A Geometric Approach to Animating Thin Surface Features in SPH Water

Size: px
Start display at page:

Download "A Geometric Approach to Animating Thin Surface Features in SPH Water"

Transcription

1 A Geometric Approach to Animating Thin Surface Features in SPH Water Taekwon Jang et al. Computer Animation and Social Agents 2013 (CASA) Jong-Hyun Kim

2 Abstract We propose a geometric approach to animating thin surface features of SPH based water. Fluid thin sheet Liquid ligament Jong-Hyun Kim # 2

3 Introduction Particle fluids approach polygonization: low sampling density problem (ex: evaluation of isovalue) Low sampling density High sampling density One remedy is to increase the number of particles adaptively at such area. 1. Symmetrically - Adaptively sampled particle fluids - ACM SIGGRAPH Adams et al. Previous method Our method Jong-Hyun Kim # 3

4 Introduction 2. Spherically - Efficient refinement of dynamic point data - IEEE VGTC Solenthaler et al. 3. Cubically - Two-scale particle simulation - ACM SIGGRAPH Solenthaler and Gross Original Upsampling Two-scale Original droplets ligaments sheets Jong-Hyun Kim # 4

5 Introduction In order to circumvent the issue of unresolved target geometry, we introduce explicit inter-particle connections Create linear connections among surface particles in sparsely sampled regions Along with our inter-particle connections, we propose the following components to reproduce animations of thin surface features in SPH fluids (3 components) Jong-Hyun Kim # 5

6 Introduction Surface breakup animation method determines whether the unresolved regions experience surface breakup or not using each inter-particle connections. Dynamic upsampling method accuracy checking of the continuity status of each connection by incorporating more accurate surface normals this application of the Poisson-disk sampling method serves this purpose Thin surface reconstruction method reconstructs surfaces including thin features by using SPH particles and inter-particle connections. Jong-Hyun Kim # 6

7 Introduction Animation of small-scale surfaces Figure 1 liquid ligaments liquid sheets Figure 2 Zhu and bridson (2005) Our method Zhu and bridson (2005) Our method Jong-Hyun Kim # 7

8 Introduction Inter-particle Connections The connections represents a stored set of neighbor lists of the surface particles surface particles: fewer than 10 neighbors For every simulation frame, new connections can be generated generated connections are updated or disconnected according to predefined geometric condition (Section 3) Jong-Hyun Kim # 8

9 Related Work SPH Water (introduced SPH model to the CG fields) Smoothed Particles: A new paradigm for animating highly deformable bodies Eurographics 1996 Desbrum and Gascule (simulation of water) Particle-based fluid simulation for interactive application SCA 2003 Muller et al. (fluid-fluid interaction) Particle-based fluid-fluid interaction SCA 2005 Muller et al. (frothing bubbles) Bubbling and frothing liquids ACM SIGGRAPH 2007 Cleary et al. (under water bubbles) Animation of air bubbles with SPH GRAPP (Computer Graphics Theory and Applications) 2011 Ihmsen et al. (liquid-liquid mixture) Realistic simulation of mixing fluids Visual Computer 2011 Liu et al. Jong-Hyun Kim # 9

10 Related Work SPH Water (porous flow) Porous flow in particle-based fluid simulation ACM SIGGRAPH 2008 Lenaerts et al. (interfaces between multiple fluids) Density contrast SPH interfaces SCA 2008 Solenthaler and Pajarola (water turbulence) Simulating SPH fluid with multi-level vorticity CASA 2011 Jang et al. Incorporating stochastic turbulence in particle-based fluid simulation Visual Computer 2011 Yuan et al. (enforcing incompressibility) Predictive-corrective incompressible SPH ACM SIGGRAPH 2009 Solenthaler and Pajarola (adaptive sampling) Two-scale particle simulation ACM SIGGRAPH 2011 Solenthaler and Gross Jong-Hyun Kim # 10

11 Related Work SPH Surface Reconstruction (particle upsampling) Efficient refinement of dynamic point data IEEE VGTC 2007 Solenthaler et al. (density normalization scheme) SPH with small scale details and improve surface reconstruction SCCG 2011 Juraj et al. (minimize the thin-plate energy of surfaces) A level-set method for skinning animated particle data SCA 2011 Bhattacharya et al. (anisotropic kernel) Reconstructing surfaces of particle-based fluids using anisotropic kernels SCA 2010 Yu and Greg (isotropic kernel) Particle-based fluid simulation for interactive application SCA 2003 Muller et al. (triangle based surface tracking) Explicit mesh surfaces for particle based fluids Eurographics 2012 Yu et al. Jong-Hyun Kim # 11

12 Related Work Our Solution Main characteristic The utilization of explicit inter-particle connections to model the un-resolve surface features Overall computation cost required for managing the connections much less that that required for constructing an anisotropic kernel (anisotropic kernel) Reconstructing surfaces of particle-based fluids using anisotropic kernels SCA 2010 Yu and Greg The employed Poisson-disk sampling method is know to be fast compare to the dart-throwing technique (preserving fluid sheet on FLIP) Preserving fluid sheets with Adaptively Sampled Anisotropic Particles TVCG 2012 Ando et al. Jong-Hyun Kim # 12

13 Surface Breakup Animation Geometric conditions for connections Generation Reproducing breakable surface elements such as thin water sheets or ligaments. (angle condition) (distance condition) surface particle: neighboring surface particle: unit normal at : When the candidate satisfies Equations (1) and (2) : stored as a new connection is set : 0.15 : reset distance between particles : smoothing length of the employed SPH particles Jong-Hyun Kim # 13

14 Surface Breakup Animation Geometric conditions for connections Update In each simulation frame, update: length of each connection checking: either too long or too short maximum connectable range:, set In addition, a connection is removed if two connected SPH particles have more than 10 neighboring particles. Jong-Hyun Kim # 14

15 Surface Breakup Animation Geometric conditions for connections Disconnection Since thin surfaces in reality are prone to tearing and rupture by various physical factor We proposed to use a geometric approach Measure (over the connections) Strains of stretching deformations length of a connection in the previous frame: sudden stretching:, set 0.15 Thin surface can be torn when experience a large stretching deformation in a short time period. Jong-Hyun Kim # 15

16 Surface Breakup Animation Geometric conditions for connections Local curvature of bending deformations We approximate the curvature by using the surface normal and the length of a connection set : If a connection satisfies on of the two connections for disconnection, It is removed from our system color: magnitude of the stretching deformation, red(high) to blue(low) Jong-Hyun Kim # 16

17 Dynamic Upsampling Method Poisson-disk sampling method In our system, surface normal play important roles when animating the thin surface In particular, the conditions for generation and disconnection rely on the surface normal In order to increate the accuracy of the surface normal, We introduce a dynamic upsampling method. Basic idea: provide auxiliary samples in sparse regions Jong-Hyun Kim # 17

18 Dynamic Upsampling Method Poisson-disk sampling method While the geometry of thin surfaces is approximated by the connection, unresolved areas suffer from deficiency of samples due to local separations of particles. In order to add more sample efficiently: Poisson-disk sampling (sampling) Fast Poisson Disk Sampling in Arbitrary Dimensions ACM SIGGRAPH 2007 stetches Bridson Because 1. Generates and distributes samples while maintaining a minimum distance tween them 2. Achieves fast performance while maintaining the sampling quality Jong-Hyun Kim # 18

19 Dynamic Upsampling Method Upsampling over the connections Step 1. Traverse the grid and mark the voxels that contain as least one SPH particle. Step 2. Select a connection Step 3. Generate candidate points in the voxels that encounter using Poisson-Disk sampling method Step 4. If the candidate point is far from existing samples or SPH particles register the candidate point as a new sample In each frame, - our upsampling method iterates from Step 2 to Step 4 while visiting all the connections. - In step 3, when the candidate points do not align with the connection, - We move the generate samples in the direction of the normal. - Collision avoidance with existing SPH particles. Jong-Hyun Kim # 19

20 Dynamic Upsampling Method Computing surface normals After upsampling, We improve the accuracy of the computation of the surface normals by utilizing added PD samples. Basic idea To treat the PD-samples as adjacent SPH particles When computing the mass-density and the surface normal We first compute a new mass-density for connected particles and PD samples, as following: corrected mass-density SPH particles PD samples poly kernel in SPH Jong-Hyun Kim # 20

21 Dynamic Upsampling Method Computing surface normals An additional term is added to the typical equation in the same way as in the above density correction process. corrected surface normal corrected mass-density at SPH particles corrected mass-density at PD samples Ours Jong-Hyun Kim # 21

22 Thin surface reconstruction Contributions from the connections The breakup status of each connection, which is determined by the geometric condition. ( 앞에서설명 ) For example, when a connection is maintained, it is likely that water surfaces exist around the connection. Therefore, we reconstruct surface meshes connections exist. In order to obtain smooth surface, we adopt a moving avg. based method. (distance) Animating Sand as a Fluid ACM SIGGRAPH 2008 Zhu and Bridson grid pos. avg. pos. avg. radius Jong-Hyun Kim # 22

23 Thin surface reconstruction Contributions from the connections Differently from the original definition, We add the contributions from the PD samples grid pos. avg. pos. avg. radius nearby PD samples nearby PD samples Jong-Hyun Kim # 23

24 Thin surface reconstruction Rescaling the particle radius When evaluating the average radius in Equation 10, as PD samples area additionally involved, The overall volume of the surfaces may increase. We apply the following equation in order to preserve the volume By rescaling the radius of both SPH particles and the PD samples. SPH particles 0.25r PD sample involved in evaluating the isovalues, If no PD sample is involved, original particle radius is set to be the same as the The effect of rescaling is valid only in the surface reconstruction stage Jong-Hyun Kim # 24

25 Thin surface reconstruction Rescaling the particle radius Zhu and bridson (2005) Our method Zhu and bridson (2005) Our method Our method Jong-Hyun Kim # 25

26 Results and Discussion Implementation Our fluid solver: enforce incompressibility (enforcing incompressibility) Predictive-corrective incompressible SPH ACM SIGGRAPH 2009 Solenthaler and Pajarola Boundary handling: fluid-solid coupling (boundary particle) Predictive-corrective incompressible SPH ACM SIGGRAPH 2012 Akinci et al. Upsampling consumes around the 10% of time relative to the SPH solver Jong-Hyun Kim # 26

27 Results and Discussion Comparison with previous work Comparison: anisotropic kernel (anisotropic kernel) Reconstructing surfaces of particle-based fluids using anisotropic kernels SCA 2010 Yu and Greg Our method Jong-Hyun Kim # 27

28 Results and Discussion Comparison with previous work Comparison: previous adaptive sampling (preserving fluid sheet on FLIP) Preserving fluid sheets with Adaptively Sampled Anisotropic Particles TVCG 2012 Ando et al. Our method Jong-Hyun Kim # 28

29 Conclusions We presented a geometric approach to the animation of thin liquid surfaces of SPH fluid. Introduced inter-particle connection method Can represent the geometry of unresolved areas Allowing breakup simulation of SPH surfaces Applied Poisson-disk sampling method Adds PD samples to the connections for the purpose of increasing the accuracy of the breakup simulation. PD samples were exploited in the surface reconstruction stage to reproduce thin water surfaces. Jong-Hyun Kim # 29

30 Conclusions Limitation & Future work Animated surfaces may suffer from temporal inconsistency Water volumes in-bewteen particles may appear or disappear across frames resulting from the additions or deletions of PD samples In future work To reduce artifacts!!! more states, such as post connection/disconnection stage Jong-Hyun Kim # 30

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows Copyright of figures and other materials in the paper belong to original authors. Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows Xiaowei He et al. ACM SIGGRAPH 2015

More information

Divergence-Free Smoothed Particle Hydrodynamics

Divergence-Free Smoothed Particle Hydrodynamics Copyright of figures and other materials in the paper belongs to original authors. Divergence-Free Smoothed Particle Hydrodynamics Bender et al. SCA 2015 Presented by MyungJin Choi 2016-11-26 1. Introduction

More information

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Interaction of Fluid Simulation Based on PhysX Physics Engine Huibai Wang, Jianfei Wan, Fengquan Zhang College

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Particle-based Fluid Simulation

Particle-based Fluid Simulation Simulation in Computer Graphics Particle-based Fluid Simulation Matthias Teschner Computer Science Department University of Freiburg Application (with Pixar) 10 million fluid + 4 million rigid particles,

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA

Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA Thermal Coupling Method Between SPH Particles and Solid Elements in LS-DYNA Jingxiao Xu 1, Jason Wang 2 1 LSTC 2 LSTC 1 Abstract Smooth particles hydrodynamics is a meshfree, Lagrangian particle method

More information

Comparison between incompressible SPH solvers

Comparison between incompressible SPH solvers 2017 21st International Conference on Control Systems and Computer Science Comparison between incompressible SPH solvers Claudiu Baronea, Adrian Cojocaru, Mihai Francu, Anca Morar, Victor Asavei Computer

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

Interactive Fluid Simulation using Augmented Reality Interface

Interactive Fluid Simulation using Augmented Reality Interface Interactive Fluid Simulation using Augmented Reality Interface Makoto Fuisawa 1, Hirokazu Kato 1 1 Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,

More information

IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY DEFINED WALLS FOR PARTICLE BASED FLUID SIMULATION

IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY DEFINED WALLS FOR PARTICLE BASED FLUID SIMULATION 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK IMPROVED WALL BOUNDARY CONDITIONS WITH IMPLICITLY

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

Smoke Simulation using Smoothed Particle Hydrodynamics (SPH) Shruti Jain MSc Computer Animation and Visual Eects Bournemouth University

Smoke Simulation using Smoothed Particle Hydrodynamics (SPH) Shruti Jain MSc Computer Animation and Visual Eects Bournemouth University Smoke Simulation using Smoothed Particle Hydrodynamics (SPH) Shruti Jain MSc Computer Animation and Visual Eects Bournemouth University 21st November 2014 1 Abstract This report is based on the implementation

More information

An Adaptive Sampling Approach to Incompressible Particle-Based Fluid

An Adaptive Sampling Approach to Incompressible Particle-Based Fluid EG UK Theory and Practice of Computer Graphics (2009) Ik Soo Lim, Wen Tang (Editors) An Adaptive Sampling Approach to Incompressible Particle-Based Fluid Woosuck Hong 1, Donald H. House 2 and John Keyser

More information

Dynamical Simulation 1: Particle Systems and ODEs

Dynamical Simulation 1: Particle Systems and ODEs CS-C3100 Computer Graphics Fall 2017 Jaakko Lehtinen Markus Kettunen Dynamical Simulation 1: Particle Systems and ODEs 1 Futuremark Corp., used with permission Types of Animation Keyframing Procedural

More information

Divergence-Free Smoothed Particle Hydrodynamics

Divergence-Free Smoothed Particle Hydrodynamics Divergence-Free Smoothed Particle Hydrodynamics Jan Bender Dan Koschier Graduate School CE TU Darmstadt Figure 1: Our new SPH method allows a stable simulation of incompressible fluids with high velocities

More information

Interactive Fluid Simulation Using Augmented Reality Interface

Interactive Fluid Simulation Using Augmented Reality Interface Interactive Fluid Simulation Using Augmented Reality Interface Makoto Fuisawa and Hirokazu Kato Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma,

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 16. Modeling Evaporating Liquid Spray Introduction In this tutorial, FLUENT s air-blast atomizer model is used to predict the behavior of an evaporating methanol spray. Initially, the air flow

More information

Modeling Evaporating Liquid Spray

Modeling Evaporating Liquid Spray Tutorial 17. Modeling Evaporating Liquid Spray Introduction In this tutorial, the air-blast atomizer model in ANSYS FLUENT is used to predict the behavior of an evaporating methanol spray. Initially, the

More information

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report

Cloth Simulation. Tanja Munz. Master of Science Computer Animation and Visual Effects. CGI Techniques Report Cloth Simulation CGI Techniques Report Tanja Munz Master of Science Computer Animation and Visual Effects 21st November, 2014 Abstract Cloth simulation is a wide and popular area of research. First papers

More information

Simulation of Swirling Bubbly Water using Bubble Particles

Simulation of Swirling Bubbly Water using Bubble Particles Noname manuscript No. (will be inserted by the editor) Simulation of Swirling Bubbly Water using Bubble Particles Ho-Young Lee Jeong-Mo Hong Chang-Hun Kim Received: date / Accepted: date Abstract The effect

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Optional Reading for Last Time: Spring-Mass Systems Numerical Integration (Euler, Midpoint, Runge-Kutta) Modeling string, hair, & cloth HW2: Cloth & Fluid Simulation

More information

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller

T6: Position-Based Simulation Methods in Computer Graphics. Jan Bender Miles Macklin Matthias Müller T6: Position-Based Simulation Methods in Computer Graphics Jan Bender Miles Macklin Matthias Müller Jan Bender Organizer Professor at the Visual Computing Institute at Aachen University Research topics

More information

Shape of Things to Come: Next-Gen Physics Deep Dive

Shape of Things to Come: Next-Gen Physics Deep Dive Shape of Things to Come: Next-Gen Physics Deep Dive Jean Pierre Bordes NVIDIA Corporation Free PhysX on CUDA PhysX by NVIDIA since March 2008 PhysX on CUDA available: August 2008 GPU PhysX in Games Physical

More information

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows XIAOWEI HE Chinese Academy of Sciences HUAMIN WANG The Ohlo State University FENGJUN ZHANG and HONGAN WANG Chinese Academy

More information

CS-184: Computer Graphics Lecture #21: Fluid Simulation II

CS-184: Computer Graphics Lecture #21: Fluid Simulation II CS-184: Computer Graphics Lecture #21: Fluid Simulation II Rahul Narain University of California, Berkeley Nov. 18 19, 2013 Grid-based fluid simulation Recap: Eulerian viewpoint Grid is fixed, fluid moves

More information

Animation of air bubbles with SPH

Animation of air bubbles with SPH GRAPP 2011 Algarve Portugal Animation of air bubbles with SPH Markus Ihmsen Julian Bader Gizem Akinci Matthias Teschner University of Freiburg Abstract We present a physically-based multiphase model for

More information

Adaptive Particles for Incompressible Fluid Simulation (Technical Report tamu-cs-tr )

Adaptive Particles for Incompressible Fluid Simulation (Technical Report tamu-cs-tr ) Adaptive Particles for Incompressible Fluid Simulation (Technical Report tamu-cs-tr 2007-7-2) Woosuck Hong Dept. of Computer Science Texas A&M University wshong@cs.tamu.edu Donald H. House Visualization

More information

Technical Report TR

Technical Report TR Technical Report TR-2015-09 Boundary condition enforcing methods for smoothed particle hydrodynamics Arman Pazouki 1, Baofang Song 2, Dan Negrut 1 1 University of Wisconsin-Madison, Madison, WI, 53706-1572,

More information

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film

NVIDIA. Interacting with Particle Simulation in Maya using CUDA & Maximus. Wil Braithwaite NVIDIA Applied Engineering Digital Film NVIDIA Interacting with Particle Simulation in Maya using CUDA & Maximus Wil Braithwaite NVIDIA Applied Engineering Digital Film Some particle milestones FX Rendering Physics 1982 - First CG particle FX

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Particle-Based Fluid Simulation. CSE169: Computer Animation Steve Rotenberg UCSD, Spring 2016

Particle-Based Fluid Simulation. CSE169: Computer Animation Steve Rotenberg UCSD, Spring 2016 Particle-Based Fluid Simulation CSE169: Computer Animation Steve Rotenberg UCSD, Spring 2016 Del Operations Del: = x Gradient: s = s x y s y z s z Divergence: v = v x + v y + v z x y z Curl: v = v z v

More information

CS 231. Fluid simulation

CS 231. Fluid simulation CS 231 Fluid simulation Why Simulate Fluids? Feature film special effects Computer games Medicine (e.g. blood flow in heart) Because it s fun Fluid Simulation Called Computational Fluid Dynamics (CFD)

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Fluid Simulation. [Thürey 10] [Pfaff 10] [Chentanez 11]

Fluid Simulation. [Thürey 10] [Pfaff 10] [Chentanez 11] Fluid Simulation [Thürey 10] [Pfaff 10] [Chentanez 11] 1 Computational Fluid Dynamics 3 Graphics Why don t we just take existing models from CFD for Computer Graphics applications? 4 Graphics Why don t

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

Fracture & Tetrahedral Models

Fracture & Tetrahedral Models Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. What are the horizontal and face velocities after 1, 2, and many iterations of divergence adjustment for an incompressible fluid? Fracture

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Implicit Surfaces Marching Cubes/Tetras Collision Detection & Response Conservative Bounding Regions backtracking fixing Today Flow Simulations in Graphics Flow

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/1/eaao7005/dc1 Supplementary Materials for Computational discovery of extremal microstructure families The PDF file includes: Desai Chen, Mélina Skouras, Bo Zhu,

More information

An Efficient Adaptive Vortex Particle Method for Real-Time Smoke Simulation

An Efficient Adaptive Vortex Particle Method for Real-Time Smoke Simulation 2011 12th International Conference on Computer-Aided Design and Computer Graphics An Efficient Adaptive Vortex Particle Method for Real-Time Smoke Simulation Shengfeng He 1, *Hon-Cheng Wong 1,2, Un-Hong

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the Fluid Dynamics Models : Flow Past a Cylinder Flow Past a Cylinder Introduction The flow of fluid behind a blunt body such as an automobile is difficult to compute due to the unsteady flows. The wake behind

More information

Rigid Body Dynamics, Collision Response, & Deformation

Rigid Body Dynamics, Collision Response, & Deformation Rigid Body Dynamics, Collision Response, & Deformation Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH What are the horizontal and face velocities after 1, 2, and many iterations of

More information

FOUR WHAT S NEW IN THIS VERSION? 4.1 FLOW-3D Usability CHAPTER

FOUR WHAT S NEW IN THIS VERSION? 4.1 FLOW-3D Usability CHAPTER CHAPTER FOUR WHAT S NEW IN THIS VERSION? FLOW-3D v11.2.0 continues to streamline engineers simulation workflows by enabling them to more quickly set up simulations, avoid common errors, identify and enter

More information

Cloth Hair. and. soft bodies

Cloth Hair. and. soft bodies Cloth Hair Lesson 11 and soft bodies Lesson 08 Outline Problem definition and motivations Modeling deformable solids with mass-spring model Position based dynamics Modeling cloths with mass-spring model

More information

Solid and shell elements

Solid and shell elements Solid and shell elements Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Overview 2D and 3D solid elements Types of elements Effects of element distortions Incompatible modes elements u/p elements for incompressible

More information

Figure 2: Water Into Kerosene, Volume Fraction (Left) And Total Density Of Mixture (Right)

Figure 2: Water Into Kerosene, Volume Fraction (Left) And Total Density Of Mixture (Right) Jared Bottlinger MAE598 Project 3 11/16/17 Task 1 a) Figure 1: Volume Fraction Of Water At 0.4s Task 1 b) Figure 2: Water Into Kerosene, Volume Fraction (Left) And Total Density Of Mixture (Right) Task

More information

Parallel GPU-Based Fluid Animation. Master s thesis in Interaction Design and Technologies JAKOB SVENSSON

Parallel GPU-Based Fluid Animation. Master s thesis in Interaction Design and Technologies JAKOB SVENSSON Parallel GPU-Based Fluid Animation Master s thesis in Interaction Design and Technologies JAKOB SVENSSON Department of Applied Information Technology CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Parallel Surface Reconstruction for Particle-Based Fluids

Parallel Surface Reconstruction for Particle-Based Fluids Volume 0 (1981), Number 0 pp. 1 12 COMPUTER GRAPHICS forum Parallel Surface Reconstruction for Particle-Based Fluids Gizem Akinci Markus Ihmsen Nadir Akinci Matthias Teschner University of Freiburg, Germany

More information

Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels

Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels Reconstructing Surfaces of Particle-Based Fluids Using Anisotropic Kernels JIHUN YU Industrial Light and Magic and GREG TURK Georgia Institute of Technology In this article we present a novel surface reconstruction

More information

Cloth Simulation. COMP 768 Presentation Zhen Wei

Cloth Simulation. COMP 768 Presentation Zhen Wei Cloth Simulation COMP 768 Presentation Zhen Wei Outline Motivation and Application Cloth Simulation Methods Physically-based Cloth Simulation Overview Development References 2 Motivation Movies Games VR

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

Deforming meshes that split and merge

Deforming meshes that split and merge Deforming meshes that split and merge Chris Wojtan Nils Th urey Markus Gross Greg Turk Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Introduction ž Presents a method for accurately tracking the moving

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

Simulation of Automotive Fuel Tank Sloshing using Radioss

Simulation of Automotive Fuel Tank Sloshing using Radioss Simulation of Automotive Fuel Tank Sloshing using Radioss Prashant V. Kulkarni CAE Analyst Tata Motors. Pimpri, Pune - 411018, India Sanjay S. Patil Senior Manager Tata Motors. Pimpri, Pune - 411018, India

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Shrinkwrap developments for computational electromagnetics in ICE NITe

Shrinkwrap developments for computational electromagnetics in ICE NITe Shrinkwrap developments for computational electromagnetics in ICE NITe Preparing CAD models for electromagnetic analysis remains a complex, time consuming process. Typically, the CAD model will contain

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

Finite Volume Discretization on Irregular Voronoi Grids

Finite Volume Discretization on Irregular Voronoi Grids Finite Volume Discretization on Irregular Voronoi Grids C.Huettig 1, W. Moore 1 1 Hampton University / National Institute of Aerospace Folie 1 The earth and its terrestrial neighbors NASA Colin Rose, Dorling

More information

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract Advanced Computational Methods and Experiments in Heat Transfer XIII 15 A numerical study of heat diffusion using the Lagrangian particle SPH method and the Eulerian Finite-Volume method: analysis of convergence,

More information

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre

Constraint fluids in Sprinkle. Dennis Gustafsson Mediocre Constraint fluids in Sprinkle Dennis Gustafsson Mediocre Sprinkle. Sequel. Put out fires. Makeshift firetruck. Distant moon of Saturn. Fluid sim used at the core. Not only to put out fires -> move obstacles,

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information

"The real world is nonlinear"... 7 main Advantages using Abaqus

The real world is nonlinear... 7 main Advantages using Abaqus "The real world is nonlinear"... 7 main Advantages using Abaqus FEA SERVICES LLC 6000 FAIRVIEW ROAD, SUITE 1200 CHARLOTTE, NC 28210 704.552.3841 WWW.FEASERVICES.NET AN OFFICIAL DASSAULT SYSTÈMES VALUE

More information

Sand Simulation. Abhinav Golas. COMP Physically Based Simulation. Final Project Presentation. May 6,

Sand Simulation. Abhinav Golas. COMP Physically Based Simulation. Final Project Presentation. May 6, Sand Simulation Abhinav Golas COMP 768 - Physically Based Simulation Final Project Presentation May 6, 2009 1 Motivation Movies, games Spiderman 3 Engineering design grain silos Avalanches, Landslides

More information

Versatile Interactions at Interfaces for SPH-Based Simulations

Versatile Interactions at Interfaces for SPH-Based Simulations Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (016) Ladislav Kavan and Chris Wojtan (Editors) Versatile Interactions at Interfaces for SPH-Based Simulations Tao Yang 1, Ming C. Lin1,, Ralph

More information

Cloth Animation with Collision Detection

Cloth Animation with Collision Detection Cloth Animation with Collision Detection Mara Guimarães da Silva Figure 1: Cloth blowing in the wind. Abstract This document reports the techniques and steps used to implemented a physically based animation

More information

Analysis of Fluid-Structure Interaction Effects of Liquid-Filled Container under Drop Testing

Analysis of Fluid-Structure Interaction Effects of Liquid-Filled Container under Drop Testing Kasetsart J. (Nat. Sci.) 42 : 165-176 (2008) Analysis of Fluid-Structure Interaction Effects of Liquid-Filled Container under Drop Testing Chakrit Suvanjumrat*, Tumrong Puttapitukporn and Satjarthip Thusneyapan

More information

Fast Particle Neighbor Searching for Unlimited Scene with Fluid Refraction Improvement

Fast Particle Neighbor Searching for Unlimited Scene with Fluid Refraction Improvement Fast Particle Neighbor Searching for Unlimited Scene with Fluid Refraction Improvement Sio-Kei Im and Ka-Hou Chan Abstract With the popular application of physics-based simulation in virtual reality, real-time

More information

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J.

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J. Singh Contents Main features of STAR-CCM+ relevant for marine and offshore

More information

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden Volume Tracking: A New Method for Visualization of Intracardiac Blood Flow from Three-Dimensional, Time-Resolved, Three-Component Magnetic Resonance Velocity Mapping Appendix: Theory and Numerical Implementation

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

An Analysis of Interactive Deformable Solid Object Modeling

An Analysis of Interactive Deformable Solid Object Modeling An Analysis of Interactive Deformable Solid Object Modeling Shrirang Yardi Department of Electrical and Computer Engineering Virginia Tech Blacksburg, VA yardi@vt.edu Benjamin Bishop Department of Computing

More information

PARALLEL SIMULATION OF A FLUID FLOW BY MEANS OF THE SPH METHOD: OPENMP VS. MPI COMPARISON. Pawe l Wróblewski, Krzysztof Boryczko

PARALLEL SIMULATION OF A FLUID FLOW BY MEANS OF THE SPH METHOD: OPENMP VS. MPI COMPARISON. Pawe l Wróblewski, Krzysztof Boryczko Computing and Informatics, Vol. 28, 2009, 139 150 PARALLEL SIMULATION OF A FLUID FLOW BY MEANS OF THE SPH METHOD: OPENMP VS. MPI COMPARISON Pawe l Wróblewski, Krzysztof Boryczko Department of Computer

More information

Solution Recording and Playback: Vortex Shedding

Solution Recording and Playback: Vortex Shedding STAR-CCM+ User Guide 6663 Solution Recording and Playback: Vortex Shedding This tutorial demonstrates how to use the solution recording and playback module for capturing the results of transient phenomena.

More information

Simulating Sinkage & Trim for Planing Boat Hulls. A Fluent Dynamic Mesh 6DOF Tutorial

Simulating Sinkage & Trim for Planing Boat Hulls. A Fluent Dynamic Mesh 6DOF Tutorial Simulating Sinkage & Trim for Planing Boat Hulls A Fluent Dynamic Mesh 6DOF Tutorial 1 Introduction Workshop Description This workshop describes how to perform a transient 2DOF simulation of a planing

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

PHYSICALLY BASED ANIMATION

PHYSICALLY BASED ANIMATION PHYSICALLY BASED ANIMATION CS148 Introduction to Computer Graphics and Imaging David Hyde August 2 nd, 2016 WHAT IS PHYSICS? the study of everything? WHAT IS COMPUTATION? the study of everything? OUTLINE

More information

CHAPTER 4 CFD AND FEA ANALYSIS OF DEEP DRAWING PROCESS

CHAPTER 4 CFD AND FEA ANALYSIS OF DEEP DRAWING PROCESS 54 CHAPTER 4 CFD AND FEA ANALYSIS OF DEEP DRAWING PROCESS 4.1 INTRODUCTION In Fluid assisted deep drawing process the punch moves in the fluid chamber, the pressure is generated in the fluid. This fluid

More information

Modeling of Granular Materials

Modeling of Granular Materials Modeling of Granular Materials Abhinav Golas COMP 768 - Physically Based Simulation April 23, 2009 1 Motivation Movies, games Spiderman 3 Engineering design grain silos Avalanches, Landslides The Mummy

More information

14 Dec 94. Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair

14 Dec 94. Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair mairh@asme.org Background Hydrocodes are Computational Mechanics tools that simulate the compressible dynamics (i.e., shock

More information

AN ADAPTIVE SAMPLING APPROACH TO INCOMPRESSIBLE PARTICLE-BASED FLUID. A Dissertation WOO-SUCK HONG

AN ADAPTIVE SAMPLING APPROACH TO INCOMPRESSIBLE PARTICLE-BASED FLUID. A Dissertation WOO-SUCK HONG AN ADAPTIVE SAMPLING APPROACH TO INCOMPRESSIBLE PARTICLE-BASED FLUID A Dissertation by WOO-SUCK HONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Flow Structures Extracted from Visualization Images: Vector Fields and Topology

Flow Structures Extracted from Visualization Images: Vector Fields and Topology Flow Structures Extracted from Visualization Images: Vector Fields and Topology Tianshu Liu Department of Mechanical & Aerospace Engineering Western Michigan University, Kalamazoo, MI 49008, USA We live

More information

Ship in a Bottle. 1 Modeling and Rendering the Water. Saket Patkar and Bo Zhu

Ship in a Bottle. 1 Modeling and Rendering the Water. Saket Patkar and Bo Zhu Ship in a Bottle Saket Patkar and Bo Zhu 1 Modeling and Rendering the Water We decided to get the basic ocean surface through a particle level set fluid simulation. The fluid simulator can only handle

More information

Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report

Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report Ren B, Yang XY, Lin MC et al. Visual simulation of multiple fluids in computer graphics: A state-of-the-art report. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(3): 431 451 May 2018. DOI 10.1007/s11390-018-1829-0

More information

Adaptive-Mesh-Refinement Pattern

Adaptive-Mesh-Refinement Pattern Adaptive-Mesh-Refinement Pattern I. Problem Data-parallelism is exposed on a geometric mesh structure (either irregular or regular), where each point iteratively communicates with nearby neighboring points

More information

Muscle Based facial Modeling. Wei Xu

Muscle Based facial Modeling. Wei Xu Muscle Based facial Modeling Wei Xu Facial Modeling Techniques Facial modeling/animation Geometry manipulations Interpolation Parameterizations finite element methods muscle based modeling visual simulation

More information

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body George Wang (1 ), Kevin Gardner (3), Eric DeHoff (1), Facundo del Pin (2), Inaki Caldichoury (2), Edouard

More information

Mass-Spring Systems. Last Time?

Mass-Spring Systems. Last Time? Mass-Spring Systems Last Time? Implicit Surfaces & Marching Cubes/Tetras Collision Detection & Conservative Bounding Regions Spatial Acceleration Data Structures Octree, k-d tree, BSF tree 1 Today Particle

More information

Art Based Rendering of Fur by Instancing Geometry

Art Based Rendering of Fur by Instancing Geometry Art Based Rendering of Fur by Instancing Geometry Abstract Richie Steigerwald In this paper, I describe a non- photorealistic rendering system that uses strokes to render fur and grass in a stylized manner

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information