Scan Conversion of Polygons. Dr. Scott Schaefer

Size: px
Start display at page:

Download "Scan Conversion of Polygons. Dr. Scott Schaefer"

Transcription

1 Scan Conversion of Polygons Dr. Scott Schaefer

2 Drawing Rectangles Which pixels should be filled? /8

3 Drawing Rectangles Is this correct? /8

4 Drawing Rectangles What if two rectangles overlap? 4/8

5 Drawing Rectangles Is this correct? /8

6 Drawing Rectangles Is this correct? Overlap!!! /8

7 Drawing Rectangles Solution: Exclude pixels on top and right /8

8 Drawing Rectangles Artifacts are possible 8/8

9 General Polygons Basic Idea Intersect scan lines with edges Find ranges along x Fill interior of those ranges Don t fill top/right Edges may NOT match with line drawing algo 9/8

10 General Polygons Basic Idea Intersect scan lines with edges Find ranges along x Fill interior of those ranges Use coherence to speed up Don t fill top/right Edges may NOT match with line drawing algo /8

11 General Polygons Basic Idea Intersect scan lines with edges Find ranges along x Fill interior of those ranges Use coherence to speed up Edges intersection one scan line are mostly same as those intersecting previous scan line /8

12 General Polygons Basic Idea Intersect scan lines with edges Find ranges along x Fill interior of those ranges Use coherence to speed up The x-value of an intersection with one scan line is close to the intersection with the previous one /8

13 General Polygons Data Structures Edge: Edge maxy currentx xincr ( xi, yi ) ( xi, yi ) maxy: currentx: xincr: max( y i, y i ) xi, yi min( y xi, otherwise x y i i x y i i i, y i ) /8

14 General Polygons Data Structures Edge: Edge maxy currentx xincr ( xi, yi ) ( xi, yi ) maxy: currentx: xincr: max( y i, y i ) xi, yi min( y xi, otherwise x y i i x y i i i, y i ) Horizontal edges will not be used!!! 4/8

15 Scan Lines General Polygons Data Structures Active Edge Table: 4 Store a linked-list per scanline. Insert edges into table at scan-line associated with lowest end-point. Edges /8

16 General Polygons Data Structures Active Edge List: Edges List of all edges intersecting current scan-line sorted by their x-values /8

17 General Polygons Algorithm line = While (line < height ) Add edges to Active Edge List from Active Edge Table starting at line Remove edges that end at line Fill pixels Increment x-values on edges in Active Edge List Increment line /8

18 General Polygons Example Active Edge Table 4 Active Edge List 4 C B D G F E A 4 8/8

19 General Polygons Example Active Edge Table 4 Active Edge List 4 C B D G F E A 4 9/8

20 General Polygons Example Active Edge Table 4 BC Active Edge List 4 C B D G F E A 4 /8

21 General Polygons Example Active Edge Table 4 BC CD Active Edge List 4 C B D G F E A 4 /8

22 General Polygons Example Active Edge Table 4 BC CD ED Active Edge List 4 C B D G F E A 4 /8

23 General Polygons Example Active Edge Table 4 BC CD ED Active Edge List 4 C B D G F E A 4 /8

24 General Polygons Example Active Edge Table 4 BC CD FG ED Active Edge List 4 C B D G F E A 4 4/8

25 General Polygons Example Active Edge Table 4 BC CD FG ED AG Active Edge List 4 C B D G F E A 4 /8

26 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List AG 4 C B D G F E A 4 /8

27 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List AG FG ED 4 C B D G F E A 4 /8

28 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List AG FG ED 4 C B D G F E A 4 8/8

29 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List AG 4 FG ED 4 C B D G F E A 4 9/8

30 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List AG 4 FG ED 4 C B D G F E A 4 /8

31 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List AG FG ED 4 C B D G F E A 4 /8

32 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List ED 4 C B D G F E A 4 /8

33 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List ED 4 C B D G F E A 4 /8

34 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List ED 4 C B D G F E A 4 4/8

35 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List ED 4 C B D G F E A 4 /8

36 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List ED CD 4 C B D G F E A 4 /8

37 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List ED CD 4 C B D G F E A 4 /8

38 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List CD 4 C B D G F E A 4 8/8

39 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List CD 4 C B D G F E A 4 9/8

40 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List BC CD 4 C B D G F E A 4 4/8

41 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List BC CD 4 C B D G F E A 4 4/8

42 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List BC CD 4 C B D G F E A 4 4/8

43 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List BC CD 4 C B D G F E A 4 4/8

44 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List BC CD 4 C B D G F E A 4 44/8

45 General Polygons Example maxy currentx xincr Active Edge Table 4 BC CD FG ED AG Active Edge List BC CD 4 C B D G F E A 4 4/8

46 General Polygons Problems Sliver polygons may not be drawn correctly No simple solution Long, thin triangles cause problems Want triangles with good aspect ratio (close to equilateral) 4/8

47 Boundary Fill Start with drawn outline of a polygon and an interior point Recursively recolor outward from that point If neighbor different, then recolor and recur Everything within the boundary is changed to that color 4/8

48 Boundary Fill How to define a neighbor? 4-connected 8-connected 48/8

49 Boundary Fill Example 49/8

50 Boundary Fill Example /8

51 Boundary Fill Example /8

52 Boundary Fill Example /8

53 Boundary Fill Example /8

54 Boundary Fill Example 4/8

55 Flood Fill Start with a point Define color under that point as the interior color Recursively recolor outward from that point If neighbor is interior color, then recolor and recur Contiguous regions of the same color are recolored /8

56 Flood Fill Example /8

57 Flood Fill Example /8

58 Flood Fill Example 8/8

59 Flood Fill Example 9/8

60 Flood Fill Example /8

61 Flood Fill Example /8

62 Flood Fill Example /8

63 Flood Fill Example /8

64 Flood Fill Example 4/8

65 Flood Fill Example /8

66 Flood Fill Example /8

67 Flood Fill Example /8

68 Flood Fill Example 8/8

69 OpenGL: Drawing Polygons Lots of different primitives supported GPU only draws triangles OpenGL triangulates all polygons Problems with concave polygons! How data is passed to GPU makes a significant difference in speed GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN GL_QUADS GL_QUAD_STRIP GL_POLYGON 9/8

70 Performance Nvidia Nvidia 88 GT GTX ATI Radeon HD 48 ATI Radeon HD 48 New Drivers Immediate Mode.... Display Lists Vertex Arrays.... Vertex Buffer Objects Frames per second displaying a 4, triangle model. CPU was an Intel Core or Core i 94. /8

71 Tile-Based Rasterization Screen /8

72 Tile-Based Rasterization /8

73 Tile-Based Rasterization /8

74 Tile-Based Rasterization 4/8

75 Tile-Based Rasterization Each thread draws polygon into local frame buffer Copies local frame buffer into global frame buffer when complete /8

76 Even More Parallelization /8

77 Even More Parallelization /8

78 Even More Parallelization 8/8

79 Point in Triangle ( x i, yi ) ( x, y) ( x i, yi ) x y i i x y x y i i x y 9/8

80 Even More Parallelization 8/8

81 Even More Parallelization Only need to check until first polygon hit 8/8

Filled Area Primitives. CEng 477 Introduction to Computer Graphics METU, 2007

Filled Area Primitives. CEng 477 Introduction to Computer Graphics METU, 2007 Filled Area Primitives CEng 477 Introduction to Computer Graphics METU, 2007 Filled Area Primitives Two basic approaches to area filling on raster systems: Determine the overlap intervals for scan lines

More information

Polygon Filling. Can write frame buffer one word at time rather than one bit. 2/3/2000 CS 4/57101 Lecture 6 1

Polygon Filling. Can write frame buffer one word at time rather than one bit. 2/3/2000 CS 4/57101 Lecture 6 1 Polygon Filling 2 parts to task which pixels to fill what to fill them with First consider filling unclipped primitives with solid color Which pixels to fill consider scan lines that intersect primitive

More information

2D Graphics Primitives II. Additional issues in scan converting lines. 1)Endpoint order. Want algorithms to draw the same pixels for each line

2D Graphics Primitives II. Additional issues in scan converting lines. 1)Endpoint order. Want algorithms to draw the same pixels for each line walters@buffalo.edu CSE 480/580 Lecture 8 Slide 1 2D Graphics Primitives II Additional issues in scan converting lines 1)Endpoint order Want algorithms to draw the same pixels for each line How handle?

More information

CS 4731/543: Computer Graphics Lecture 7 (Part I): Raster Graphics: Polygons & Antialiasing. Emmanuel Agu

CS 4731/543: Computer Graphics Lecture 7 (Part I): Raster Graphics: Polygons & Antialiasing. Emmanuel Agu CS 4731/543: Computer Graphics Lecture 7 (Part I): Raster Graphics: Polygons & Antialiasing Emmanuel Agu So Far Raster graphics: Line drawing algorithms (simple, Bresenham s) Today: Defining and filling

More information

2D Drawing Primitives

2D Drawing Primitives THE SIERPINSKI GASKET We use as a sample problem the drawing of the Sierpinski gasket an interesting shape that has a long history and is of interest in areas such as fractal geometry. The Sierpinski gasket

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Computer Graphics 7 - Rasterisation

Computer Graphics 7 - Rasterisation Computer Graphics 7 - Rasterisation Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Line rasterisation Polygon rasterisation Mean value coordinates Decomposing polygons

More information

Agenda. Polygon Terminology Types of polygons Inside Test Polygon Filling Algorithms. Scan-Line Polygon Fill Algorithm Flood-Fill Algorithm

Agenda. Polygon Terminology Types of polygons Inside Test Polygon Filling Algorithms. Scan-Line Polygon Fill Algorithm Flood-Fill Algorithm Polygons UNIT - III Agenda Polygon Terminology Types of polygons Inside Test Polygon Filling Algorithms Scan-Line Polygon Fill Algorithm Flood-Fill Algorithm A Polygon Vertex = point in space (2D or 3D)

More information

Text in OpenGL and Windows. Computer Graphics Attributes. Computer Graphics. Binghamton University. EngiNet. Thomas J. Watson

Text in OpenGL and Windows. Computer Graphics Attributes. Computer Graphics. Binghamton University. EngiNet. Thomas J. Watson Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

Rasterizing triangles

Rasterizing triangles Rasterizing triangles We know how to project the vertices of a triangle in our model onto pixel centers. To draw the complete triangle, we have to decide which pixels to turn on. For now, let s assume

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

Shading/Texturing. Dr. Scott Schaefer

Shading/Texturing. Dr. Scott Schaefer Shading/Texturing Dr. Scott Schaefer Problem / Problem / Problem 4/ Problem / Problem / Shading Algorithms Flat Shading Gouraud Shading Phong Shading / Flat Shading Apply same color across entire polygon

More information

Computer Graphics CS 543 Lecture 11 (Part 1) Polygon Filling & Antialiasing

Computer Graphics CS 543 Lecture 11 (Part 1) Polygon Filling & Antialiasing Computer Graphics CS 543 Lecture 11 (Part 1) Polygon Filling & Antialiasing Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Defining and Filling Regions of Pixels Methods

More information

CS488 2D Graphics. Luc RENAMBOT

CS488 2D Graphics. Luc RENAMBOT CS488 2D Graphics Luc RENAMBOT 1 Topics Last time, hardware and frame buffer Now, how lines and polygons are drawn in the frame buffer. Then, how 2D and 3D models drawing into the frame buffer Then, more

More information

Computer Graphics. Chapter 4 Attributes of Graphics Primitives. Somsak Walairacht, Computer Engineering, KMITL 1

Computer Graphics. Chapter 4 Attributes of Graphics Primitives. Somsak Walairacht, Computer Engineering, KMITL 1 Computer Graphics Chapter 4 Attributes of Graphics Primitives Somsak Walairacht, Computer Engineering, KMITL 1 Outline OpenGL State Variables Point Attributes Line Attributes Fill-Area Attributes Scan-Line

More information

Chapter 8: Implementation- Clipping and Rasterization

Chapter 8: Implementation- Clipping and Rasterization Chapter 8: Implementation- Clipping and Rasterization Clipping Fundamentals Cohen-Sutherland Parametric Polygons Circles and Curves Text Basic Concepts: The purpose of clipping is to remove objects or

More information

CSCI 420 Computer Graphics Lecture 14. Rasterization. Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California

CSCI 420 Computer Graphics Lecture 14. Rasterization. Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California CSCI 420 Computer Graphics Lecture 14 Rasterization Scan Conversion Antialiasing [Angel Ch. 6] Jernej Barbic University of Southern California 1 Rasterization (scan conversion) Final step in pipeline:

More information

Rasterization. Rasterization (scan conversion) Digital Differential Analyzer (DDA) Rasterizing a line. Digital Differential Analyzer (DDA)

Rasterization. Rasterization (scan conversion) Digital Differential Analyzer (DDA) Rasterizing a line. Digital Differential Analyzer (DDA) CSCI 420 Computer Graphics Lecture 14 Rasterization Jernej Barbic University of Southern California Scan Conversion Antialiasing [Angel Ch. 6] Rasterization (scan conversion) Final step in pipeline: rasterization

More information

Computer Graphics. Attributes of Graphics Primitives. Somsak Walairacht, Computer Engineering, KMITL 1

Computer Graphics. Attributes of Graphics Primitives. Somsak Walairacht, Computer Engineering, KMITL 1 Computer Graphics Chapter 4 Attributes of Graphics Primitives Somsak Walairacht, Computer Engineering, KMITL 1 Outline OpenGL State Variables Point Attributes t Line Attributes Fill-Area Attributes Scan-Line

More information

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li. Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

More information

1 Introduction to Graphics

1 Introduction to Graphics 1 1.1 Raster Displays The screen is represented by a 2D array of locations called pixels. Zooming in on an image made up of pixels The convention in these notes will follow that of OpenGL, placing the

More information

Graphics (Output) Primitives. Chapters 3 & 4

Graphics (Output) Primitives. Chapters 3 & 4 Graphics (Output) Primitives Chapters 3 & 4 Graphic Output and Input Pipeline Scan conversion converts primitives such as lines, circles, etc. into pixel values geometric description a finite scene area

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH

VISIBILITY & CULLING. Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH VISIBILITY & CULLING Don t draw what you can t see. Thomas Larsson, Afshin Ameri DVA338, Spring 2018, MDH Visibility Visibility Given a set of 3D objects, which surfaces are visible from a specific point

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines COMP30019 Graphics and Interaction Scan Converting Polygons and Lines Department of Computer Science and Software Engineering The Lecture outline Introduction Scan conversion Scan-line algorithm Edge coherence

More information

Computer graphic -- Programming with OpenGL I

Computer graphic -- Programming with OpenGL I Computer graphic -- Programming with OpenGL I A simple example using OpenGL Download the example code "basic shapes", and compile and run it Take a look at it, and hit ESC when you're done. It shows the

More information

CSC 8470 Computer Graphics. What is Computer Graphics?

CSC 8470 Computer Graphics. What is Computer Graphics? CSC 8470 Computer Graphics What is Computer Graphics? For us, it is primarily the study of how pictures can be generated using a computer. But it also includes: software tools used to make pictures hardware

More information

SE Mock Online Test 1-CG

SE Mock Online Test 1-CG SE Mock Online Test 1-CG 1. Email address * 2. 1. For gentle slope line, slope m is -1

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Computer Graphics II

Computer Graphics II Computer Graphics II Autumn 2017-2018 Outline Visible Surface Determination Methods (contd.) 1 Visible Surface Determination Methods (contd.) Outline Visible Surface Determination Methods (contd.) 1 Visible

More information

Computer Graphics (CS 543) Lecture 10: Rasterization and Antialiasing

Computer Graphics (CS 543) Lecture 10: Rasterization and Antialiasing Computer Graphics (CS 543) Lecture 10: Rasterization and Antialiasing Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Recall: Rasterization Rasterization (scan conversion)

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

CS 248 Assignment 2 Polygon Scan Converter. CS248 Presented by Abe Davis Stanford University October 17, 2008

CS 248 Assignment 2 Polygon Scan Converter. CS248 Presented by Abe Davis Stanford University October 17, 2008 CS 248 Assignment 2 Polygon Scan Converter CS248 Presented by Abe Davis Stanford University October 17, 2008 Announcements First thing: read README.animgui. It should tell you everything you need to know

More information

? Which intermediate. Recall: Line drawing algorithm. Programmer specifies (x,y) of end pixels Need algorithm to determine pixels on line path

? Which intermediate. Recall: Line drawing algorithm. Programmer specifies (x,y) of end pixels Need algorithm to determine pixels on line path Recall: Line drawing algorithm Programmer specifies (x,y) of end pixels Need algorithm to determine pixels on line path 8 7 6 5 4 3 2 1 (3,2) (9,6) Line: (3,2) -> (9,6)? Which intermediate pixels to turn

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

Computer Graphics. - Rasterization - Philipp Slusallek

Computer Graphics. - Rasterization - Philipp Slusallek Computer Graphics - Rasterization - Philipp Slusallek Rasterization Definition Given some geometry (point, 2D line, circle, triangle, polygon, ), specify which pixels of a raster display each primitive

More information

Triangle Fast Scan-Conversion Algorithm Report

Triangle Fast Scan-Conversion Algorithm Report Triangle Fast Scan-Conversion Algorithm Report Jian Cui jcui@gmu.edu Jim X. Chen jchen@cs.gmu.edu Xiaorong Zhou xzhou@gmu.edu ABSTRACT To date, very little has been done to analyze the very importance

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

Computer Graphics Geometry and Transform

Computer Graphics Geometry and Transform ! Computer Graphics 2014! 5. Geometry and Transform Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2014-10-11! Today outline Triangle rasterization Basic vector algebra ~ geometry! Antialiasing

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming 2 Common Uses for Computer Graphics Applications for real-time 3D graphics range from interactive games

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 02 / 06 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Antialiasing Polygons Interior points Fill areas tiling halftoning dithering Antialiasing Aliasing

More information

Hidden surface removal. Computer Graphics

Hidden surface removal. Computer Graphics Lecture Hidden Surface Removal and Rasterization Taku Komura Hidden surface removal Drawing polygonal faces on screen consumes CPU cycles Illumination We cannot see every surface in scene We don t want

More information

Hidden-Surface Removal.

Hidden-Surface Removal. Hidden-Surface emoval. Here we need to discover whether an object is visible or another one obscures it. here are two fundamental approaches to remove the hidden surfaces: ) he object-space approach )

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics Announcements Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class 1 Scan Conversion Overview of Rendering Scan Conversion Drawing Lines Drawing Polygons

More information

4.5 VISIBLE SURFACE DETECTION METHODES

4.5 VISIBLE SURFACE DETECTION METHODES 4.5 VISIBLE SURFACE DETECTION METHODES A major consideration in the generation of realistic graphics displays is identifying those parts of a scene that are visible from a chosen viewing position. There

More information

Scan Converting Text. Attributes of Output Primitives. CS 460/560 Computer Graphics. Binghamton University. EngiNet. Thomas J.

Scan Converting Text. Attributes of Output Primitives. CS 460/560 Computer Graphics. Binghamton University. EngiNet. Thomas J. Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

OpenGL Primitives. Examples: Lines. Points. Polylines. void drawdot(glint x, GLint y) { glbegin(gl_points); glvertex2i(x,y); glend(); }

OpenGL Primitives. Examples: Lines. Points. Polylines. void drawdot(glint x, GLint y) { glbegin(gl_points); glvertex2i(x,y); glend(); } CSC 706 Computer Graphics Primitives, Stippling, Fitting In Examples: OpenGL Primitives GL_POINTS GL_LINES LINES GL _ LINE _ STRIP GL_POLYGON GL_LINE_LOOP GL_TRIANGLES GL_QUAD_STRIP GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

More information

Geometry Primitives. Computer Science Department University of Malta. Sandro Spina Computer Graphics and Simulation Group. CGSG Geometry Primitives

Geometry Primitives. Computer Science Department University of Malta. Sandro Spina Computer Graphics and Simulation Group. CGSG Geometry Primitives Geometry Primitives Sandro Spina Computer Graphics and Simulation Group Computer Science Department University of Malta 1 The Building Blocks of Geometry The objects in our virtual worlds are composed

More information

Clipping Lines. Dr. Scott Schaefer

Clipping Lines. Dr. Scott Schaefer Clipping Lines Dr. Scott Schaefer Why Clip? We do not want to waste time drawing objects that are outside of viewing window (or clipping window) 2/94 Clipping Points Given a point (x, y) and clipping window

More information

Scan Conversion- Polygons

Scan Conversion- Polygons Scan Conversion- olgons Flood Fill Algorithm Chapter 9 Scan Conversion (part ) Drawing olgons on Raster Displa Input polgon with rasterized edges = (x,) point inside Goal: Fill interior with specified

More information

8. Hidden Surface Elimination

8. Hidden Surface Elimination 8. Hidden Surface Elimination Identification and Removal of parts of picture that are not visible from a chosen viewing position. 1 8. Hidden Surface Elimination Basic idea: Overwriting Paint things in

More information

Computer Graphics. Lecture 9 Hidden Surface Removal. Taku Komura

Computer Graphics. Lecture 9 Hidden Surface Removal. Taku Komura Computer Graphics Lecture 9 Hidden Surface Removal Taku Komura 1 Why Hidden Surface Removal? A correct rendering requires correct visibility calculations When multiple opaque polygons cover the same screen

More information

Topics. From vertices to fragments

Topics. From vertices to fragments Topics From vertices to fragments From Vertices to Fragments Assign a color to every pixel Pass every object through the system Required tasks: Modeling Geometric processing Rasterization Fragment processing

More information

CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Lecture 2: Graphics Pipeline Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices - raster displays show images as a rectangular array

More information

Beyond Programmable Shading. Scheduling the Graphics Pipeline

Beyond Programmable Shading. Scheduling the Graphics Pipeline Beyond Programmable Shading Scheduling the Graphics Pipeline Jonathan Ragan-Kelley, MIT CSAIL 9 August 2011 Mike s just showed how shaders can use large, coherent batches of work to achieve high throughput.

More information

Rendering. Part 1 An introduction to OpenGL

Rendering. Part 1 An introduction to OpenGL Rendering Part 1 An introduction to OpenGL Olivier Gourmel VORTEX Team IRIT University of Toulouse gourmel@irit.fr Image synthesis The Graphics Processing Unit (GPU): A highly parallel architecture specialized

More information

Werner Purgathofer

Werner Purgathofer Einführung in Visual Computing 186.822 Visible Surface Detection Werner Purgathofer Visibility in the Rendering Pipeline scene objects in object space object capture/creation ti modeling viewing projection

More information

Visible Surface Detection. (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker)

Visible Surface Detection. (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker) Visible Surface Detection (Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker) 1 Given a set of 3D objects and a viewing specifications, determine which lines or surfaces of the objects should be visible. A

More information

How to create shapes. Drawing basic shapes. Adobe Photoshop Elements 8 guide

How to create shapes. Drawing basic shapes. Adobe Photoshop Elements 8 guide How to create shapes With the shape tools in Adobe Photoshop Elements, you can draw perfect geometric shapes, regardless of your artistic ability or illustration experience. The first step to drawing shapes

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

CS 248 Assignment 2 Polygon Scan Conversion. CS248 Presented by Michael Green Stanford University October 20, 2004

CS 248 Assignment 2 Polygon Scan Conversion. CS248 Presented by Michael Green Stanford University October 20, 2004 CS 248 Assignment 2 Polygon Scan Conversion CS248 Presented by Michael Green Stanford University October 20, 2004 Announcements First thing: read README.animgui.. It should tell you everything you need

More information

Incremental Form. Idea. More efficient if we look at d k, the value of the decision variable at x = k

Incremental Form. Idea. More efficient if we look at d k, the value of the decision variable at x = k Idea 1 m 0 candidates last pixel Note that line could have passed through any part of this pixel Decision variable: d = x(a-b) d is an integer d < 0 use upper pixel d > 0 use lower pixel Incremental Form

More information

CS 543: Computer Graphics. Rasterization

CS 543: Computer Graphics. Rasterization CS 543: Computer Graphics Rasterization Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu (with lots

More information

(Refer Slide Time: 00:02:00)

(Refer Slide Time: 00:02:00) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 18 Polyfill - Scan Conversion of a Polygon Today we will discuss the concepts

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) OpenGL Stages After projection, several stages before objects drawn

More information

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading)

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading) Lecture 9 Graphics pipeline (rasterization and shading) Graphics pipeline - part 1 (recap) Perspective projection by matrix multiplication: x pixel y pixel z canonical 1 x = M vpm per M cam y z 1 This

More information

Today. CS-184: Computer Graphics. Lecture #10: Clipping and Hidden Surfaces. Clipping. Hidden Surface Removal

Today. CS-184: Computer Graphics. Lecture #10: Clipping and Hidden Surfaces. Clipping. Hidden Surface Removal Today CS-184: Computer Graphics Lecture #10: Clipping and Hidden Surfaces!! Prof. James O Brien University of California, Berkeley! V2015-S-10-1.0 Clipping Clipping to view volume Clipping arbitrary polygons

More information

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 2: First Program

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 2: First Program Comp 410/510 Computer Graphics Spring 2017 Programming with OpenGL Part 2: First Program Objectives Refine the first program Introduce a standard program structure - Initialization Program Structure Most

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

Einführung in Visual Computing

Einführung in Visual Computing Einführung in Visual Computing 186.822 Rasterization Werner Purgathofer Rasterization in the Rendering Pipeline scene objects in object space transformed vertices in clip space scene in normalized device

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Figure 1: A perspective view of a polyhedron on an infinite plane. Cameras and Perspective Rendering

More information

Renderer Implementation: Basics and Clipping. Overview. Preliminaries. David Carr Virtual Environments, Fundamentals Spring 2005

Renderer Implementation: Basics and Clipping. Overview. Preliminaries. David Carr Virtual Environments, Fundamentals Spring 2005 INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Renderer Implementation: Basics and Clipping David Carr Virtual Environments, Fundamentals Spring 2005 Feb-28-05 SMM009, Basics and Clipping 1

More information

Rasterization, or What is glbegin(gl_lines) really doing?

Rasterization, or What is glbegin(gl_lines) really doing? Rasterization, or What is glbegin(gl_lines) really doing? Course web page: http://goo.gl/eb3aa February 23, 2012 Lecture 4 Outline Rasterizing lines DDA/parametric algorithm Midpoint/Bresenham s algorithm

More information

Power Efficiency for Software Algorithms running on Graphics Processors. Björn Johnsson Per Ganestam Michael Doggett Tomas Akenine-Möller

Power Efficiency for Software Algorithms running on Graphics Processors. Björn Johnsson Per Ganestam Michael Doggett Tomas Akenine-Möller 1 Power Efficiency for Software Algorithms running on Graphics Processors Björn Johnsson Per Ganestam Michael Doggett Tomas Akenine-Möller Overview 2 Motivation Goal Project Applications Methodology Results

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Visibility, OpenGL

CSE 167: Introduction to Computer Graphics Lecture #5: Visibility, OpenGL CSE 167: Introduction to Computer Graphics Lecture #5: Visibility, OpenGL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Tomorrow: assignment 1 due Grading

More information

Rasterization Computer Graphics I Lecture 14. Scan Conversion Antialiasing Compositing [Angel, Ch , ]

Rasterization Computer Graphics I Lecture 14. Scan Conversion Antialiasing Compositing [Angel, Ch , ] 15-462 Computer Graphics I Lecture 14 Rasterization March 13, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Scan Conversion Antialiasing Compositing [Angel,

More information

2D Viewing. Viewing Pipeline: Window-Viewport Transf.

2D Viewing. Viewing Pipeline: Window-Viewport Transf. Viewing Pipeline: Window-Viewport Transf. 2D Viewing yw max clipping window: what to display viewport: where to be viewed translation, rotation, scaling, clipping,... Clipping Window yv max Viewport yv

More information

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks)

CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) CS184 : Foundations of Computer Graphics Professor David Forsyth Final Examination (Total: 100 marks) Cameras and Perspective Figure 1: A perspective view of a polyhedron on an infinite plane. Rendering

More information

UNIT 2 GRAPHIC PRIMITIVES

UNIT 2 GRAPHIC PRIMITIVES UNIT 2 GRAPHIC PRIMITIVES Structure Page Nos. 2.1 Introduction 46 2.2 Objectives 46 2.3 Points and Lines 46 2.4 Line Generation Algorithms 48 2.4.1 DDA Algorithm 49 2.4.2 Bresenhams Line Generation Algorithm

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

Outline. Scanline conversion Incremental updates Edge table and active edge table. Gouraud shading Phong interpolation

Outline. Scanline conversion Incremental updates Edge table and active edge table. Gouraud shading Phong interpolation Outline Triangle rasterization 1 Triangle rasterization 2 Gouraud shading Phong interpolation 3 Interpolating z-values Further comments Rasterizing triangles We know how to project the vertices of a triangle

More information

Hardware-driven visibility culling

Hardware-driven visibility culling Hardware-driven visibility culling I. Introduction 20073114 김정현 The goal of the 3D graphics is to generate a realistic and accurate 3D image. To achieve this, it needs to process not only large amount

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

Fondamenti di Grafica 3D The Rasterization Pipeline.

Fondamenti di Grafica 3D The Rasterization Pipeline. Fondamenti di Grafica 3D The Rasterization Pipeline paolo.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni Ray Casting vs. GPUs for Triangles Ray Casting For each pixel (ray) For each triangle Does

More information

Attributes of Graphics Primitives

Attributes of Graphics Primitives ttributes for Graphics Output Primitives ttributes of Graphics Primitives in 2 points, lines polygons, circles, ellipses & other curves (also filled) characters in 3 triangles & other polygons anti-aliasing

More information

Ray Casting of Trimmed NURBS Surfaces on the GPU

Ray Casting of Trimmed NURBS Surfaces on the GPU Ray Casting of Trimmed NURBS Surfaces on the GPU Hans-Friedrich Pabst Jan P. Springer André Schollmeyer Robert Lenhardt Christian Lessig Bernd Fröhlich Bauhaus University Weimar Faculty of Media Virtual

More information

Graphics Pipeline & APIs

Graphics Pipeline & APIs Graphics Pipeline & APIs CPU Vertex Processing Rasterization Fragment Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

More information

Visible Surface Detection Methods

Visible Surface Detection Methods Visible urface Detection Methods Visible-urface Detection identifying visible parts of a scene (also hidden- elimination) type of algorithm depends on: complexity of scene type of objects available equipment

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Triangle Rasterization

Triangle Rasterization Triangle Rasterization Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/07/07 1 From last time Lines and planes Culling View frustum culling Back-face culling Occlusion culling

More information

Polygon Triangulation. (slides partially by Daniel Vlasic )

Polygon Triangulation. (slides partially by Daniel Vlasic ) Polygon Triangulation (slides partially by Daniel Vlasic ) Triangulation: Definition Triangulation of a simple polygon P: decomposition of P into triangles by a maximal set of non-intersecting diagonals

More information