MATH 19520/51 Class 15

Size: px
Start display at page:

Download "MATH 19520/51 Class 15"

Transcription

1 MATH 19520/51 Class 15 Minh-Tam Trinh University of Chicago

2 1 Change of variables in two dimensions. 2 Double integrals via change of variables.

3 Change of Variables Slogan: An n-variable substitution = a geometric transformation of n-dimensional space.

4 Change of Variables Slogan: An n-variable substitution = a geometric transformation of n-dimensional space. What do we mean by geometric transformation?

5 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations?

6 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. 2 x = u. 3 x = u x = u. 5 x = u x = (u + 1).

7 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. Scale to 2 times as large 2 x = u. 3 x = u x = u. 5 x = u x = (u + 1).

8 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. Scale to 2 times as large 2 x = u. Flip direction 3 x = u x = u. 5 x = u x = (u + 1).

9 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. Scale to 2 times as large 2 x = u. Flip direction 3 x = u + 1. Shift right by 1 unit 4 x = u. 5 x = u x = (u + 1).

10 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. Scale to 2 times as large 2 x = u. Flip direction 3 x = u + 1. Shift right by 1 unit 4 x = u. Keep positive axis in place, flip negative axis onto it 5 x = u x = (u + 1).

11 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. Scale to 2 times as large 2 x = u. Flip direction 3 x = u + 1. Shift right by 1 unit 4 x = u. Keep positive axis in place, flip negative axis onto it 5 x = u + 1. First flip direction, then shift right by 1 6 x = (u + 1).

12 n = 1: A substitution that expresses x in terms of u is a transformation from the u-axis to the x-axis. What are the following transformations? 1 x = 2u. Scale to 2 times as large 2 x = u. Flip direction 3 x = u + 1. Shift right by 1 unit 4 x = u. Keep positive axis in place, flip negative axis onto it 5 x = u + 1. First flip direction, then shift right by 1 6 x = (u + 1). First shift right by 1, then flip direction

13 n = 2: A substitution that turns x and y into u and v is a transformation from the uv-plane to the xy-plane: Formulas for x and y in terms of u and v let us transform S (in the uv-plane) into R (in the xy-plane).

14 What are the following transformations?

15 What are the following transformations? 1 (x, y) = (u + 1, v). 2 (x, y) = (u 1, v + 1). 3 (x, y) = (v, u). 4 (x, y) = (u, u + v). 5 (x, y) = (u, 0). 6 (x, y) = (u cos v, u sin v). Also, which of these substitutions can you undo?

16 What are the following transformations? 1 (x, y) = (u + 1, v). Shift right by 1 2 (x, y) = (u 1, v + 1). 3 (x, y) = (v, u). 4 (x, y) = (u, u + v). 5 (x, y) = (u, 0). 6 (x, y) = (u cos v, u sin v). Also, which of these substitutions can you undo?

17 What are the following transformations? 1 (x, y) = (u + 1, v). Shift right by 1 2 (x, y) = (u 1, v + 1). Shift left by 1 and up by 1 3 (x, y) = (v, u). 4 (x, y) = (u, u + v). 5 (x, y) = (u, 0). 6 (x, y) = (u cos v, u sin v). Also, which of these substitutions can you undo?

18 What are the following transformations? 1 (x, y) = (u + 1, v). Shift right by 1 2 (x, y) = (u 1, v + 1). Shift left by 1 and up by 1 3 (x, y) = (v, u). Flip diagonally, interchanging right and up 4 (x, y) = (u, u + v). 5 (x, y) = (u, 0). 6 (x, y) = (u cos v, u sin v). Also, which of these substitutions can you undo?

19 What are the following transformations? 1 (x, y) = (u + 1, v). Shift right by 1 2 (x, y) = (u 1, v + 1). Shift left by 1 and up by 1 3 (x, y) = (v, u). Flip diagonally, interchanging right and up 4 (x, y) = (u, u + v). Shear vertically by 1 unit 5 (x, y) = (u, 0). 6 (x, y) = (u cos v, u sin v). Also, which of these substitutions can you undo?

20 What are the following transformations? 1 (x, y) = (u + 1, v). Shift right by 1 2 (x, y) = (u 1, v + 1). Shift left by 1 and up by 1 3 (x, y) = (v, u). Flip diagonally, interchanging right and up 4 (x, y) = (u, u + v). Shear vertically by 1 unit 5 (x, y) = (u, 0). Collapse the vertical direction 6 (x, y) = (u cos v, u sin v). Also, which of these substitutions can you undo?

21 What are the following transformations? 1 (x, y) = (u + 1, v). Shift right by 1 2 (x, y) = (u 1, v + 1). Shift left by 1 and up by 1 3 (x, y) = (v, u). Flip diagonally, interchanging right and up 4 (x, y) = (u, u + v). Shear vertically by 1 unit 5 (x, y) = (u, 0). Collapse the vertical direction 6 (x, y) = (u cos v, u sin v). Turn rectangles into polar wedges Also, which of these substitutions can you undo?

22 A substitution is called one-to-one, or invertible, iff you can undo it.

23 A substitution is called one-to-one, or invertible, iff you can undo it. The polar-coordinate substitution is invertible as long as r 0.

24 The substitution x = x(u, v) and y = y(u, v): Transforms the uv-plane into the xy-plane. Pulls back functions of x and y to functions of u and v. (Reverse direction!)

25 The substitution x = x(u, v) and y = y(u, v): Transforms the uv-plane into the xy-plane. Pulls back functions of x and y to functions of u and v. (Reverse direction!) What do the following do to the function f (x, y) = x 2 y 2? 1 (x, y) = (u, v). 2 (x, y) = (v, u). 3 (x, y) = ( u, v). 4 (x, y) = (u + 1, v).

26 The substitution x = x(u, v) and y = y(u, v): Transforms the uv-plane into the xy-plane. Pulls back functions of x and y to functions of u and v. (Reverse direction!) What do the following do to the function f (x, y) = x 2 y 2? 1 (x, y) = (u, v). u 2 v 2 2 (x, y) = (v, u). 3 (x, y) = ( u, v). 4 (x, y) = (u + 1, v).

27 The substitution x = x(u, v) and y = y(u, v): Transforms the uv-plane into the xy-plane. Pulls back functions of x and y to functions of u and v. (Reverse direction!) What do the following do to the function f (x, y) = x 2 y 2? 1 (x, y) = (u, v). u 2 v 2 2 (x, y) = (v, u). v 2 u 2 (flipped on a diagonal) 3 (x, y) = ( u, v). 4 (x, y) = (u + 1, v).

28 The substitution x = x(u, v) and y = y(u, v): Transforms the uv-plane into the xy-plane. Pulls back functions of x and y to functions of u and v. (Reverse direction!) What do the following do to the function f (x, y) = x 2 y 2? 1 (x, y) = (u, v). u 2 v 2 2 (x, y) = (v, u). v 2 u 2 (flipped on a diagonal) 3 (x, y) = ( u, v). u 2 v 2 (no change) 4 (x, y) = (u + 1, v).

29 The substitution x = x(u, v) and y = y(u, v): Transforms the uv-plane into the xy-plane. Pulls back functions of x and y to functions of u and v. (Reverse direction!) What do the following do to the function f (x, y) = x 2 y 2? 1 (x, y) = (u, v). u 2 v 2 2 (x, y) = (v, u). v 2 u 2 (flipped on a diagonal) 3 (x, y) = ( u, v). u 2 v 2 (no change) 4 (x, y) = (u + 1, v). (u + 1) 2 v 2 (shift left in the first coordinate)

30 Why we care about this geometric interpretation: We solve lots of integrals using variable substitution, e.g., (1) or (2) b a cos(2x + 1) dx = e (x2 +y 2) dx dy = 2b+1 2a+1 2π 0 1 cos(u) du 2 0 e u2 u du dv.

31 Why we care about this geometric interpretation: We solve lots of integrals using variable substitution, e.g., (1) or b a cos(2x + 1) dx = 2b+1 2a+1 1 cos(u) du 2 (2) What s really going on: e (x2 +y 2) dx dy = 2π 0 0 e u2 u du dv. We re pulling back functions from xy-coordinates to uv-coordinates, then integrating the new function in uv-coordinates.

32 Key point: A substitution that expresses x in terms of u doesn t have to preserve length. In fact, in turns (3) dx into dx du du. Above, dx du keeps track of the distortion in length.

33 Key point: A substitution that expresses x in terms of u doesn t have to preserve length. In fact, in turns (3) dx into dx du du. Above, dx du Example To solve b a keeps track of the distortion in length. 2 cos(2x + 1) dx, we take u = 2x + 1.

34 Key point: A substitution that expresses x in terms of u doesn t have to preserve length. In fact, in turns (3) dx into dx du du. Above, dx du Example To solve b a keeps track of the distortion in length. 2 cos(2x + 1) dx, we take u = 2x + 1. This is the same as taking x = u 1 2, which gives (4) dx du = 1 2. That s why we get b a cos(2x + 1) dx = 2b+1 2a+1 cos(u) ( 1 2 du ).

35 Example (Stewart, 15.9, Example 1) An example of distortion in area: This is what happens to the unit square {(u, v) : 0 u 1 and 0 v 1} under the substitution (x, y) = (u 2 v 2, 2uv).

36 The Jacobian In single-variable calculus, when you do a u-substitution, we turn (5) dx = stuff(u) du and we know stuff(u) = dx du.

37 The Jacobian In single-variable calculus, when you do a u-substitution, we turn (5) dx = stuff(u) du and we know stuff(u) = dx du. In 2-variable calculus, (6) dx dy = stuff(u, v) du dv. But what is stuff(u, v)?

38

39 Answer: The Jacobian of a substitution from (x, y) into (u, v) is (7) x u y u x v y v Stewart denotes the Jacobian by = x uy v x v y u. (x, y) (u, v).

40 Double Integrals via Change of Variables The change-of-variables formula in 2 dimensions: If a substitution from (x, y) into (u, v) transforms S into R and is one-to-one (except possibly at the boundary of S), then: (8) R f (x, y) dx dy = S f (x(u, v), y(u, v)) (x, y) du dv. (u, v)

41 Example The polar integral is a special case of the change-of-variables formula: What is the Jacobian of the substitution (x, y) = (r cos θ, r sin θ)?

42 Example The polar integral is a special case of the change-of-variables formula: What is the Jacobian of the substitution (x, y) = (r cos θ, r sin θ)? (9) x r y θ x θ y r = (cos θ)(r cos θ) ( r sin θ)(sin θ) = r cos 2 θ + r sin 2 θ = r.

43 Example The polar integral is a special case of the change-of-variables formula: What is the Jacobian of the substitution (x, y) = (r cos θ, r sin θ)? (9) x r y θ x θ y r = (cos θ)(r cos θ) ( r sin θ)(sin θ) = r cos 2 θ + r sin 2 θ = r. This is why the polar change-of-variables formula involves turning (10) dx dy into r dr dθ.

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

Math 241, Exam 3 Information.

Math 241, Exam 3 Information. Math 241, xam 3 Information. 11/28/12, LC 310, 11:15-12:05. xam 3 will be based on: Sections 15.2-15.4, 15.6-15.8. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters.

First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). Surfaces will need two parameters. Math 55 - Vector Calculus II Notes 14.6 urface Integrals Let s develop some surface integrals. First we consider how to parameterize a surface (similar to a parameterized curve for line integrals). urfaces

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

Math Change of Variables in Triple Integrals

Math Change of Variables in Triple Integrals Math 213 - Change of Variables in Triple Integrals Peter A. Perry University of Kentucky November 9, 2018 Homework e-rre-ead section 15.9 Finish work on section 15.9, problems 1-37 (odd) from tewart Begin

More information

MIDTERM. Section: Signature:

MIDTERM. Section: Signature: MIDTERM Math 32B 8/8/2 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. NO CALCULATORS! Show all work, clearly

More information

R f da (where da denotes the differential of area dxdy (or dydx)

R f da (where da denotes the differential of area dxdy (or dydx) Math 28H Topics for the second exam (Technically, everything covered on the first exam, plus) Constrained Optimization: Lagrange Multipliers Most optimization problems that arise naturally are not unconstrained;

More information

MAT137 Calculus! Lecture 31

MAT137 Calculus! Lecture 31 MAT137 Calculus! Lecture 31 Today: Next: Integration Methods: Integration Methods: Trig. Functions (v. 9.10-9.12) Rational Functions Trig. Substitution (v. 9.13-9.15) (v. 9.16-9.17) Integration by Parts

More information

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy.

f x = 2e xy +y(2x+y)e xy = (2+2xy+y 2 )e xy. gri (rg38778) Homework 11 gri (11111) 1 This print-out should have 3 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Find lim (x,y) (,) 1

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates

Integration using Transformations in Polar, Cylindrical, and Spherical Coordinates ections 15.4 Integration using Transformations in Polar, Cylindrical, and pherical Coordinates Cylindrical Coordinates pherical Coordinates MATH 127 (ection 15.5) Applications of Multiple Integrals The

More information

2 Unit Bridging Course Day 10

2 Unit Bridging Course Day 10 1 / 31 Unit Bridging Course Day 10 Circular Functions III The cosine function, identities and derivatives Clinton Boys / 31 The cosine function The cosine function, abbreviated to cos, is very similar

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

MATH 200 WEEK 9 - WEDNESDAY TRIPLE INTEGRALS

MATH 200 WEEK 9 - WEDNESDAY TRIPLE INTEGRALS MATH WEEK 9 - WEDNESDAY TRIPLE INTEGRALS MATH GOALS Be able to set up and evaluate triple integrals using rectangular, cylindrical, and spherical coordinates MATH TRIPLE INTEGRALS We integrate functions

More information

Examples from Section 7.1: Integration by Parts Page 1

Examples from Section 7.1: Integration by Parts Page 1 Examples from Section 7.: Integration by Parts Page Questions Example Determine x cos x dx. Example e θ cos θ dθ Example You may wonder why we do not add a constant at the point where we integrate for

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

Changing Variables in Multiple Integrals

Changing Variables in Multiple Integrals Changing Variables in Multiple Integrals 3. Examples and comments; putting in limits. If we write the change of variable formula as (x, y) (8) f(x, y)dx dy = g(u, v) dudv, (u, v) where (x, y) x u x v (9)

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals

Section Parametrized Surfaces and Surface Integrals. (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals Section 16.4 Parametrized Surfaces and Surface Integrals (I) Parametrizing Surfaces (II) Surface Area (III) Scalar Surface Integrals MATH 127 (Section 16.4) Parametrized Surfaces and Surface Integrals

More information

To find the maximum and minimum values of f(x, y, z) subject to the constraints

To find the maximum and minimum values of f(x, y, z) subject to the constraints Midterm 3 review Math 265 Fall 2007 14.8. Lagrange Multipliers. Case 1: One constraint. To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k: Step 1: Find all values

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. CV. Changing Variables in

More information

Calculus IV. Exam 2 November 13, 2003

Calculus IV. Exam 2 November 13, 2003 Name: Section: Calculus IV Math 1 Fall Professor Ben Richert Exam November 1, Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem Possible

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

Parametric Surfaces and Surface Area

Parametric Surfaces and Surface Area Parametric Surfaces and Surface Area What to know: 1. Be able to parametrize standard surfaces, like the ones in the handout.. Be able to understand what a parametrized surface looks like (for this class,

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Area and Jacobians. Outline

Area and Jacobians. Outline Area and Jacobians Outline 1. Jacobians Let f : 2 2 be a smooth map from the uv-plane to the xy-plane. The Jacobian of f is the absolute value of the determinant of the derivative matrix: Jf = det(df)

More information

Limits and Continuity: section 12.2

Limits and Continuity: section 12.2 Limits and Continuity: section 1. Definition. Let f(x,y) be a function with domain D, and let (a,b) be a point in the plane. We write f (x,y) = L if for each ε > 0 there exists some δ > 0 such that if

More information

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

1. No calculators or other electronic devices are allowed during this exam.

1. No calculators or other electronic devices are allowed during this exam. Version A Math 2E Spring 24 Midterm Exam Instructions. No calculators or other electronic devices are allowed during this exam. 2. You may use one page of notes, but no books or other assistance during

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018 Sample Exam Questions Mathematics 1 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 218 Disclaimer: The actual exam questions may be organized differently and ask questions

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

12.5 Triple Integrals

12.5 Triple Integrals 1.5 Triple Integrals Arkansas Tech University MATH 94: Calculus III r. Marcel B Finan In Sections 1.1-1., we showed how a function of two variables can be integrated over a region in -space and how integration

More information

Review 1. Richard Koch. April 23, 2005

Review 1. Richard Koch. April 23, 2005 Review Richard Koch April 3, 5 Curves From the chapter on curves, you should know. the formula for arc length in section.;. the definition of T (s), κ(s), N(s), B(s) in section.4. 3. the fact that κ =

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

Triple Integrals. Be able to set up and evaluate triple integrals over rectangular boxes.

Triple Integrals. Be able to set up and evaluate triple integrals over rectangular boxes. SUGGESTED REFERENCE MATERIAL: Triple Integrals As you work through the problems listed below, you should reference Chapters 4.5 & 4.6 of the recommended textbook (or the equivalent chapter in your alternative

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

Second Midterm Exam Math 212 Fall 2010

Second Midterm Exam Math 212 Fall 2010 Second Midterm Exam Math 22 Fall 2 Instructions: This is a 9 minute exam. You should work alone, without access to any book or notes. No calculators are allowed. Do not discuss this exam with anyone other

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Double Integrals over Polar Coordinate

Double Integrals over Polar Coordinate 1. 15.4 DOUBLE INTEGRALS OVER POLAR COORDINATE 1 15.4 Double Integrals over Polar Coordinate 1. Polar Coordinates. The polar coordinates (r, θ) of a point are related to the rectangular coordinates (x,y)

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

10.7 Triple Integrals. The Divergence Theorem of Gauss

10.7 Triple Integrals. The Divergence Theorem of Gauss 10.7 riple Integrals. he Divergence heorem of Gauss We begin by recalling the definition of the triple integral f (x, y, z) dv, (1) where is a bounded, solid region in R 3 (for example the solid ball {(x,

More information

Triple Integrals in Rectangular Coordinates

Triple Integrals in Rectangular Coordinates Triple Integrals in Rectangular Coordinates P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Triple Integrals in Rectangular Coordinates April 10, 2017 1 / 28 Overview We use triple integrals

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. Summer Review for Students Entering Pre-Calculus with Trigonometry 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios

More information

Applications of Triple Integrals

Applications of Triple Integrals Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) III. Overview of Area Between Two Curves With a few modifications the area under a curve represented by a definite integral can

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

1 Double Integrals over Rectangular Regions

1 Double Integrals over Rectangular Regions Contents ouble Integrals over Rectangular Regions ouble Integrals Over General Regions 7. Introduction.................................... 7. Areas of General Regions............................. 9.3 Region

More information

Unit #11 : Integration by Parts, Average of a Function. Goals: Learning integration by parts. Computing the average value of a function.

Unit #11 : Integration by Parts, Average of a Function. Goals: Learning integration by parts. Computing the average value of a function. Unit #11 : Integration by Parts, Average of a Function Goals: Learning integration by parts. Computing the average value of a function. Integration Method - By Parts - 1 Integration by Parts So far in

More information

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space Quaternions and Dual Coupled Orthogonal Rotations in Four-Space Kurt Nalty January 8, 204 Abstract Quaternion multiplication causes tensor stretching) and versor turning) operations. Multiplying by unit

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

WebAssign Lesson 3-2b Integration by Parts 2 (Homework)

WebAssign Lesson 3-2b Integration by Parts 2 (Homework) WebAssign Lesson 3-2b Integration by Parts 2 (Homework) Current Score : / 28 Due : Tuesday, July 15 2014 10:59 AM MDT Jaimos Skriletz Math 175, section 31, Summer 2 2014 Instructor: Jaimos Skriletz 1.

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

Math 142 Fall 2000 Rotation of Axes. In section 11.4, we found that every equation of the form. (1) Ax 2 + Cy 2 + Dx + Ey + F =0,

Math 142 Fall 2000 Rotation of Axes. In section 11.4, we found that every equation of the form. (1) Ax 2 + Cy 2 + Dx + Ey + F =0, Math 14 Fall 000 Rotation of Axes In section 11.4, we found that every equation of the form (1) Ax + Cy + Dx + Ey + F =0, with A and C not both 0, can be transformed by completing the square into a standard

More information

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d .(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? (a) / Z a rdr d (b) / Z a rdr d (c) Z a dr d (d) / Z a dr d (e) / Z a a rdr d.(6pts)

More information

Math 6A Practice Problems III

Math 6A Practice Problems III Math 6A Practice Problems III Written by Victoria Kala vtkala@math.ucsb.edu H 63u Office Hours: R 1:3 1:3pm Last updated 6//16 Answers 1. 3. 171 1 3. π. 5. a) 8π b) 8π 6. 7. 9 3π 3 1 etailed olutions 1.

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information