Grafica Computazionale: Lezione 30. Grafica Computazionale. Hiding complexity... ;) Introduction to OpenGL. lezione30 Introduction to OpenGL

Size: px
Start display at page:

Download "Grafica Computazionale: Lezione 30. Grafica Computazionale. Hiding complexity... ;) Introduction to OpenGL. lezione30 Introduction to OpenGL"

Transcription

1 Grafica Computazionale: Lezione 30 Grafica Computazionale lezione30 Introduction to OpenGL Informatica e Automazione, "Roma Tre" May 20, 2010 OpenGL Shading Language Introduction to OpenGL OpenGL (Open Graphics Library) is a standard specification defining a cross-language, cross-platform API for writing applications that produce 2D and 3D computer graphics The API consists of over 250 different function calls which can be used to draw complex three-dimensional scenes from simple primitives OpenGL was developed by Silicon Graphics Inc (SGI) in 1992 and is widely used in CAD, virtual reality, scientific visualization, information visualization, and flight simulation It is also used in video games, where it competes with Direct3D on Microsoft Windows platforms (see OpenGL vs Direct3D) OpenGL is managed by a non-profit technology consortium, the Khronos Group Hiding complexity... ;) OpenGL serves two main purposes: Hide complexities of interfacing with different 3D accelerators by presenting a single, uniform interface Hide differing capabilities of hardware platforms by requiring support of full OpenGL feature set for all implementations (using software emulation if necessary).

2 Basic operations OpenGL is a low-level, procedural API OpenGL s basic operation is to accept primitives such as points, lines and polygons, and convert them into pixels This is done by a graphics pipeline known as the OpenGL state machine Most OpenGL commands either issue primitives to the graphics pipeline, or configure how the pipeline processes these primitives (attributes) Prior to the introduction of OpenGL 2.0, each stage of the pipeline performed a fixed function and was configurable only within tight limits OpenGL 2.0 offers several stages that are fully programmable using GLSL. OpenGL is a low-level, procedural API, requiring the programmer to dictate the exact steps required to render a scene This contrasts with descriptive (aka scene graph or retained mode) APIs, where a programmer only needs to describe a scene and can let the library manage the details of rendering it OpenGL s low-level design requires programmers to have a good knowledge of the graphics pipeline, but also gives a certain amount of freedom to implement novel rendering algorithms. Rasterised points, lines and polygons as basic primitives Evaluation OpenGL has historically been influential on the development of 3D accelerators, promoting a base level of functionality that is now common in consumer-level hardware: Simplified version of the Graphics Pipeline Process: Transform and lighting pipeline Z-buffering Texture mapping Alpha blending excludes a number of features like blending, VBOs (Vertex Basic Objects) andlogicops: Evaluation, if necessary, of the polynomial functions which define certain inputs, like NURBS surfaces, approximating curves and the surface geometry.

3 Vertex operations Rasterisation Vertex operations, transforming and lighting them depending on their material. Also clipping non visible parts of the scene in order to produce the viewing volume Rasterisation or conversion of the previous information into pixels. The polygons are represented by the appropriate colour by means of interpolation algorithms. Per-fragment operations Frame buffer Per-fragment operations, like updating values depending on incoming and previously stored depth values, or colour combinations, among others. Lastly, fragments are inserted into the Frame buffer. A framebuffer is a video output device that drives a video display from a memory buffer containing a complete frame of data.

4 First example In the 1980s, developing software that could function with a wide range of graphics hardware was a real challenge Software developers wrote custom interfaces and drivers for each piece of hardware This was expensive and resulted in much duplication of effort By the early 1990s, Silicon Graphics (SGI) was a leader in 3D graphics for workstations Their IRIS GL API was considered the state of the art and became the de-facto industry standard, overshadowing the open standards-based PHIGS This was because IRIS GL was considered easier to use, and because it supported immediate mode rendering By contrast, PHIGS was considered difficult to use and outdated in terms of functionality. SGI s competitors (including Sun Microsystems, Hewlett-Packard and IBM) were also able to bring to market 3D hardware, supported by extensions made to the PHIGS standard This in turn caused SGI market share to weaken as more 3D graphics hardware suppliers entered the market In an effort to influence the market, SGI decided to turn the IrisGL API into an open standard Meanwhile, SGI would continue to try to maintain their customers tied to SGI hardware by developing the advanced and proprietary Iris Inventor and Iris Performer programming APIs As a result, SGI released the OpenGL standard 1992 SGI led the creation of the OpenGL architectural review board (OpenGL ARB), the group of companies that would maintain and expand the OpenGL specification 1995 Microsoft released Direct3D, which would become the main competitor of OpenGL. OpenGL 1.0 Released January, The first OpenGL specification was released by Mark Segal and Kurt Akeley. OpenGL 1.1 Released January, OpenGL 1.1 focused on supporting textures and texture formats on GPU hardware

5 OpenGL 1.2 Released March 16, OpenGL 1.2 focused on supporting volume textures, packed pixels, normal rescaling, clamped/edge texture sampling and image processing. OpenGL Released October 14, OpenGL was a minor release after OpenGL 1.2 (March 16, 1998) which added multi-texture, or texture units, to the rendering pipeline. This allowed multiple textures to be blended per pixel during rasterization. OpenGL 1.3 Released August 14, OpenGL 1.3 added support for cubemap texture, multi-texturing, multi-sampling, and texture unit combine operations (add, combine, dot3, border clamp). OpenGL 1.4 Released July 24, OpenGL 1.4 added hardware shadowing support, fog coordinates, automatic mipmap generation, and additional texture modes.

6 v bo.html[vbos), occlusionqueries, andex [0] Introduction to OpenGL OpenGL Shading Language OpenGL 2.0 Released September 7, OpenGL 2.0 added support for a true, GPU-based assembly language called ARB (designed by the Architecture Review Board), which would become the standard for vertex and fragment shaders. Cards released with OpenGL 2.0 were the first to offer user-programmable shaders. OpenGL 2.0 was conceived by 3Dlabs to address concerns that OpenGL was stagnating and lacked a strong direction 3Dlabs proposed a number of major additions to the standard Most of these were, at the time, rejected by the ARB or otherwise never came to fruition in the form that 3Dlabs proposed However, their proposal for a C-style shading language was eventually completed, resulting in the current formulation of GLSL (the OpenGL Shading Language, also slang) Like the assembly-like shading languages that it was replacing, it allowed the programmer to replace the fixed-function vertex and fragment pipe with shaders, though this time written in a C-like high-level language. The design of GLSL was notable for making relatively few concessions to the limitations of the hardware then available; this hearkened back to the earlier tradition of OpenGL setting an ambitious, forward-looking target for 3D accelerators rather than OpenGL 2.1 Released July 2, OpenGL 2.1 introduced support for pixel buffer objects (PBOs), srgb textures (gamma-corrected textures), and non-square matrices, and the Shading Language revision GLSL 1.20.[15]

7 Features of OpenGL 3.0 OpenGL Shading Language revision 1.30 (GLSL) OpenGL 3.0 Released July 11, OpenGL 3.0 added support for frame buffer objects, hardware instancing, vertex array objects (VAOs), and srgb framebuffers (gamma 2.2).[16] OpenGL 3.0 introduced a deprecation mechanism to simplify the API in future revisions. Vertex Array Objects More flexible Framebuffer Objects 32-bit (single precision) floating-point textures and render buffers 16-bit (half precision) floating-point vertex and pixel data Ability to render vertex transformations into a buffer Texture arrays 32-bit (single precision) floating point depth buffer support Features of OpenGL 3.1 OpenGL Shading Language revision 1.40 (GLSL) OpenGL 3.1 Released March 24, 2009 and updated May 28, OpenGL 3.1 introduces a range of features to make the API more convenient to use, in addition to performance oriented features Texture Buffer Objects - a new texture type that holds a one-dimensional array of texels Uniform Buffer Objects for fast data share/update Signed normalized textures (±1.0 range) Aminimumof16 texture units accessible by the vertex shader Primitive restart Instancing -drawingofobjectsmultipletimesthroughthere-useof vertex data CopyBuffer API for fast data copy; used in conjunction with OpenCL

8 OpenGL 3.2 Released 3 August 2009 and updated 7 December OpenGL Shading Language revision 1.50 (GLSL) Geometry Shader support BGRA vertex component ordering Shader Fragment coordinate convention control Seamless cube map filtering Fragment depth clamping Multisampled textures and texture samples for specific sample locations Sync and Fence objects OpenGL 4.0 Released 11 March 2010 SupportedCards : nvidiageforcegtx 400series, ATIRadeonHD5000series Features of OpenGL 4 OpenGL Shading Language revision 4.00 (GLSL) Two new shader stages that enable the GPU to offload geometry tessellation from the CPU. Per-sample fragment shaders and programmable fragment shader input positions for increased rendering quality and anti-aliasing flexibility Shader subroutines for significantly increased programming flexibility. Separation of texture state and texture data through the addition of a new object type called sampler objects. Drawing of data generated by OpenGL or external APIs such as OpenCL, without CPU intervention. 64-bit double precision floating point shader operations and inputs/outputs for increased rendering accuracy and quality. OpenGL Shading Language GLSL This document describes a programming language that is a companion to OpenGL 4.0 and higher, called The OpenGL Shading Language. The OpenGL Shading Language is part of the core OpenGL 4.0 specification. The recent trend in graphics hardware has been to replace fixed functionality with programmability in areas that have grown exceedingly complex (e.g., vertex processing and fragment processing) The OpenGL Shading Language has been designed to allow application programmers to express the processing that occurs at those programmable points of the OpenGL pipeline Independently compilable units that are written in this language are called shaders Performance improvements; such as instanced geometry shaders,

9 Agraphicsprogramisasetofshaders A program is a set of shaders that are compiled and linked together. The aim of this document is to thoroughly specify the programming language The OpenGL entry points that are used to manipulate and communicate with programs and shaders are defined separately from this language specification. The OpenGL Shading Language is based on ANSI C and many of the features have been retained except when they conflict with performance or ease of implementation Chasbeenextendedwithvectorandmatrixtypes(withhardware based qualifiers) to make it more concise for the typical operations carried out in 3D graphics Some mechanisms from C++ have also been borrowed, such as overloading functions based on argument types, and ability to declare variables where they are first needed instead of at the beginning of blocks.

Why modern versions of OpenGL should be used Some useful API commands and extensions

Why modern versions of OpenGL should be used Some useful API commands and extensions Michał Radziszewski Why modern versions of OpenGL should be used Some useful API commands and extensions Timer Query EXT Direct State Access (DSA) Geometry Programs Position in pipeline Rendering wireframe

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York API Background Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Graphics API history OpenGL API OpenGL function format Immediate Mode vs Retained Mode Examples The Programmer

More information

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

CS 450: COMPUTER GRAPHICS REVIEW: INTRODUCTION TO COMPUTER GRAPHICS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS REVIEW: INTRODUCTION TO COMPUTER GRAPHICS SPRING 2016 DR. MICHAEL J. REALE CS 450: COMPUTER GRAPHICS REVIEW: INTRODUCTION TO COMPUTER GRAPHICS SPRING 2016 DR. MICHAEL J. REALE COMPUTER GRAPHICS DEFINITION AND AREAS Computer graphics creating and manipulating images using computers

More information

OpenGL Programmable Shaders

OpenGL Programmable Shaders h gpup 1 Topics Rendering Pipeline Shader Types OpenGL Programmable Shaders sh gpup 1 OpenGL Shader Language Basics h gpup 1 EE 4702-X Lecture Transparency. Formatted 9:03, 20 October 2014 from shaders2.

More information

OpenGL Essentials Training

OpenGL Essentials Training OpenGL Essentials Training 3-day session Overview Understanding principles of 3D programming Understanding drawing Primitives Understanding transformation matrix and Coloring Understanding Blending and

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Fall 2015 Lecture 9 October 1, 2015 What I was going to say last time How are the ideas we ve learned about implemented in hardware so they are fast. Important:

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics

Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics Beginning Direct3D Game Programming: 1. The History of Direct3D Graphics jintaeks@gmail.com Division of Digital Contents, DongSeo University. April 2016 Long time ago Before Windows, DOS was the most popular

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming 2 Common Uses for Computer Graphics Applications for real-time 3D graphics range from interactive games

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Spring 2016 Lecture 10 February 25, 2016 1. Put a 3D primitive in the World Modeling Get triangles 2. Figure out what color it should be Do ligh/ng 3. Position

More information

Shading Languages. Ari Silvennoinen Apri 12, 2004

Shading Languages. Ari Silvennoinen Apri 12, 2004 Shading Languages Ari Silvennoinen Apri 12, 2004 Introduction The recent trend in graphics hardware has been to replace fixed functionality in vertex and fragment processing with programmability [1], [2],

More information

Introduction to Shaders.

Introduction to Shaders. Introduction to Shaders Marco Benvegnù hiforce@gmx.it www.benve.org Summer 2005 Overview Rendering pipeline Shaders concepts Shading Languages Shading Tools Effects showcase Setup of a Shader in OpenGL

More information

WebGL (Web Graphics Library) is the new standard for 3D graphics on the Web, designed for rendering 2D graphics and interactive 3D graphics.

WebGL (Web Graphics Library) is the new standard for 3D graphics on the Web, designed for rendering 2D graphics and interactive 3D graphics. About the Tutorial WebGL (Web Graphics Library) is the new standard for 3D graphics on the Web, designed for rendering 2D graphics and interactive 3D graphics. This tutorial starts with a basic introduction

More information

20 Years of OpenGL. Kurt Akeley. Copyright Khronos Group, Page 1

20 Years of OpenGL. Kurt Akeley. Copyright Khronos Group, Page 1 20 Years of OpenGL Kurt Akeley Copyright Khronos Group, 2010 - Page 1 So many deprecations! Application-generated object names Color index mode SL versions 1.10 and 1.20 Begin / End primitive specification

More information

Dave Shreiner, ARM March 2009

Dave Shreiner, ARM March 2009 4 th Annual Dave Shreiner, ARM March 2009 Copyright Khronos Group, 2009 - Page 1 Motivation - What s OpenGL ES, and what can it do for me? Overview - Lingo decoder - Overview of the OpenGL ES Pipeline

More information

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University Graphics Programming Computer Graphics, VT 2016 Lecture 2, Chapter 2 Fredrik Nysjö Centre for Image analysis Uppsala University Graphics programming Typically deals with How to define a 3D scene with a

More information

Graphics Pipeline & APIs

Graphics Pipeline & APIs Graphics Pipeline & APIs CPU Vertex Processing Rasterization Fragment Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

More information

Ciril Bohak. - INTRODUCTION TO WEBGL

Ciril Bohak. - INTRODUCTION TO WEBGL 2016 Ciril Bohak ciril.bohak@fri.uni-lj.si - INTRODUCTION TO WEBGL What is WebGL? WebGL (Web Graphics Library) is an implementation of OpenGL interface for cmmunication with graphical hardware, intended

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Programmable Graphics Hardware

Programmable Graphics Hardware Programmable Graphics Hardware Outline 2/ 49 A brief Introduction into Programmable Graphics Hardware Hardware Graphics Pipeline Shading Languages Tools GPGPU Resources Hardware Graphics Pipeline 3/ 49

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

Programmable GPUs Outline

Programmable GPUs Outline papi 1 Outline References Programmable Units Languages Programmable GPUs Outline papi 1 OpenGL Shading Language papi 1 EE 7700-1 Lecture Transparency. Formatted 11:30, 25 March 2009 from set-prog-api.

More information

GeForce4. John Montrym Henry Moreton

GeForce4. John Montrym Henry Moreton GeForce4 John Montrym Henry Moreton 1 Architectural Drivers Programmability Parallelism Memory bandwidth 2 Recent History: GeForce 1&2 First integrated geometry engine & 4 pixels/clk Fixed-function transform,

More information

Working with Metal Overview

Working with Metal Overview Graphics and Games #WWDC14 Working with Metal Overview Session 603 Jeremy Sandmel GPU Software 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission

More information

Mention driver developers in the room. Because of time this will be fairly high level, feel free to come talk to us afterwards

Mention driver developers in the room. Because of time this will be fairly high level, feel free to come talk to us afterwards 1 Introduce Mark, Michael Poll: Who is a software developer or works for a software company? Who s in management? Who knows what the OpenGL ARB standards body is? Mention driver developers in the room.

More information

Programming with OpenGL Part 1: Background

Programming with OpenGL Part 1: Background Programming with OpenGL Part 1: Background Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Development of the OpenGL API

More information

Graphics Pipeline & APIs

Graphics Pipeline & APIs 3 2 4 Graphics Pipeline & APIs CPU Vertex Processing Rasterization Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Early History of APIs. PHIGS and X. SGI and GL. Programming with OpenGL Part 1: Background. Objectives

Early History of APIs. PHIGS and X. SGI and GL. Programming with OpenGL Part 1: Background. Objectives Programming with OpenGL Part 1: Background Early History of APIs Objectives Development of the OpenGL API OpenGL Architecture - OpenGL as a state machine Functions - Types -Formats Simple program IFIPS

More information

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1 Programmable GPUs Real Time Graphics Virtua Fighter 1995 (SEGA Corporation) NV1 Dead or Alive 3 2001 (Tecmo Corporation) Xbox (NV2A) Nalu 2004 (NVIDIA Corporation) GeForce 6 Human Head 2006 (NVIDIA Corporation)

More information

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI Tutorial on GPU Programming #2 Joong-Youn Lee Supercomputing Center, KISTI Contents Graphics Pipeline Vertex Programming Fragment Programming Introduction to Cg Language Graphics Pipeline The process to

More information

Introduction to the OpenGL Shading Language

Introduction to the OpenGL Shading Language Introduction to the OpenGL Shading Language Randi Rost Director of Developer Relations, 3Dlabs 08-Dec-2005 1 Why use graphics programmability? Graphics hardware has changed radically Fixed functionality

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 1 Teaching GL Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 2 Agenda Overview of OpenGL family of APIs Comparison

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

Getting fancy with texture mapping (Part 2) CS559 Spring Apr 2017

Getting fancy with texture mapping (Part 2) CS559 Spring Apr 2017 Getting fancy with texture mapping (Part 2) CS559 Spring 2017 6 Apr 2017 Review Skyboxes as backdrops Credits : Flipmode 3D Review Reflection maps Credits : NVidia Review Decal textures Credits : andreucabre.com

More information

PROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd.

PROFESSIONAL. WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB. Andreas Anyuru WILEY. John Wiley & Sons, Ltd. PROFESSIONAL WebGL Programming DEVELOPING 3D GRAPHICS FOR THE WEB Andreas Anyuru WILEY John Wiley & Sons, Ltd. INTRODUCTION xxl CHAPTER 1: INTRODUCING WEBGL 1 The Basics of WebGL 1 So Why Is WebGL So Great?

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

1.2.3 The Graphics Hardware Pipeline

1.2.3 The Graphics Hardware Pipeline Figure 1-3. The Graphics Hardware Pipeline 1.2.3 The Graphics Hardware Pipeline A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage receives its input from the prior

More information

GPU Memory Model Overview

GPU Memory Model Overview GPU Memory Model Overview John Owens University of California, Davis Department of Electrical and Computer Engineering Institute for Data Analysis and Visualization SciDAC Institute for Ultrascale Visualization

More information

Introduction. What s New in This Edition

Introduction. What s New in This Edition Introduction Welcome to the fourth edition of the OpenGL SuperBible. For more than ten years, we have striven to provide the world s best introduction to not only OpenGL, but 3D graphics programming in

More information

OpenGL Status - November 2013 G-Truc Creation

OpenGL Status - November 2013 G-Truc Creation OpenGL Status - November 2013 G-Truc Creation Vendor NVIDIA AMD Intel Windows Apple Release date 02/10/2013 08/11/2013 30/08/2013 22/10/2013 Drivers version 331.10 beta 13.11 beta 9.2 10.18.10.3325 MacOS

More information

E.Order of Operations

E.Order of Operations Appendix E E.Order of Operations This book describes all the performed between initial specification of vertices and final writing of fragments into the framebuffer. The chapters of this book are arranged

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Lecture 13: OpenGL Shading Language (GLSL)

Lecture 13: OpenGL Shading Language (GLSL) Lecture 13: OpenGL Shading Language (GLSL) COMP 175: Computer Graphics April 18, 2018 1/56 Motivation } Last week, we discussed the many of the new tricks in Graphics require low-level access to the Graphics

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 12 PROGRAMMABLE SHADERS Announcement Programming Assignment #2 deadline next week: Session #7 Review of project proposals 2 Lecture Overview GPU programming 3 GPU Pipeline

More information

Copyright Khronos Group Page 1

Copyright Khronos Group Page 1 Gaming Market Briefing Overview of APIs GDC March 2016 Neil Trevett Khronos President NVIDIA Vice President Developer Ecosystem ntrevett@nvidia.com @neilt3d Copyright Khronos Group 2016 - Page 1 Copyright

More information

OpenGL SUPERBIBLE. Fifth Edition. Comprehensive Tutorial and Reference. Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak

OpenGL SUPERBIBLE. Fifth Edition. Comprehensive Tutorial and Reference. Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak OpenGL SUPERBIBLE Fifth Edition Comprehensive Tutorial and Reference Richard S. Wright, Jr. Nicholas Haemel Graham Sellers Benjamin Lipchak AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Free Downloads OpenGL ES 3.0 Programming Guide

Free Downloads OpenGL ES 3.0 Programming Guide Free Downloads OpenGL ES 3.0 Programming Guide OpenGLÂ Â ESâ is the industryâ s leading software interface and graphics library for rendering sophisticated 3D graphics on handheld and embedded devices.

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Fall 2016 Lectures 10 & 11 October 10th & 12th, 2016 1. Put a 3D primitive in the World Modeling 2. Figure out what color it should be 3. Position relative to the

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

Programming Guide. Aaftab Munshi Dan Ginsburg Dave Shreiner. TT r^addison-wesley

Programming Guide. Aaftab Munshi Dan Ginsburg Dave Shreiner. TT r^addison-wesley OpenGUES 2.0 Programming Guide Aaftab Munshi Dan Ginsburg Dave Shreiner TT r^addison-wesley Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris Madrid

More information

Module 13C: Using The 3D Graphics APIs OpenGL ES

Module 13C: Using The 3D Graphics APIs OpenGL ES Module 13C: Using The 3D Graphics APIs OpenGL ES BREW TM Developer Training Module Objectives See the steps involved in 3D rendering View the 3D graphics capabilities 2 1 3D Overview The 3D graphics library

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

PowerVR Hardware. Architecture Overview for Developers

PowerVR Hardware. Architecture Overview for Developers Public Imagination Technologies PowerVR Hardware Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

More information

Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017

Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017 Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017 Abbott, Connor (cwa2112) Pan, Wendy (wp2213) Qinami, Klint (kq2129) Vaccaro, Jason (jhv2111) [System

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 What is a Shader? Wikipedia: A shader is a computer program used in 3D computer graphics to determine the final surface properties of an object

More information

12.2 Programmable Graphics Hardware

12.2 Programmable Graphics Hardware Fall 2018 CSCI 420: Computer Graphics 12.2 Programmable Graphics Hardware Kyle Morgenroth http://cs420.hao-li.com 1 Introduction Recent major advance in real time graphics is the programmable pipeline:

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary Cornell University CS 569: Interactive Computer Graphics Introduction Lecture 1 [John C. Stone, UIUC] 2008 Steve Marschner 1 2008 Steve Marschner 2 NASA University of Calgary 2008 Steve Marschner 3 2008

More information

Chapter 1 Introduction

Chapter 1 Introduction Graphics & Visualization Chapter 1 Introduction Graphics & Visualization: Principles & Algorithms Brief History Milestones in the history of computer graphics: 2 Brief History (2) CPU Vs GPU 3 Applications

More information

Rationale for Non-Programmable Additions to OpenGL 2.0

Rationale for Non-Programmable Additions to OpenGL 2.0 Rationale for Non-Programmable Additions to OpenGL 2.0 NVIDIA Corporation March 23, 2004 This white paper provides a rationale for a set of functional additions to the 2.0 revision of the OpenGL graphics

More information

Introduction to OpenGL

Introduction to OpenGL Introduction to OpenGL 1995-2015 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 31 Advances in Hardware 3D acceleration is a common feature in

More information

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Level: Intermediate Area: Graphics Programming Summary This document is an introduction to the series of samples,

More information

We assume that you are familiar with the following:

We assume that you are familiar with the following: We will use WebGL 1.0. WebGL 2.0 is now being supported by most browsers but requires a better GPU so may not run on older computers or on most cell phones and tablets. See http://webglstats.com/. We will

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information

GPU Memory Model. Adapted from:

GPU Memory Model. Adapted from: GPU Memory Model Adapted from: Aaron Lefohn University of California, Davis With updates from slides by Suresh Venkatasubramanian, University of Pennsylvania Updates performed by Gary J. Katz, University

More information

MMGD0206 Computer Graphics. Chapter 1 Development of Computer Graphics : History

MMGD0206 Computer Graphics. Chapter 1 Development of Computer Graphics : History MMGD0206 Computer Graphics Chapter 1 Development of Computer Graphics : History What is Computer Graphics? Computer graphics generally means creation, storage and manipulation of models and images Such

More information

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care?

Rasterization and Graphics Hardware. Not just about fancy 3D! Rendering/Rasterization. The simplest case: Points. When do we care? Where does a picture come from? Rasterization and Graphics Hardware CS559 Course Notes Not for Projection November 2007, Mike Gleicher Result: image (raster) Input 2D/3D model of the world Rendering term

More information

3D Computer Games Technology and History. Markus Hadwiger VRVis Research Center

3D Computer Games Technology and History. Markus Hadwiger VRVis Research Center 3D Computer Games Technology and History VRVis Research Center Lecture Outline Overview of the last ten years A look at seminal 3D computer games Most important techniques employed Graphics research and

More information

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology Graphics Performance Optimisation John Spitzer Director of European Developer Technology Overview Understand the stages of the graphics pipeline Cherchez la bottleneck Once found, either eliminate or balance

More information

Current Trends in Computer Graphics Hardware

Current Trends in Computer Graphics Hardware Current Trends in Computer Graphics Hardware Dirk Reiners University of Louisiana Lafayette, LA Quick Introduction Assistant Professor in Computer Science at University of Louisiana, Lafayette (since 2006)

More information

Programming Graphics Hardware

Programming Graphics Hardware Tutorial 5 Programming Graphics Hardware Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller Overview of the Tutorial: Morning 8:30 9:30 10:15 10:45 Introduction to the Hardware Graphics Pipeline

More information

Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

Development of Computer Graphics

Development of Computer Graphics 1951 Whirlwind, Jay Forrester (MIT) CRT displays mid 1950s SAGE air defense system command & control CRT, light pens late 1950s Computer Art, James Whitney Sr. Visual Feedback loops 1962 Sketchpad, Ivan

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1 Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Ecosystem @neilt3d Copyright Khronos Group 2015 - Page 1 Copyright Khronos Group 2015 - Page 2 Khronos Connects Software to Silicon

More information

Graphics Architectures and OpenCL. Michael Doggett Department of Computer Science Lund university

Graphics Architectures and OpenCL. Michael Doggett Department of Computer Science Lund university Graphics Architectures and OpenCL Michael Doggett Department of Computer Science Lund university Overview Parallelism Radeon 5870 Tiled Graphics Architectures Important when Memory and Bandwidth limited

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

CS770/870 Spring 2017 Open GL Shader Language GLSL

CS770/870 Spring 2017 Open GL Shader Language GLSL Preview CS770/870 Spring 2017 Open GL Shader Language GLSL Review traditional graphics pipeline CPU/GPU mixed pipeline issues Shaders GLSL graphics pipeline Based on material from Angel and Shreiner, Interactive

More information

CS770/870 Spring 2017 Open GL Shader Language GLSL

CS770/870 Spring 2017 Open GL Shader Language GLSL CS770/870 Spring 2017 Open GL Shader Language GLSL Based on material from Angel and Shreiner, Interactive Computer Graphics, 6 th Edition, Addison-Wesley, 2011 Bailey and Cunningham, Graphics Shaders 2

More information

Bringing it all together: The challenge in delivering a complete graphics system architecture. Chris Porthouse

Bringing it all together: The challenge in delivering a complete graphics system architecture. Chris Porthouse Bringing it all together: The challenge in delivering a complete graphics system architecture Chris Porthouse System Integration & the role of standards Content Ecosystem Java Execution Environment Native

More information

Whiz-Bang Graphics and Media Performance for Java Platform, Micro Edition (JavaME)

Whiz-Bang Graphics and Media Performance for Java Platform, Micro Edition (JavaME) Whiz-Bang Graphics and Media Performance for Java Platform, Micro Edition (JavaME) Pavel Petroshenko, Sun Microsystems, Inc. Ashmi Bhanushali, NVIDIA Corporation Jerry Evans, Sun Microsystems, Inc. Nandini

More information