

Introduction to Geophysical Inversion

Introduction to Geophysical Inversion Introduction to Geophysical Inversion Goals Understand the non-uniqueness in geophysical interpretations Understand the concepts of inversion. Basic workflow for solving inversion problems. Some important

More information

3D modeling of the Quest Projects Geophysical Datasets. Nigel Phillips

3D modeling of the Quest Projects Geophysical Datasets. Nigel Phillips 3D modeling of the Quest Projects Geophysical Datasets Nigel Phillips Advanced Geophysical Interpretation Centre Undercover Exploration workshop KEG-25 April 2012 Mineral Physical Properties: density sus.

More information

prismatic discretization of the digital elevation model, and their associated volume integration problems. Summary

prismatic discretization of the digital elevation model, and their associated volume integration problems. Summary A new method of terrain correcting airborne gravity gradiometry data using 3D Cauchy-type integrals Michael S. Zhdanov*, University of Utah and TechnoImaging, Glenn A. Wilson, TechnoImaging, and Xiaojun

More information

Three-dimensional inversion of borehole, time-domain, electromagnetic data for highly conductive ore-bodies.

Three-dimensional inversion of borehole, time-domain, electromagnetic data for highly conductive ore-bodies. Three-dimensional inversion of borehole, time-domain, electromagnetic data for highly conductive ore-bodies. Nigel Phillips, Doug Oldenburg, Eldad Haber, Roman Shekhtman. UBC-Geophysical Inversion Facility

More information

Integral equation method for anisotropic inversion of towed streamer EM data: theory and application for the TWOP survey

Integral equation method for anisotropic inversion of towed streamer EM data: theory and application for the TWOP survey Integral equation method for anisotropic inversion of towed streamer EM data: theory and application for the TWOP survey Michael S. Zhdanov 1,2, Masashi Endo 1, Daeung Yoon 1,2, Johan Mattsson 3, and Jonathan

More information

Introduction to Geophysical Modelling and Inversion

Introduction to Geophysical Modelling and Inversion Introduction to Geophysical Modelling and Inversion James Reid GEOPHYSICAL INVERSION FOR MINERAL EXPLORERS ASEG-WA, SEPTEMBER 2014 @ 2014 Mira Geoscience Ltd. Forward modelling vs. inversion Forward Modelling:

More information

3D Inversion of Time-Domain Electromagnetic Data for Ground Water Aquifers

3D Inversion of Time-Domain Electromagnetic Data for Ground Water Aquifers 3D Inversion of Time-Domain Electromagnetic Data for Ground Water Aquifers Elliot M. Holtham 1, Mike McMillan 1 and Eldad Haber 2 (1) Computational Geosciences Inc. (2) University of British Columbia Summary

More information

Regional 3D inversion modelling of airborne gravity, magnetic, and electromagnetic data, Central BC, Canada.

Regional 3D inversion modelling of airborne gravity, magnetic, and electromagnetic data, Central BC, Canada. Mira Geoscience Limited 409 Granville Street, Suite 512 B Vancouver, BC Canada V6C 1T2 Tel: (778) 329-0430 Fax: (778) 329-0668 info@mirageoscience.com www.mirageoscience.com Regional 3D inversion modelling

More information

Gravity Gradients in PreStack Depth Migration

Gravity Gradients in PreStack Depth Migration Index Table of contents Gravity Gradients in PreStack Depth Migration Ed. K. Biegert Shell International Exploration and Production Summary Subsurface de-risking is presently almost exclusively done by

More information

QUEST Project: 3D inversion modelling, integration, and visualization of airborne gravity, magnetic, and electromagnetic data, BC, Canada.

QUEST Project: 3D inversion modelling, integration, and visualization of airborne gravity, magnetic, and electromagnetic data, BC, Canada. Mira Geoscience Limited 409 Granville Street, Suite 512 B Vancouver, BC Canada V6C 1T2 Tel: (778) 329-0430 Fax: (778) 329-0668 info@mirageoscience.com www.mirageoscience.com QUEST Project: 3D inversion

More information

EMIGMA V9.x Premium Series April 8, 2015

EMIGMA V9.x Premium Series April 8, 2015 EMIGMA V9.x Premium Series April 8, 2015 EMIGMA for Gravity EMIGMA for Gravity license is a comprehensive package that offers a wide array of processing, visualization and interpretation tools. The package

More information

Downloaded 18 Jul 2011 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 18 Jul 2011 to Redistribution subject to SEG license or copyright; see Terms of Use at Rapid gravity and gravity gradiometry terrain correction via adaptive quadtree mesh discretization Kristofer Davis, M. Andy Kass, and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado

More information

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies

P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies P257 Transform-domain Sparsity Regularization in Reconstruction of Channelized Facies. azemi* (University of Alberta) & H.R. Siahkoohi (University of Tehran) SUMMARY Petrophysical reservoir properties,

More information

(x, y, z) m 2. (x, y, z) ...] T. m 2. m = [m 1. m 3. Φ = r T V 1 r + λ 1. m T Wm. m T L T Lm + λ 2. m T Hm + λ 3. t(x, y, z) = m 1

(x, y, z) m 2. (x, y, z) ...] T. m 2. m = [m 1. m 3. Φ = r T V 1 r + λ 1. m T Wm. m T L T Lm + λ 2. m T Hm + λ 3. t(x, y, z) = m 1 Class 1: Joint Geophysical Inversions Wed, December 1, 29 Invert multiple types of data residuals simultaneously Apply soft mutual constraints: empirical, physical, statistical Deal with data in the same

More information

EOSC 454 Lab #3. 3D Magnetics. Date: Feb 3, Due: Feb 10, 2009.

EOSC 454 Lab #3. 3D Magnetics. Date: Feb 3, Due: Feb 10, 2009. EOSC 454 Lab #3 3D Magnetics Date: Feb 3, 2009. Due: Feb 10, 2009. 1 Introduction In this exercise you will perform both forward models and inversions of magnetic data. You will compare the response of

More information

Tu A4 09 3D CSEM Inversion Of Data Affected by Infrastructure

Tu A4 09 3D CSEM Inversion Of Data Affected by Infrastructure Tu A4 09 3D CSEM Inversion Of Data Affected by Infrastructure J.P. Morten (EMGS), L. Berre* (EMGS), S. de la Kethulle de Ryhove (EMGS), V. Markhus (EMGS) Summary We consider the effect of metal infrastructure

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

Inversion concepts: Introducing geophysical inversion

Inversion concepts: Introducing geophysical inversion Inversion concepts: Introducing geophysical inversion This chapter deals with basic concepts underlying geophysical inversion. Four sections provide an overview of essential ideas without mentioning mathematical

More information

We 2MIN 02 Data Density and Resolution Power in 3D DC Resistivity Surveys

We 2MIN 02 Data Density and Resolution Power in 3D DC Resistivity Surveys We 2MIN 02 Data Density and Resolution Power in 3D DC Resistivity Surveys M. Gharibi 1 *, R. Sharpe 1 1 Quantec Geoscience Ltd Summary Resolution power of a field 3D DC dataset is examined by gradually

More information

Efficient 3D Gravity and Magnetic Modeling

Efficient 3D Gravity and Magnetic Modeling Efficient 3D Gravity and Magnetic Modeling X. Li Fugro Gravity & Magnetic Services Inc., Houston, Texas, USA Summary There are many different spatial-domain algorithms for 3D gravity and magnetic forward

More information

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Summary In this paper we present a new approach to the interpretation

More information

HPC Computer Aided CINECA

HPC Computer Aided CINECA HPC Computer Aided Engineering @ CINECA Raffaele Ponzini Ph.D. CINECA SuperComputing Applications and Innovation Department SCAI 16-18 June 2014 Segrate (MI), Italy Outline Open-source CAD and Meshing

More information

Th Volume Based Modeling - Automated Construction of Complex Structural Models

Th Volume Based Modeling - Automated Construction of Complex Structural Models Th-04-06 Volume Based Modeling - Automated Construction of Complex Structural Models L. Souche* (Schlumberger), F. Lepage (Schlumberger) & G. Iskenova (Schlumberger) SUMMARY A new technology for creating,

More information

A Voronoi-Based Hybrid Meshing Method

A Voronoi-Based Hybrid Meshing Method A Voronoi-Based Hybrid Meshing Method Jeanne Pellerin, Lévy Bruno, Guillaume Caumon To cite this version: Jeanne Pellerin, Lévy Bruno, Guillaume Caumon. A Voronoi-Based Hybrid Meshing Method. 2012. hal-00770939

More information

Combined Electrical and Magnetic Resistivity Tomography (ERT/MMR)

Combined Electrical and Magnetic Resistivity Tomography (ERT/MMR) Combined Electrical and Magnetic Resistivity Tomography (ERT/MMR) Gail Heath 1, John M. Svoboda 1, Birsen Canan 2, Shannon Ansley 1, David Alumbaugh 3, Douglas LaBrecque 4, Roger Sharpe 4,Roelof Versteeg

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Cycle of Visualization Storage De noising/filtering Down sampling

More information

Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco

Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco Summary In this paper, we review the near-surface challenges

More information

What is visualization? Why is it important?

What is visualization? Why is it important? What is visualization? Why is it important? What does visualization do? What is the difference between scientific data and information data Visualization Pipeline Visualization Pipeline Overview Data acquisition

More information

GEOPHYS 242: Near Surface Geophysical Imaging. Class 8: Joint Geophysical Inversions Wed, April 20, 2011

GEOPHYS 242: Near Surface Geophysical Imaging. Class 8: Joint Geophysical Inversions Wed, April 20, 2011 GEOPHYS 4: Near Surface Geophysical Imaging Class 8: Joint Geophysical Inversions Wed, April, 11 Invert multiple types of data residuals simultaneously Apply soft mutual constraints: empirical, physical,

More information

3D inversion of marine CSEM data: A feasibility study from the Shtokman gas field in the Barents Sea

3D inversion of marine CSEM data: A feasibility study from the Shtokman gas field in the Barents Sea 3D inversion of marine CSEM data: A feasibility study from the Shtokman gas field in the Barents Sea M. S. Zhdanov 1,2, M. Čuma 1,2, A. Gribenko 1,2, G. Wilson 2 and N. Black 2 1 The University of Utah,

More information

2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc.

2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc. 2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc. Summary A combination of 3D forward simulations and 2D and 3D inversions have been used

More information

A Nuclear Norm Minimization Algorithm with Application to Five Dimensional (5D) Seismic Data Recovery

A Nuclear Norm Minimization Algorithm with Application to Five Dimensional (5D) Seismic Data Recovery A Nuclear Norm Minimization Algorithm with Application to Five Dimensional (5D) Seismic Data Recovery Summary N. Kreimer, A. Stanton and M. D. Sacchi, University of Alberta, Edmonton, Canada kreimer@ualberta.ca

More information

Data Acquisition. Chapter 2

Data Acquisition. Chapter 2 Data Acquisition Chapter 2 1 st step: get data Data Acquisition Usually data gathered by some geophysical device Most surveys are comprised of linear traverses or transects Typically constant data spacing

More information

Computation of the gravity gradient tensor due to topographic masses using tesseroids

Computation of the gravity gradient tensor due to topographic masses using tesseroids Computation of the gravity gradient tensor due to topographic masses using tesseroids Leonardo Uieda 1 Naomi Ussami 2 Carla F Braitenberg 3 1. Observatorio Nacional, Rio de Janeiro, Brazil 2. Universidade

More information

Mo 21P1 08 Comparison of Different Acquisition Patterns for 2D Tomographic Resistivity Surveys

Mo 21P1 08 Comparison of Different Acquisition Patterns for 2D Tomographic Resistivity Surveys Mo 21P1 08 Comparison of Different Acquisition Patterns for 2D Tomographic Resistivity Surveys R. Martorana* (University of Palermo), P. Capizzi (University of Palermo), A. D'Alessandro (INGV - Roma) &

More information

Large-scale workflows for wave-equation based inversion in Julia

Large-scale workflows for wave-equation based inversion in Julia Large-scale workflows for wave-equation based inversion in Julia Philipp A. Witte, Mathias Louboutin and Felix J. Herrmann SLIM University of British Columbia Motivation Use Geophysics to understand the

More information

History Matching: Towards Geologically Reasonable Models

History Matching: Towards Geologically Reasonable Models Downloaded from orbit.dtu.dk on: Oct 13, 018 History Matching: Towards Geologically Reasonable Models Melnikova, Yulia; Cordua, Knud Skou; Mosegaard, Klaus Publication date: 01 Document Version Publisher's

More information

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an AGG Unconstrained Inversion

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an AGG Unconstrained Inversion Oasis montaj How-To Guide VOXI Earth Modelling - Running an AGG Unconstrained Inversion The software described in this manual is furnished under license and may only be used or copied in accordance with

More information

Elastic full waveform Inversion for land walkaway VSP data

Elastic full waveform Inversion for land walkaway VSP data Elastic full waveform Inversion for land walkaway VSP data Olga Podgornova, Scott Leaney, arwan Charara, Schlumberger; Eric von Lunen, Nexen Energy ULC Summary Full waveform inversion (FWI) is capable

More information

Joint Advanced Student School 2007 Martin Dummer

Joint Advanced Student School 2007 Martin Dummer Sierpiński-Curves Joint Advanced Student School 2007 Martin Dummer Statement of the Problem What is the best way to store a triangle mesh efficiently in memory? The following points are desired : Easy

More information

Structured Grid Generation for Turbo Machinery Applications using Topology Templates

Structured Grid Generation for Turbo Machinery Applications using Topology Templates Structured Grid Generation for Turbo Machinery Applications using Topology Templates January 13th 2011 Martin Spel martin.spel@rtech.fr page 1 Agenda: R.Tech activities Grid Generation Techniques Structured

More information

D020 Statics in Magnetotellurics - Shift or Model?

D020 Statics in Magnetotellurics - Shift or Model? D020 Statics in Magnetotellurics - Shift or Model? W. Soyer* (WesternGeco-Geosystem), S. Hallinan (WesternGeco- Geosystem), R.L. Mackie (WesternGeco-Geosystem) & W. Cumming (Cumming Geoscience) SUMMARY

More information

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Summary Geophysical reservoir characterization in a complex geologic environment remains a challenge. Conventional amplitude inversion

More information

Parallel Quality Meshes for Earth Models

Parallel Quality Meshes for Earth Models Parallel Quality Meshes for Earth Models John Burkardt Department of Scientific Computing Florida State University... 04 October 2016, Virginia Tech... http://people.sc.fsu.edu/ jburkardt/presentations/......

More information

MAPPING POISSON S RATIO OF UNCONSOLIDATED MATERIALS FROM A JOINT ANALYSIS OF SURFACE-WAVE AND REFRACTION EVENTS INTRODUCTION

MAPPING POISSON S RATIO OF UNCONSOLIDATED MATERIALS FROM A JOINT ANALYSIS OF SURFACE-WAVE AND REFRACTION EVENTS INTRODUCTION MAPPING POISSON S RATIO OF UNCONSOLIDATED MATERIALS FROM A JOINT ANALYSIS OF SURFACE-WAVE AND REFRACTION EVENTS Julian Ivanov, Choon B. Park, Richard D. Miller, and Jianghai Xia Kansas Geological Survey

More information

Robust 3D gravity gradient inversion by planting anomalous densities

Robust 3D gravity gradient inversion by planting anomalous densities Robust 3D gravity gradient inversion by planting anomalous densities Leonardo Uieda Valéria C. F. Barbosa Observatório Nacional September, 2011 Outline Outline Forward Problem Outline Forward Problem Inverse

More information

A Avenue, Bus: (604) Delta BC V4C 3W2 CANADA Memorandum

A Avenue, Bus: (604) Delta BC V4C 3W2 CANADA     Memorandum 11966 95A Avenue, Bus: (604) 582-1100 Delta BC V4C 3W2 CANADA E-mail: trent@sjgeophysics.com www.sjgeophysics.com To: Triple Nine Resources Ltd. Four Corners Mining Corp. Memorandum Attn: Victor French

More information

Better exploration decisions from more powerful maps and flexible data management tools

Better exploration decisions from more powerful maps and flexible data management tools E&P WORKFLOWS Better exploration decisions from more powerful maps and flexible data management tools Find elusive targets by rapidly testing a wider range of geological scenarios Refine reservoir attributes

More information

The Use of 3D Magnetotellurics in. Mineral Exploration: Synthetic Model. Study and Inversion of 3D MT Survey. Data from the Wirrda Well IOCG (SA,

The Use of 3D Magnetotellurics in. Mineral Exploration: Synthetic Model. Study and Inversion of 3D MT Survey. Data from the Wirrda Well IOCG (SA, The Use of 3D Magnetotellurics in Mineral Exploration: Synthetic Model Study and Inversion of 3D MT Survey Data from the Wirrda Well IOCG (SA, Australia) Thesis submitted in accordance with the requirements

More information

SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications

SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications Rowan Cockett a, Seogi Kang b, Lindsey J. Heagy b, Adam Pidlisecky c, Douglas W. Oldenburg

More information

Sirovision TM Release 6.0 Release Notes

Sirovision TM Release 6.0 Release Notes 2014-2015 Sirovision TM Release 6.0 Release Notes. Contents 2014-2015 Whats new in Sirovision 6?... 1 New GUI Design... 1 The new Explorer Window... 2 New Icons... 3 Performance Improvements... 5 Reduction

More information

Geological modelling. Gridded Models

Geological modelling. Gridded Models Geological modelling This white paper discusses the meaning and generation of a geological model. The emphasis is on gridded seam models which are commonly used in coal. Mining companies make investment

More information

Masters Thesis. Effects of low-pass filtering on inversion of airborne gravity gradient data. Center for Gravity, Electrical & Magnetic Studies

Masters Thesis. Effects of low-pass filtering on inversion of airborne gravity gradient data. Center for Gravity, Electrical & Magnetic Studies CGEM Masters Thesis Colorado School of Mines Center for Gravity, Electrical & Magnetic Studies Effects of low-pass filtering on inversion of airborne gravity gradient data Jeongmin Lee Department of Geophysics

More information

E3D. A Program Library for Forward Modelling and Inversion of Frequency Domain EM Data over 3D Structures. Version 1.0

E3D. A Program Library for Forward Modelling and Inversion of Frequency Domain EM Data over 3D Structures. Version 1.0 E3D A Program Library for Forward Modelling and Inversion of Frequency Domain EM Data over 3D Structures Version 1.0 Developed under the consortium research project: COOPERATIVE INVERSION OF GEOPHYSICAL

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Experimental Evaluation of 3D Geoelectrical Resistivity Imaging using Orthogonal 2D Profiles

Experimental Evaluation of 3D Geoelectrical Resistivity Imaging using Orthogonal 2D Profiles Experimental Evaluation of 3D Geoelectrical Resistivity Imaging using Orthogonal 2D Profiles A. P. Aizebeokhai 1 *, A. I. Olayinka 2, V. S. Singh 3 and O. A. Oyebanjo 4 1 Department of Physics, Covenant

More information

Computational methods for inverse problems

Computational methods for inverse problems Computational methods for inverse problems Eldad Haber contributors: Stefan Heldmann, Lauren Hanson, Lior Horesh, Jan Modersitzki, Uri Ascher, Doug Oldenburg Sponsored by: DOE and NSF Motivation and examples

More information

Total variation tomographic inversion via the Alternating Direction Method of Multipliers

Total variation tomographic inversion via the Alternating Direction Method of Multipliers Total variation tomographic inversion via the Alternating Direction Method of Multipliers Landon Safron and Mauricio D. Sacchi Department of Physics, University of Alberta Summary Geophysical inverse problems

More information

IGUG: A MATLAB package for 3D inversion of gravity data using graph theory

IGUG: A MATLAB package for 3D inversion of gravity data using graph theory IGUG: A MATLAB package for 3D inversion of gravity data using graph theory Saeed Vatankhah, Vahid Ebrahimzadeh Ardestani, Susan Soodmand Niri 3, Rosemary Anne Renaut and Hojjat Kabirzadeh 5 Corresponding

More information

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach ADVANCES IN EXPLORATION GEOPHYSICS 5 ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach PRABHAKAR S. NAIDU Indian Institute of Science, Bangalore 560012, India AND M.P. MATHEW

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an Inversion Using Gradient Weighting

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an Inversion Using Gradient Weighting Oasis montaj How-To Guide VOXI Earth Modelling - Running an Inversion Using Gradient Weighting The software described in this manual is furnished under license and may only be used or copied in accordance

More information

Model parametrization strategies for Newton-based acoustic full waveform

Model parametrization strategies for Newton-based acoustic full waveform Model parametrization strategies for Newton-based acoustic full waveform inversion Amsalu Y. Anagaw, University of Alberta, Edmonton, Canada, aanagaw@ualberta.ca Summary This paper studies the effects

More information

Tensor Based Approaches for LVA Field Inference

Tensor Based Approaches for LVA Field Inference Tensor Based Approaches for LVA Field Inference Maksuda Lillah and Jeff Boisvert The importance of locally varying anisotropy (LVA) in model construction can be significant; however, it is often ignored

More information

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Daniel A. Silva and Clayton V. Deutsch A Multiple Point Statistics simulation based on the mixing of two

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Foundations of Multidimensional and Metric Data Structures

Foundations of Multidimensional and Metric Data Structures Foundations of Multidimensional and Metric Data Structures Hanan Samet University of Maryland, College Park ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

More information

26257 Nonlinear Inverse Modeling of Magnetic Anomalies due to Thin Sheets and Cylinders Using Occam s Method

26257 Nonlinear Inverse Modeling of Magnetic Anomalies due to Thin Sheets and Cylinders Using Occam s Method 26257 Nonlinear Inverse Modeling of Anomalies due to Thin Sheets and Cylinders Using Occam s Method R. Ghanati* (University of Tehran, Insitute of Geophysics), H.A. Ghari (University of Tehran, Insitute

More information

Overview of Unstructured Mesh Generation Methods

Overview of Unstructured Mesh Generation Methods Overview of Unstructured Mesh Generation Methods Structured Meshes local mesh points and cells do not depend on their position but are defined by a general rule. Lead to very efficient algorithms and storage.

More information

Geostatistical modelling of offshore diamond deposits

Geostatistical modelling of offshore diamond deposits Geostatistical modelling of offshore diamond deposits JEF CAERS AND LUC ROMBOUTS STANFORD UNIVERSITY, Department of Petroleum Engineering, Stanford, CA 94305-2220, USA jef@pangea.stanford.edu TERRACONSULT,

More information

GRAV3D Version 3.0. A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures.

GRAV3D Version 3.0. A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. GRAV3D Version 3.0 A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. UBC-Geophysical Inversion Facility Department of Earth and Ocean Sciences University of British

More information

Viscous Hybrid Mesh Generation

Viscous Hybrid Mesh Generation Tutorial 4. Viscous Hybrid Mesh Generation Introduction In cases where you want to resolve the boundary layer, it is often more efficient to use prismatic cells in the boundary layer rather than tetrahedral

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Why equivariance is better than premature invariance

Why equivariance is better than premature invariance 1 Why equivariance is better than premature invariance Geoffrey Hinton Canadian Institute for Advanced Research & Department of Computer Science University of Toronto with contributions from Sida Wang

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information

DCIP3D OCTREE. Version 1.0

DCIP3D OCTREE. Version 1.0 DCIP3D OCTREE A Program Library for Forward Modelling and Inversion of DC/IP data over 3D Structures using Octree meshes Version 10 Developed under the consortium research project: COOPERATIVE INVERSION

More information

A low rank based seismic data interpolation via frequencypatches transform and low rank space projection

A low rank based seismic data interpolation via frequencypatches transform and low rank space projection A low rank based seismic data interpolation via frequencypatches transform and low rank space projection Zhengsheng Yao, Mike Galbraith and Randy Kolesar Schlumberger Summary We propose a new algorithm

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

Oasis montaj Best Practice Guide. VOXI Earth Modelling - Preparing Data for Inversion

Oasis montaj Best Practice Guide. VOXI Earth Modelling - Preparing Data for Inversion Oasis montaj Best Practice Guide VOXI Earth Modelling - Preparing Data for Inversion The software described in this manual is furnished under license and may only be used or copied in accordance with the

More information

COMBINING MULTIPLE GEOPHYSICAL DATA SETS INTO A SINGLE 3D IMAGE. Abstract

COMBINING MULTIPLE GEOPHYSICAL DATA SETS INTO A SINGLE 3D IMAGE. Abstract COMBINING MULTIPLE GEOPHYSICAL DATA SETS INTO A SINGLE 3D IMAGE Jeffrey J. Daniels*, Mark Vendl+, Jennifer Holt*, and Erich Guy* *OSU, Columbus, OH +USEPA, Chicago, IL Abstract Traditional geophysical

More information

Airborne IP for Kimberlite

Airborne IP for Kimberlite The University of British Columbia Geophysical Inversion Facility Airborne IP for Kimberlite Douglas W. Oldenburg and Seogi Kang IP workshop 2016 June 7 th 2016 gif.eos.ubc.ca slide 1 Acknowledgements

More information

ADVANTAGES AND DISADVANTAGES OF SURFACE AND DOWNHOLE SEISMIC ILLUSTRATED BY PROCESSING RESULTS OF 3D VSP AND 3D+VSP

ADVANTAGES AND DISADVANTAGES OF SURFACE AND DOWNHOLE SEISMIC ILLUSTRATED BY PROCESSING RESULTS OF 3D VSP AND 3D+VSP P3 ADVANTAGES AND DISADVANTAGES OF SURFACE AND DOWNHOLE SEISMIC ILLUSTRATED BY PROCESSING RESULTS OF 3D VSP AND 3D+VSP A.A. Tabakov* & K.V. Baranov** (* CGE JSC, Moscow, ** GEOVERS Ltd., Moscow) Abstract.

More information

Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic loggingwhile-drilling

Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic loggingwhile-drilling Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic loggingwhile-drilling measurements Y. Lin, A. Abubakar, T. M. Habashy, G. Pan, M. Li and V. Druskin, Schlumberger-Doll

More information

Automatic registration of terrestrial laser scans for geological deformation monitoring

Automatic registration of terrestrial laser scans for geological deformation monitoring Automatic registration of terrestrial laser scans for geological deformation monitoring Daniel Wujanz 1, Michael Avian 2, Daniel Krueger 1, Frank Neitzel 1 1 Chair of Geodesy and Adjustment Theory, Technische

More information

Downloaded 23 May 2011 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 23 May 2011 to Redistribution subject to SEG license or copyright; see Terms of Use at Efficient 3D inversion of magnetic data via octree mesh discretization, space-filling curves, and wavelets Kristofer Davis and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

THE VALUE OF 3D SEISMIC IN TODAY S EXPLORATION ENVIRONMENT IN CANADA AND AROUND THE WORLD

THE VALUE OF 3D SEISMIC IN TODAY S EXPLORATION ENVIRONMENT IN CANADA AND AROUND THE WORLD THE VALUE OF 3D SEISMIC IN TODAY S EXPLORATION ENVIRONMENT IN CANADA AND AROUND THE WORLD Cooper, N.M. 1 1 Mustagh Resources Ltd., Calgary, 400 604 1 st Street SW, Calgary, Alberta T2P 1M7, e:mail: ncooper@mustagh.com

More information

P312 Advantages and Disadvantages of Surface and Downhole Seismic Illustrated by Processing Results of 3D VSP and 3D+VSP

P312 Advantages and Disadvantages of Surface and Downhole Seismic Illustrated by Processing Results of 3D VSP and 3D+VSP P312 Advantages and Disadvantages of Surface and Downhole Seismic Illustrated by Processing Results of 3D VSP and 3D+VSP A.A. Tabakov* (Central Geophysical Expedition (CGE) JSC) & K.V. Baranov (Geovers

More information

FINITE ELEMENT MODELING OF IP ANOMALOUS EFFECT FROM BODIES OF ANY GEOMETRICAL SHAPE LOCATED IN RUGED RELIEF AREA

FINITE ELEMENT MODELING OF IP ANOMALOUS EFFECT FROM BODIES OF ANY GEOMETRICAL SHAPE LOCATED IN RUGED RELIEF AREA FINITE ELEMENT MODELING OF IP ANOMALOUS EFFECT FROM BODIES OF ANY GEOMETRICAL SHAPE LOCATED IN RUGED RELIEF AREA Alfred FRASHËRI, Neki FRASHËRI Geophysical Technologist Training Program Quantec Geophysics

More information

Reporting Mesh Statistics

Reporting Mesh Statistics Chapter 15. Reporting Mesh Statistics The quality of a mesh is determined more effectively by looking at various statistics, such as maximum skewness, rather than just performing a visual inspection. Unlike

More information

Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion Andrea Zunino, Katrine Lange, Yulia Melnikova, Thomas Mejer Hansen and Klaus Mosegaard 1 Introduction Reservoir modeling

More information

The General Purpose Parameter Based Two Dimensional Mesh Generator

The General Purpose Parameter Based Two Dimensional Mesh Generator The General Purpose Parameter Based Two Dimensional Mesh Generator Abstract Sivamayam Sivasuthan Department of Electrical and Computer Engineering Michigan State University East Lansing, MI 48824, USA

More information

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an Inversion

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an Inversion Oasis montaj How-To Guide VOXI Earth Modelling - Running an Inversion The software described in this manual is furnished under license and may only be used or copied in accordance with the terms of the

More information

The determination of the correct

The determination of the correct SPECIAL High-performance SECTION: H i gh-performance computing computing MARK NOBLE, Mines ParisTech PHILIPPE THIERRY, Intel CEDRIC TAILLANDIER, CGGVeritas (formerly Mines ParisTech) HENRI CALANDRA, Total

More information