6 Extensive Form Games

Size: px
Start display at page:

Download "6 Extensive Form Games"

Transcription

1 6 Extensive Form Games 6.1 Example: Representing a Simultaneous 22 Game Alice H HHHH O H HH o Q Bob H QQQ h o HHHH h Figure 1: The Battle of the Sexes in Extensive Form So far we have described games by using what is called the normal form representation, which is convenient for games where players move simultaneously (as in all examples so far). However, there is an alternative way to depict games using a game tree, which is referred to as the extensive form. Figure 1 depicts the battle of the sexes using this alternative (but equivalent) way. Every place where some player makes a decision is a node in the graph and as you see the lines fully describes all possibilities in the game. Observe that being a simultaneous game, Bob doesn t know what Alice played when making her decision and we have shown this in the graph by the ring around the nodes where Bob is choosing. This ring means that Bob must make the same decision no matter whether Alice picked opera or football. In the graph the Opera, Opera equilibrium is depicted. This is referred to as an information set. 6.2 Example: Battle of the Sexes with Sequential Moves Suppose now that everything is as in the battle of the sexes except that Alice makes his choice before Bob, where Bob observes the choice made by Alice before making his decision. Thinking about the available strategies, everything is like in the simultaneous move case for Alice, as her strategy set is S 1 = fo; Hg : 32

2 Alice H HHHH O H Bob HH Bob o Q H QQQ h o HHHH h Figure 2: The Battle of the Sexes with Alice Moving First However, as Bob now can condition is choice on what Alice did a strategy in an action for each possible move by Alice. We may write this as S 2 = foo ; oh ; ho ; hh g ; where the rst coordinate is the action following O by Alice and the second is the action following H by Alice. We can then write down the normal form corresponding to this sequential game as oo oh ho hh O 2; 1 2; 1 ; ; H ; 1; 2 ; 1; 2 ; where we note that (O; oo ) ; (O; oh ) and (H; hh ) : In particular the last of these seems pretty unintuitive as this is an equilibrium in which Bob would be behaving irrationally should Alice play O. We will need to re ne the set of Nash equilibria in order to avoid these type of non-credible equilibria. 6.3 The Extensive Form The extensive form (in a game in which preferences of all players are known) has the following components: A set of players, A Game Tree A player function that assigns each non-terminal node to a player. 33

3 An information function that represents what the player that moves knows about past play. Actions, which connect each non-terminal node with an immediate successor. Preferences over terminal nodes. De nition 1 An extensive form game is said to be a game of perfect information if every player knows the complete past history of play when taking an action Example: Twice Repeated Prisoner s Dilemma Suppose the rules are as follows. In period 1, the players play D C d ; 2; 1 : c 1; 2 1; 1 After the rst period, the players observe the outcome and then play the game a second time. This is not a game of perfect information because the players move simultaneously The Centipede Game Consider a short version of Rosenthals s centipede game where there are 4 non-terminal nodes ft 1 ; t 2 ; t 3 ; t 4 g and 5 terminal nodes fz 1 ; z 2 ; z 3 ; z 4 ; z 5 g where; 1. At node t 1 player 1 plays an action in A 1 (t 1 ) = fs; cg if s is played z 1 is reached and the payo s are (1; ) : If c is played t 2 is reached. 2. At node t 2 player 2 plays an action in A 2 (t 2 ) = fs; Cg if S is played z 2 is reached and the payo s are (; 1) : If C is played t 3 is reached. 3. At node t 3 player 1 plays an action in A 1 (t 3 ) = fs ; c g if s is played z 3 is reached and the payo s are (1; 1) : If c is played t 4 is reached. 34

4 4. At node t 4 player 2 plays an action in A 2 (t 4 ) = fs ; C g if S is played z 4 is reached and the payo s are (1; 1) : If C is played z 5 is reached and the payo s are (999; 999). DRAW EXTENSIVE FORM. This is a game of perfect information. 6.4 Strategies and Outcomes in Games of Perfect Information De nition 2 A (sub)history h in a perfect information game is a nite sequence of past actions (a 1 ; a 2 ; ::::; a k ). De nition 3 A pure strategy of player i in an extensive form game with perfect information is a function that assigns s i (h) in A (h) for every history h when it is is turn to play. Remark 1 At the root of the game when nothing has yet happened we can still de ne h as the trivial null history. Also, Given a pure strategy pro le, there is a unique path from the root to a single terminal node. This is the outcome path of the strategy pro le. The terminal node corresponding to the strategy pro le is called the outcome. Nash equilibria are de ned just like in the Normal form. Pro le s is Nash if and only if no player has a pro table deviation. 6.5 Backwards Induction (Subgame Perfection) Returning to the sequential battle of the sexes, where we derived the normal form oo oh ho hh O 2; 1 2; 1 ; ; ; H ; 1; 2 ; 1; 2 35

5 we already saw that (H; hh ) seemed implausible: It seems that a more reasonable approach would be to ask: 1. What would Bob do after O? Clearly o is the reasonable answer. 2. What would Bob do after H? Clearly h is the reasonable answer. 3. Hence, Alice should reason that if Bob is rational, then he should play oh : 4. Clearly, the unique best response to oh is O: 5. (O; oh ) is the unique backwards induction (subgame perfect) equilibrium in the example. Notice that oh is also weakly dominant, so that the backwards induction equilibrium corresponds to iterated elimination of weakly dominated strategies. This is a general property. De nition 4 A subgame in an extensive form game of perfect information is the extensive form that is obtained by picking a node t (which corresponds with a unique history h) and rede ning strategy sets and payo s so that a strategy only takes on actions from t (h) on and the payo s are over the terminal nodes that can be reached from t (h). That is, a subgame is any part of the game that can be analyzed as a stand alone game. This is true more generally than for games of perfect information. De nition 5 A subgame perfect Nash equilibrium s is a strategy pro le that induces Nash equilibrium play in any subgame Example: An Entry Game Suppose that: First, a challenger decides whether to enter or no. 36

6 Then, if the challenger enters, an incumbent plays either ght or accommodate. Suppose that incumbent ranks outcomes as follows U I (No entry) > U I (Enter, Accommodate) > U I (Enter, Fight) and that the entrant has the following preferences U E (Enter, Accommodate) > U E (No entry) > U I (Enter, Fight) One way to make payo s cardinal and write down the normal form is Fight Accommodate Entry 1; 1 1; 1 ; No entry ; 2 ; 2 which has two Nash equilibria: (No entry, Fight) and (Entry, Accommodate) : However, to nd the subgame perfect equilibrium we can backwards induct. In the subgame that follows entry (which has a single player), the unique Nash equilibrium is to Accommodate. Hence, the entrant will count on the incumbent to play Accommodate, and will therefore enter Example: The Centipede Game Draw game: Let s nd the subgame perfect equilibrium: 1. At node 4, player 2 gets 1 if playing stop and 999 if playing continue. Hence, player 2 stops. 2. At node 3, player 1 gets 1 if playing stop. If playing continue she knows that player 2 will stop, which gives a payo of 1: Hence, stop is better given that player 2 plays rationally in the nal subgame. 37

7 3. At node 2, player 2 gets 1 if playing stop and he knows that player 1 will stop in the next round, so stop is optimal given subgame perfect continuation play. 4. Hence, at node 1 player 1 must stop. We conclude that the unique subgame perfect equilibrium is as follows: The subgame perfect equilibrium strategy is to always stop. That is, (ss ; SS ) The subgame perfect equilibrium outcome is that player 1 stops at node 1. Notice that the normal form payo matrix is SS SC CS CC ss 1; 1; 1; 1; sc 1; 1; 1; 1; : cs ; 1 ; 1 1; 1 1; 1 cc ; 1 ; 1 1; 1 999; 999 We observe that: Regardless of what player 2 is doing, ss and sc result in the same payo s for both players (because the action s makes all later actions irrelevant) Regardless of what player 2 is doing, SS and SC result in the same payo s for both players (because the action S makes all later actions irrelevant) Hence, we may replace ss and sc by s and SS and SC by S which gives us the reduced normal form representation of the game, S CS CC s 1; 1; 1; cs ; 1 1; 1 1; 1 : cc ; 1 1; 1 999;

8 Notice that S CS CC s 1; 1; 1; cs ; 1 1; 1 1; 1 ; cc ; 1 1; 1 999; 999 so that the unique Nash equilibrium in the reduced normal form is (s; S), which gives a payo of (1; ) despite the fact that (cc ; CC ) gives a payo of (999; 999) : Hence, this is an example where it is irrelevant whether we impose optimizing behavior of the equilibrium path or not. 6.6 The Zermelo-Kuhn Theorem I will now argue that: Theorem 1 Every nite extensive form game with perfect information has at least one pure strategy subgame perfect equilibrium. To prove the result we rst let Z be the set of all terminal nodes T 1 the set of all nodes immediately before a terminal node, T 2 the set of nodes immediately before a node in t 1 ; etc. By niteness we have that there is some maximal k such that the nodes in T k are k steps removed from the terminal node. Moreover, an extensive form game must have a root, so T k = ft k g, a single node. Now: Let i be a player at a node in T 1 : Then, the player simply picks a terminal node. If there is a unique optimal node, the player picks that. If there is no unique terminal node, then the player picks one of the optimal actions. Hence, given a node t in T 1 optimality in the last stage subgames (which are non-strategic decisions) creates a mapping from T 1 onto Z: We let z 1 (t) denote the node picked in the equilibrium of the subgame for every t in T 1 : Let i be a player at a node in T 2 : Then, i picks a node in T 1. However, for each node in T 1 that the player can reached there is a nal outcome in Z, so the player essentially 39

9 picks a nal outcome in Z: Clearly, to be a Nash equilibrium also in the game starting at the node in T 2 the player must pick the best outcome if unique and one of the optimal outcomes if non-unique. Continuing inductively, we eventually reach the root of the game, which, by plugging in the subgame perfect continuation strategies collapses to another decision problem with at least one solution. 4

Subgame Perfect Equilibrium

Subgame Perfect Equilibrium Subgame Perfect Equilibrium Felix Munoz-Garcia Strategy and Game Theory - Washington State University Sequential Move Games Road Map: Rules that game trees must satisfy. How to incorporate sequential rationality

More information

Introduction to Games and their Representation. Strategy and Game Theory

Introduction to Games and their Representation. Strategy and Game Theory Introduction to Games and their Representation Felix Munoz-Garcia Washington State University Strategy and Game Theory Game Theory as the study of interdependence "No man is an island" De nition: Game

More information

Lecture 2. Sequential Equilibrium

Lecture 2. Sequential Equilibrium ECON601 Spring, 2015 UBC Li, Hao Lecture 2. Sequential Equilibrium Strategies and beliefs Applying idea of subgame perfection of extensive games with perfect information to extensive games with imperfect

More information

Discrete Mathematics and Probability Theory Fall 2013 Midterm #2

Discrete Mathematics and Probability Theory Fall 2013 Midterm #2 CS 70 Discrete Mathematics and Probability Theory Fall 013 Midterm # 1. (30 points) Short Answer. No justification necessary. Please write only the answer in the space provided after each question. Please

More information

Sequential Two-Prize Contests

Sequential Two-Prize Contests Sequential Two-Prize Contests Aner Sela September, 2009 Abstract We study two-stage all-pay auctions with two identical prizes. In each stage, the players compete for one prize. Each player may win either

More information

Strategic Characterization of the Index of an Equilibrium. Arndt von Schemde. Bernhard von Stengel

Strategic Characterization of the Index of an Equilibrium. Arndt von Schemde. Bernhard von Stengel Strategic Characterization of the Index of an Equilibrium Arndt von Schemde Bernhard von Stengel Department of Mathematics London School of Economics Battle of the sexes he she football football opera

More information

CAP 5993/CAP 4993 Game Theory. Instructor: Sam Ganzfried

CAP 5993/CAP 4993 Game Theory. Instructor: Sam Ganzfried CAP 5993/CAP 4993 Game Theory Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 Announcements HW 1 due today HW 2 out this week (2/2), due 2/14 2 Definition: A two-player game is a zero-sum game if for

More information

Multiple Agents. Why can t we all just get along? (Rodney King) CS 3793/5233 Artificial Intelligence Multiple Agents 1

Multiple Agents. Why can t we all just get along? (Rodney King) CS 3793/5233 Artificial Intelligence Multiple Agents 1 Multiple Agents Why can t we all just get along? (Rodney King) CS 3793/5233 Artificial Intelligence Multiple Agents 1 Assumptions Assumptions Definitions Partially bservable Each agent can act autonomously.

More information

1 A Tale of Two Lovers

1 A Tale of Two Lovers CS 120/ E-177: Introduction to Cryptography Salil Vadhan and Alon Rosen Dec. 12, 2006 Lecture Notes 19 (expanded): Secure Two-Party Computation Recommended Reading. Goldreich Volume II 7.2.2, 7.3.2, 7.3.3.

More information

On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games

On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games Bruno Codenotti Daniel Štefankovič Abstract The computational complexity of finding a Nash equilibrium in a nonzero sum bimatrix

More information

Network Topology and Equilibrium Existence in Weighted Network Congestion Games

Network Topology and Equilibrium Existence in Weighted Network Congestion Games Network Topology and Equilibrium Existence in Weighted Network Congestion Games Igal Milchtaich, Bar-Ilan University August 2010 Abstract. Every finite noncooperative game can be presented as a weighted

More information

The Game Chromatic Number of Some Classes of Graphs

The Game Chromatic Number of Some Classes of Graphs The Game Chromatic Number of Some Classes of Graphs Casper Joseph Destacamento 1, Andre Dominic Rodriguez 1 and Leonor Aquino-Ruivivar 1,* 1 Mathematics Department, De La Salle University *leonorruivivar@dlsueduph

More information

Lecture Notes on Congestion Games

Lecture Notes on Congestion Games Lecture Notes on Department of Computer Science RWTH Aachen SS 2005 Definition and Classification Description of n agents share a set of resources E strategy space of player i is S i 2 E latency for resource

More information

How Bad is Selfish Routing?

How Bad is Selfish Routing? How Bad is Selfish Routing? Tim Roughgarden and Éva Tardos Presented by Brighten Godfrey 1 Game Theory Two or more players For each player, a set of strategies For each combination of played strategies,

More information

Comment on Strategic Information Management Under Leakage in a. Supply Chain

Comment on Strategic Information Management Under Leakage in a. Supply Chain Comment on Strategic Information Management Under Leakage in a Supply Chain Lin Tian 1 School of International Business Administration, Shanghai University of Finance and Economics, 00433 Shanghai, China,

More information

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in .

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in  . 0.1 More on innity.math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in email. 0.1.1 If you haven't read 1.3, do so now! In notes#1

More information

Equilibrium Computation for Two-Player Games in Strategic and Extensive Form

Equilibrium Computation for Two-Player Games in Strategic and Extensive Form CHAPTER 3 Equilibrium Computation for Two-Player Games in Strategic and Extensive Form Bernhard von Stengel Abstract We explain algorithms for computing Nash equilibria of two-player games given in strategic

More information

Stochastic Coalitional Games with Constant Matrix of Transition Probabilities

Stochastic Coalitional Games with Constant Matrix of Transition Probabilities Applied Mathematical Sciences, Vol. 8, 2014, no. 170, 8459-8465 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410891 Stochastic Coalitional Games with Constant Matrix of Transition Probabilities

More information

Algorithms for Computing Strategies in Two-Player Simultaneous Move Games

Algorithms for Computing Strategies in Two-Player Simultaneous Move Games Algorithms for Computing Strategies in Two-Player Simultaneous Move Games Branislav Bošanský 1a, Viliam Lisý a, Marc Lanctot 2b, Jiří Čermáka, Mark H.M. Winands b a Agent Technology Center, Department

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 25.1 Introduction Today we re going to spend some time discussing game

More information

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns This is a closed-book exam. You should have no material on your desk other than the exam itself and a pencil or pen.

More information

Solutions of Stochastic Coalitional Games

Solutions of Stochastic Coalitional Games Applied Mathematical Sciences, Vol. 8, 2014, no. 169, 8443-8450 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410881 Solutions of Stochastic Coalitional Games Xeniya Grigorieva St.Petersburg

More information

On the Structure of Weakly Acyclic Games

On the Structure of Weakly Acyclic Games 1 On the Structure of Weakly Acyclic Games Alex Fabrikant (Princeton CS Google Research) Aaron D. Jaggard (DIMACS, Rutgers Colgate University) Michael Schapira (Yale CS & Berkeley CS Princeton CS) 2 Best-

More information

KNOWLEDGE TRANSFER AS A RATIONAL CHOICE: A DECISION THEORETIC CHARACTERIZATION

KNOWLEDGE TRANSFER AS A RATIONAL CHOICE: A DECISION THEORETIC CHARACTERIZATION NOWLEDGE TRANSFER AS A RATIONAL CHOICE: A DECISION THEORETIC CHARACTERIZATION Yasuo Sasaki School of nowledge Science, Japan Advanced Institute of Science and Technology 1-1, Asahidai, Nomi, Ishikawa,

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy.

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy. Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami games and the internet Basic idea: The internet is a huge experiment

More information

CS 161 Computer Security

CS 161 Computer Security Wagner Spring 2014 CS 161 Computer Security 1/27 Reasoning About Code Often functions make certain assumptions about their arguments, and it is the caller s responsibility to make sure those assumptions

More information

U n iversity o f H ei delberg

U n iversity o f H ei delberg U n iversity o f H ei delberg Department of Economics Discussion Paper Series No. 577 482482 Bayesian signaling Jonas Hedlund November 2014 Bayesian signaling Jonas Hedlund November 2014 Abstract This

More information

Introduction to Dynamic Traffic Assignment

Introduction to Dynamic Traffic Assignment Introduction to Dynamic Traffic Assignment CE 392D January 22, 2018 WHAT IS EQUILIBRIUM? Transportation systems involve interactions among multiple agents. The basic facts are: Although travel choices

More information

CS103 Spring 2018 Mathematical Vocabulary

CS103 Spring 2018 Mathematical Vocabulary CS103 Spring 2018 Mathematical Vocabulary You keep using that word. I do not think it means what you think it means. - Inigo Montoya, from The Princess Bride Consider the humble while loop in most programming

More information

Optimal Routing Control: Repeated Game Approach

Optimal Routing Control: Repeated Game Approach IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002 437 Optimal Routing Control: Repeated Game Approach Richard J. La and Venkat Anantharam, Fellow, IEEE Abstract Communication networks

More information

Content Overlays (continued) Nick Feamster CS 7260 March 26, 2007

Content Overlays (continued) Nick Feamster CS 7260 March 26, 2007 Content Overlays (continued) Nick Feamster CS 7260 March 26, 2007 Administrivia Quiz date Remaining lectures Interim report PS 3 Out Friday, 1-2 problems 2 Structured vs. Unstructured Overlays Structured

More information

EE228a - Lecture 20 - Spring 2006 Concave Games, Learning in Games, Cooperative Games

EE228a - Lecture 20 - Spring 2006 Concave Games, Learning in Games, Cooperative Games EE228a - Lecture 20 - Spring 2006 Concave Games, Learning in Games, Cooperative Games Jean Walrand - scribed by Michael Krishnan (mnk@berkeley.edu) Abstract In this lecture we extend our basic game theory

More information

A Signaling Game Approach to Databases Querying

A Signaling Game Approach to Databases Querying A Signaling Game Approach to Databases Querying Ben McCamish 1, Arash Termehchy 1, Behrouz Touri 2, and Eduardo Cotilla-Sanchez 1 1 School of Electrical Engineering and Computer Science, Oregon State University

More information

THE COINCIDENCE OF THE KERNEL AND NUCLEOLUS OF A CONVEX GAME: AN ALTERNATIVE PROOF

THE COINCIDENCE OF THE KERNEL AND NUCLEOLUS OF A CONVEX GAME: AN ALTERNATIVE PROOF THE COINCIDENCE OF THE KERNEL AND NUCLEOLUS OF A CONVEX GAME: AN ALTERNATIVE PROOF by J. Arín and I. Katsev 2013 Working Paper Series: IL. 67/13 Departamento de Fundamentos del Análisis Económico I Ekonomi

More information

CS781 Lecture 2 January 13, Graph Traversals, Search, and Ordering

CS781 Lecture 2 January 13, Graph Traversals, Search, and Ordering CS781 Lecture 2 January 13, 2010 Graph Traversals, Search, and Ordering Review of Lecture 1 Notions of Algorithm Scalability Worst-Case and Average-Case Analysis Asymptotic Growth Rates: Big-Oh Prototypical

More information

A Game-Theoretic Framework for Congestion Control in General Topology Networks

A Game-Theoretic Framework for Congestion Control in General Topology Networks A Game-Theoretic Framework for Congestion Control in General Topology SYS793 Presentation! By:! Computer Science Department! University of Virginia 1 Outline 2 1 Problem and Motivation! Congestion Control

More information

Cryptography III Want to make a billion dollars? Just factor this one number!

Cryptography III Want to make a billion dollars? Just factor this one number! Cryptography III Want to make a billion dollars? Just factor this one number! 3082010a0282010100a3d56cf0bf8418d66f400be31c3f22036ca9f5cf01ef614de2eb9a1cd74a0c344b5a20d5f80df9a23c89 10c354821aa693432a61bd265ca70f309d56535a679d68d7ab89f9d32c47c1182e8a14203c050afd5f1831e5550e8700e008f2

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 8, 2014 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

University of Twente. Faculty of Mathematical Sciences. Note on the game chromatic index of trees. Memorandum No. 1652

University of Twente. Faculty of Mathematical Sciences. Note on the game chromatic index of trees. Memorandum No. 1652 Faculty of Mathematical Sciences t University of Twente The Netherlands P.O. Box 217 7500 AE Enschede The Netherlands Phone: +31-53-4893400 Fax: +31-53-4893114 Email: memo@math.utwente.nl www.math.utwente.nl/publications

More information

1 Linear programming relaxation

1 Linear programming relaxation Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Primal-dual min-cost bipartite matching August 27 30 1 Linear programming relaxation Recall that in the bipartite minimum-cost perfect matching

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Different Optimal Solutions in Shared Path Graphs

Different Optimal Solutions in Shared Path Graphs Different Optimal Solutions in Shared Path Graphs Kira Goldner Oberlin College Oberlin, OH 44074 (610) 324-3931 ksgoldner@gmail.com ABSTRACT We examine an expansion upon the basic shortest path in graphs

More information

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs.

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs. 18.438 Advanced Combinatorial Optimization September 17, 2009 Lecturer: Michel X. Goemans Lecture 3 Scribe: Aleksander Madry ( Based on notes by Robert Kleinberg and Dan Stratila.) In this lecture, we

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami warning, again 1 In the few remaining lectures, we will briefly

More information

Representation of Finite Games as Network Congestion Games

Representation of Finite Games as Network Congestion Games Representation of Finite Games as Network Congestion Games Igal Milchtaich To cite this version: Igal Milchtaich. Representation of Finite Games as Network Congestion Games. Roberto Cominetti and Sylvain

More information

Midterm I. Introduction to Artificial Intelligence. CS 188 Fall You have approximately 3 hours.

Midterm I. Introduction to Artificial Intelligence. CS 188 Fall You have approximately 3 hours. CS 88 Fall 202 Introduction to Artificial Intelligence Midterm I You have approximately 3 hours. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators

More information

Dynamic Information Revelation in Cheap Talk

Dynamic Information Revelation in Cheap Talk Dynamic Information Revelation in Cheap Talk Maxim Ivanov y McMaster University September 4 Abstract This paper studies a multi-stage version of Crawford Sobel s (98) communication game. In every period

More information

Choice Logic Programs and Nash Equilibria in Strategic Games

Choice Logic Programs and Nash Equilibria in Strategic Games Choice Logic Programs and Nash Equilibria in Strategic Games Marina De Vos and Dirk Vermeir Dept. of Computer Science Free University of Brussels, VUB Pleinlaan 2, Brussels 1050, Belgium Tel: +32 2 6293308

More information

COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074

COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME. Department of Mathematics Oberlin College Oberlin OH 44074 COUNTING THE NUMBER OF WINNING BINARY STRINGS IN THE 1-DIMENSIONAL SAME GAME CHRIS BURNS AND BENJAMIN PURCELL Department of Mathematics Oberlin College Oberlin OH 44074 Abstract. Ralf Stephan recently

More information

Human Biases Meet Cybersecurity of Embedded and Networked Systems

Human Biases Meet Cybersecurity of Embedded and Networked Systems Human Biases Meet Cybersecurity of Embedded and Networked Systems Saurabh Bagchi and Shreyas Sundaram School of Electrical and Computer Engineering CERIAS Purdue University Vision for Security of Embedded

More information

Trail Making Game. Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, , Republic of Korea.

Trail Making Game. Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, , Republic of Korea. Trail Making Game Hyun Sung Jun Jaehoon Kim Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, 305-701, Republic of Korea. May 7, 2009 Abstract Trail Making is a game played on a graph with

More information

Framework for Design of Dynamic Programming Algorithms

Framework for Design of Dynamic Programming Algorithms CSE 441T/541T Advanced Algorithms September 22, 2010 Framework for Design of Dynamic Programming Algorithms Dynamic programming algorithms for combinatorial optimization generalize the strategy we studied

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

Partial-Order Boolean Games: Informational Independence in a Logic-based Model of Strategic Interaction

Partial-Order Boolean Games: Informational Independence in a Logic-based Model of Strategic Interaction Synthese manuscript No. (will be inserted by the editor) Partial-Order Boolean Games: Informational Independence in a Logic-based Model of Strategic Interaction Julian Bradfield Julian Gutierrez Michael

More information

HMMT February 2018 February 10, 2018

HMMT February 2018 February 10, 2018 HMMT February 2018 February 10, 2018 Combinatorics 1. Consider a 2 3 grid where each entry is one of 0, 1, and 2. For how many such grids is the sum of the numbers in every row and in every column a multiple

More information

2. Lecture notes on non-bipartite matching

2. Lecture notes on non-bipartite matching Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 15th, 013. Lecture notes on non-bipartite matching Given a graph G = (V, E), we are interested in finding

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

A game theoretic framework for distributed self-coexistence among IEEE networks

A game theoretic framework for distributed self-coexistence among IEEE networks A game theoretic framework for distributed self-coexistence among IEEE 82.22 networks S. Sengupta and R. Chandramouli Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 73

More information

Trees with many leaves

Trees with many leaves Trees with many leaves N. V. Gravin Abstract In this note we consider the problem of nding a spanning tree with large number of leaves. We overview some known facts about this question. In details We consider

More information

SORT INFERENCE \coregular" signatures, they derive an algorithm for computing a most general typing for expressions e which is only slightly more comp

SORT INFERENCE \coregular signatures, they derive an algorithm for computing a most general typing for expressions e which is only slightly more comp Haskell Overloading is DEXPTIME{complete Helmut Seidl Fachbereich Informatik Universitat des Saarlandes Postfach 151150 D{66041 Saarbrucken Germany seidl@cs.uni-sb.de Febr., 1994 Keywords: Haskell type

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline ZKIP Other IP CPSC 467b: Cryptography and Computer Security Lecture 19 Michael J. Fischer Department of Computer Science Yale University March 31, 2010 Michael J. Fischer CPSC 467b, Lecture 19

More information

Matchings, Ramsey Theory, And Other Graph Fun

Matchings, Ramsey Theory, And Other Graph Fun Matchings, Ramsey Theory, And Other Graph Fun Evelyne Smith-Roberge University of Waterloo April 5th, 2017 Recap... In the last two weeks, we ve covered: What is a graph? Eulerian circuits Hamiltonian

More information

Lecture 1 August 31, 2017

Lecture 1 August 31, 2017 CS 388R: Randomized Algorithms Fall 017 Lecture 1 August 31, 017 Prof. Eric Price Scribe: Garrett Goble, Daniel Brown NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS 1 Randomized Algorithms

More information

Games in Networks: the price of anarchy, stability and learning. Éva Tardos Cornell University

Games in Networks: the price of anarchy, stability and learning. Éva Tardos Cornell University Games in Networks: the price of anarchy, stability and learning Éva Tardos Cornell University Why care about Games? Users with a multitude of diverse economic interests sharing a Network (Internet) browsers

More information

Maximal Independent Set

Maximal Independent Set Chapter 0 Maximal Independent Set In this chapter we present a highlight of this course, a fast maximal independent set (MIS) algorithm. The algorithm is the first randomized algorithm that we study in

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

Winning Positions in Simplicial Nim

Winning Positions in Simplicial Nim Winning Positions in Simplicial Nim David Horrocks Department of Mathematics and Statistics University of Prince Edward Island Charlottetown, Prince Edward Island, Canada, C1A 4P3 dhorrocks@upei.ca Submitted:

More information

Convergence Issues in Competitive Games

Convergence Issues in Competitive Games Convergence Issues in Competitive Games Vahab S Mirrokni 1, Adrian Vetta 2 and A Sidoropoulous 3 1 Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT mail: mirrokni@theorylcsmitedu 2

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

introduction to Programming in C Department of Computer Science and Engineering Lecture No. #40 Recursion Linear Recursion

introduction to Programming in C Department of Computer Science and Engineering Lecture No. #40 Recursion Linear Recursion introduction to Programming in C Department of Computer Science and Engineering Lecture No. #40 Recursion Linear Recursion Today s video will talk about an important concept in computer science which is

More information

Midterm I. Introduction to Artificial Intelligence. CS 188 Fall You have approximately 3 hours.

Midterm I. Introduction to Artificial Intelligence. CS 188 Fall You have approximately 3 hours. CS 88 Fall 202 Introduction to Artificial Intelligence Midterm I You have approximately 3 hours. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators

More information

Lecture 10, Zero Knowledge Proofs, Secure Computation

Lecture 10, Zero Knowledge Proofs, Secure Computation CS 4501-6501 Topics in Cryptography 30 Mar 2018 Lecture 10, Zero Knowledge Proofs, Secure Computation Lecturer: Mahmoody Scribe: Bella Vice-Van Heyde, Derrick Blakely, Bobby Andris 1 Introduction Last

More information

A New Game Chromatic Number

A New Game Chromatic Number Europ. J. Combinatorics (1997) 18, 1 9 A New Game Chromatic Number G. C HEN, R. H. S CHELP AND W. E. S HREVE Consider the following two-person game on a graph G. Players I and II move alternatively to

More information

Broadcast: Befo re 1

Broadcast: Befo re 1 Broadcast: Before 1 After 2 Spanning Tree ffl assume fixed spanning tree ffl asynchronous model 3 Processor State parent terminated children 4 Broadcast: Step One parent terminated children 5 Broadcast:Step

More information

Figure 2.1: A bipartite graph.

Figure 2.1: A bipartite graph. Matching problems The dance-class problem. A group of boys and girls, with just as many boys as girls, want to dance together; hence, they have to be matched in couples. Each boy prefers to dance with

More information

Rainbow game domination subdivision number of a graph

Rainbow game domination subdivision number of a graph Rainbow game domination subdivision number of a graph J. Amjadi Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran j-amjadi@azaruniv.edu Abstract The rainbow game domination

More information

In this lecture, we ll look at applications of duality to three problems:

In this lecture, we ll look at applications of duality to three problems: Lecture 7 Duality Applications (Part II) In this lecture, we ll look at applications of duality to three problems: 1. Finding maximum spanning trees (MST). We know that Kruskal s algorithm finds this,

More information

CS5412: CONSENSUS AND THE FLP IMPOSSIBILITY RESULT

CS5412: CONSENSUS AND THE FLP IMPOSSIBILITY RESULT 1 CS5412: CONSENSUS AND THE FLP IMPOSSIBILITY RESULT Lecture XII Ken Birman Generalizing Ron and Hermione s challenge 2 Recall from last time: Ron and Hermione had difficulty agreeing where to meet for

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 5.1 Introduction You should all know a few ways of sorting in O(n log n)

More information

Figure 4.1: The evolution of a rooted tree.

Figure 4.1: The evolution of a rooted tree. 106 CHAPTER 4. INDUCTION, RECURSION AND RECURRENCES 4.6 Rooted Trees 4.6.1 The idea of a rooted tree We talked about how a tree diagram helps us visualize merge sort or other divide and conquer algorithms.

More information

Bisecting Floating Point Numbers

Bisecting Floating Point Numbers Squishy Thinking by Jason Merrill jason@squishythinking.com Bisecting Floating Point Numbers 22 Feb 2014 Bisection is about the simplest algorithm there is for isolating a root of a continuous function:

More information

Hedonic Clustering Games

Hedonic Clustering Games Hedonic Clustering Games [Extended Abstract] Moran Feldman CS Dept., Technion Haifa, Israel moranfe@cs.technion.ac.il Liane Lewin-Eytan IBM Haifa Research Lab. Haifa, Israel lianel@il.ibm.com Joseph (Seffi)

More information

Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR)

Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Lecture 22 - Oblivious Transfer (OT) and Private Information Retrieval (PIR) Boaz Barak December 8, 2005 Oblivious Transfer We are thinking of the following situation: we have a server and a client (or

More information

Coalition Formation Under Power Relations

Coalition Formation Under Power Relations Coalition Formation Under Power Relations Michele Piccione and Ronny Razin Department of Economics London School of Economics This version: March 008 Abstract We analyze the structure of a society driven

More information

doi: /j.ipl

doi: /j.ipl doi: 101016/jipl201110015 A comment on pure-strategy Nash equilibria in competitive diffusion games Reiko Takehara a, Masahiro Hachimori a, Maiko Shigeno a,1, a Graduate School of Systems and Information

More information

1 Lower bound on runtime of comparison sorts

1 Lower bound on runtime of comparison sorts 1 Lower bound on runtime of comparison sorts So far we ve looked at several sorting algorithms insertion sort, merge sort, heapsort, and quicksort. Merge sort and heapsort run in worst-case O(n log n)

More information

Complexity of Manipulating Sequential Allocation

Complexity of Manipulating Sequential Allocation Complexity of Manipulating Sequential Allocation Haris Aziz Data61, CSIRO and UNSW Sydney, Australia haris.aziz@data61.csiro.au Jérôme Lang Université Paris-Dauphine, PSL Research University CNRS, LAMSADE,

More information

Evolutionary games and language

Evolutionary games and language Gerhard.Jaeger@uni-bielefeld.de August 19, 2005 ESSLLI 2005 Cognitive semantics Gardenfors (2000): meanings are arranged in conceptual spaces conceptual space has geometrical structure dimensions are founded

More information

1 Variations of the Traveling Salesman Problem

1 Variations of the Traveling Salesman Problem Stanford University CS26: Optimization Handout 3 Luca Trevisan January, 20 Lecture 3 In which we prove the equivalence of three versions of the Traveling Salesman Problem, we provide a 2-approximate algorithm,

More information

Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD)

Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD) 1 Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD) Bernhard von Stengel partly joint work with: Marta Casetti, Julian Merschen, Lászlo Végh Department of Mathematics London School of Economics

More information

Bargaining and Coalition Formation

Bargaining and Coalition Formation 1 These slides are based largely on Chapter 18, Appendix A of Microeconomic Theory by Mas-Colell, Whinston, and Green. Bargaining and Coalition Formation Dr James Tremewan (james.tremewan@univie.ac.at)

More information

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1

Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) January 11, 2018 Lecture 2 - Graph Theory Fundamentals - Reachability and Exploration 1 In this lecture

More information

Clustering Using Graph Connectivity

Clustering Using Graph Connectivity Clustering Using Graph Connectivity Patrick Williams June 3, 010 1 Introduction It is often desirable to group elements of a set into disjoint subsets, based on the similarity between the elements in the

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh Presenting: Hen Sender 1 Introduction 2 Abstract. It is well known that in a bipartite (and more generally in a Konig)

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture.

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Mock Exam Juanjo Rué Discrete Mathematics II, Winter 2013-2014 Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Problem 1 (2 points): 1. State the definition of perfect graph

More information

1 Connected components in undirected graphs

1 Connected components in undirected graphs Lecture 10 Connected components of undirected and directed graphs Scribe: Luke Johnston (2016) and Mary Wootters (2017) Date: October 25, 2017 Much of the following notes were taken from Tim Roughgarden

More information

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring Math 443/543 Graph Theory Notes 5: Planar graphs and coloring David Glickenstein October 10, 2014 1 Planar graphs The Three Houses and Three Utilities Problem: Given three houses and three utilities, can

More information