AUTONOMOUS SYSTEMS. PROBABILISTIC LOCALIZATION Monte Carlo Localization

Size: px
Start display at page:

Download "AUTONOMOUS SYSTEMS. PROBABILISTIC LOCALIZATION Monte Carlo Localization"

Transcription

1 AUTONOMOUS SYSTEMS PROBABILISTIC LOCALIZATION Monte Carlo Localization Maria Isabel Ribeiro Pedro Lima With revisions introduced by Rodrigo Ventura Instituto Superior Técnico/Instituto de Sistemas e Robótica October 2008 Course Handouts All rights reserved

2 References S. Thrun, W.Burgard, D. Fox, Probabilistic Robotics, MIT Press, 2005 Monte Carlo Localization (Chap. 8) Particle Filters (Chap. 4) F. Dellaert, D. Fox, W. Burgard, S. Thrun, Monte-Carlo Localization for Mobile Robots, Proc. of IEEE Conf. on Robotics and Automation, ICRA1999, May (available at the course web page) Ioannis M. Rekleitis, A Particle Filter Tutorial for Mobile Robot Localization, Technical Report TR-CIM,04-02, McGill University, Canada,

3 Markov Localization prediction phase uses motion model update phase uses measurement model bel(x t ) = p(x t Z t ) bel(x t -1) = p(x t-1 Z t-1 ) bel(x t ) = p(x t Z t ) bel(xt ) = p(x t Z t-1 t,u ) EKF Localization when all densities are represented by unimodal Gaussians 3

4 Markov Localization with General PDFs prior (could be the a posteriori distribution from last iteration) measurement model a posteriori distribution prediction measurement model a posteriori distribution prediction 4

5 Markov Localization with Unimodal Gaussians EKF prior (could be the a posteriori distribution from last iteration) bel(x) prediction measurement model a posteriori distribution prediction bel(x)... 5

6 Monte Carlo Localization (MCL) MCL solves a global localization problem Differences to the unimodal Gaussian technique Can process raw sensor measurements. There is no need to extract features from sensor values; Non parametric. Not bound to a unimodal distribution as the EKF localizer; Can solve global localization and, in some instances, kidnapped robot problems. MCL uses particle filters to estimate posteriors over robot poses 6

7 Particle Filters Represent the posterior belief bel(x t ) by random samples Estimation of non-gaussian, nonlinear processes Instead of representing a pdf by a parametric form, particle filters represent a pdf by a set of samples drawn from this distribution Sample based representation also have the ability to model nonlinear transformations of random variables 7

8 Particle Filters The samples of a posterior distribution: χ t := { x [1] [ t, x 2] [M] t,..., x } t Set of samples at time t x [m] t, m = 1,2,..., M Sample m, at time t concrete instantiation of the state at time t A sample is a hypothesis as to what the true world state may be at time t For the Robot Localization problem in a 2D environment, each sample represents the robot state (position + orientation) bel(x t -1 ) bel(x t ) c t-1 c t Markov Localization Monte Carlo Localization 8

9 Monte Carlo Localization The robot ignores its pose (p(x o ) is uniform) The initial global uncertainty is achieved through a set of pose samples drawn at random and uniformly over the entire pose space. M particles (samples + importance weights); uniform importance M -1 assigned to each particle Note that the particles are not equally spaced in the pose space, but result from a uniform distribution a) bel(x) x 9

10 Monte Carlo Localization The robot senses one door, according to a measurement model given in terms of a likelihood p(z x) The MCL assigns importance factors (weight of each particle) to each particle as shown in bel(x) This set of particles is identical to the one in Fig. a). The only thing modified by the measurement update are the importance weights b) p(z x) x bel(x) x 10

11 Monte Carlo Localization b) bel(x) x c) The particle set is resample (uniform importance weights) and The robot moves bel(x) x A new particle set with uniform importance weights, but with an increased number of particles near the three likely places 11

12 Monte Carlo Localization c) bel(x) x d) The new measurement assigns non-uniform importance weights to the particle set p(z x) x bel(x) x

13 Monte Carlo Localization At this point most of the cumulative mass is centered on the second door, which is also the most likely location d) bel(x) x Further motion leads to another resampling step and a step in which a new particle set is generated according to the motion model e) bel(x) x The particle sets approximate the correct posterior pdf

14 Monte Carlo Localization Initialization From motion model From measurement model Prediction + weighting Re-sampling Prediction + weighting Source: Raja Chatila 14

15 Monte Carlo Localization c t-1 resampling or Importance sampling c t [m] w t importance factor of the particle with < x [i] t, w [i] t > ℵ, i =1,..., m [m] x t c t 15

16 Monte Carlo Localization Represents bel(x t-1 ) by M random samples χ t 1 = { < x [m] t 1 > } 1 m M Samples are updated in two stages: Prediction: according to motion model [m x ] [m t p(x ] [m t x ] t 1,u t ) Correction/Update: Weighing samples according to likelihood of observations w p( z [ m] [ m] t t t x χ t = < x t [m],w t [m ] > ) These particles are distributed according to bel x ) { } The set of particles (weighted samples) represents (in 1 m M ( t approximation) the posterior pdf bel(x t ) 16

17 MCL - Resampling c t { [ m] [ m] < x } t, wt > m M = 1 The set of particles (weighted samples) represents (in approximation) the posterior pdf bel(x t ) Set of M samples [m] x t distributed according to resampling [m] w t Another set of M samples [m] x t distributed according to bel( x t ) bel( x t ) = hp( z t x [ m] t ) bel( x t ) and with associated weights and with equal weights Resampling algorithm The resampling algorithm draws with replacement M samples from the temporary set c t The probability of drawing each sample is given by its importance weight Refocuses the particle set to regions in state space with high posterior probability 17

18 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 18

19 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 19

20 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 2

21 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 2

22 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 2

23 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 23

24 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 24

25 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 25

26 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 2

27 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 27

28 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 28

29 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 29

30 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 30

31 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 3

32 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 3

33 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 33

34 From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 3

35 MCL: Example From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 35

36 Limitations and Its Overcome Limitations The approach described so far is able to track the pose of a mobile robot and to globally localize the robot. How can we deal with localization errors (i.e., the kidnapped robot problem)? Approaches Randomly insert samples (the robot can be teleported at any point in time). Insert random samples inversely proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops). 36

37 Importance Sampling with Resampling: Landmark Detection Example 37

38 Importance Sampling with Resampling Weighted samples After resampling 38

39 MCL: Example I From Probabilistic Robotics S. Thrun, W. Burgard, D.Fox 39

40 MCL: Example II Localization in soccer field coordinate x of nearest model line to line point j coordinate x of line point j in the frame of robot pose hypothesis represented by particle m f [m] lpj = ( ) [m] [m] x model,lpj x lpj y model,lpj y lpj D [m] = 1 #lp lp j [m] f lpj 2 Distance matrix: height map represents squared distance of each position on the field to the next field marking line. w [m] = α 1 D [m] From Heinemann, P., Haase, J., & Zell, A. (2006). A Combined Monte-Carlo Localization and Tracking Algorithm for RoboCup. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2006) (pp ). 40

41 MCL: Example II (cont.) From Heinemann, P., Haase, J., & Zell, A. (2006). A Combined Monte-Carlo Localization and Tracking Algorithm for RoboCup. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2006) (pp ). 41

42 Particle filter: Summary Particle filters are an implementation of recursive Bayesian filtering They represent the posterior by a set of weighted samples. In the context of localization, the particles are propagated according to the motion model. They are then weighted according to the likelihood of the observations. In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation. 42

AUTONOMOUS SYSTEMS. LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping

AUTONOMOUS SYSTEMS. LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping AUTONOMOUS SYSTEMS LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping Maria Isabel Ribeiro Pedro Lima with revisions introduced by Rodrigo Ventura Instituto

More information

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard

Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization. Wolfram Burgard Introduction to Mobile Robotics Bayes Filter Particle Filter and Monte Carlo Localization Wolfram Burgard 1 Motivation Recall: Discrete filter Discretize the continuous state space High memory complexity

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Bayes Filter Implementations Discrete filters, Particle filters Piecewise Constant Representation of belief 2 Discrete Bayes Filter Algorithm 1. Algorithm Discrete_Bayes_filter(

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Discrete Filters and Particle Filters Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Probabilistic

More information

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms

L10. PARTICLE FILTERING CONTINUED. NA568 Mobile Robotics: Methods & Algorithms L10. PARTICLE FILTERING CONTINUED NA568 Mobile Robotics: Methods & Algorithms Gaussian Filters The Kalman filter and its variants can only model (unimodal) Gaussian distributions Courtesy: K. Arras Motivation

More information

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta

Monte Carlo Localization using Dynamically Expanding Occupancy Grids. Karan M. Gupta 1 Monte Carlo Localization using Dynamically Expanding Occupancy Grids Karan M. Gupta Agenda Introduction Occupancy Grids Sonar Sensor Model Dynamically Expanding Occupancy Grids Monte Carlo Localization

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

AUTONOMOUS SYSTEMS MULTISENSOR INTEGRATION

AUTONOMOUS SYSTEMS MULTISENSOR INTEGRATION AUTONOMOUS SYSTEMS MULTISENSOR INTEGRATION Maria Isabel Ribeiro Pedro Lima with revisions introduced by Rodrigo Ventura in Sep 2008 Instituto Superior Técnico/Instituto de Sistemas e Robótica September

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping CSE-571 Probabilistic Robotics Fast-SLAM Mapping Particle Filters Represent belief by random samples Estimation of non-gaussian, nonlinear processes Sampling Importance Resampling (SIR) principle Draw

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Adapting the Sample Size in Particle Filters Through KLD-Sampling

Adapting the Sample Size in Particle Filters Through KLD-Sampling Adapting the Sample Size in Particle Filters Through KLD-Sampling Dieter Fox Department of Computer Science & Engineering University of Washington Seattle, WA 98195 Email: fox@cs.washington.edu Abstract

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map

Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Where s the Boss? : Monte Carlo Localization for an Autonomous Ground Vehicle using an Aerial Lidar Map Sebastian Scherer, Young-Woo Seo, and Prasanna Velagapudi October 16, 2007 Robotics Institute Carnegie

More information

Adapting the Sample Size in Particle Filters Through KLD-Sampling

Adapting the Sample Size in Particle Filters Through KLD-Sampling Adapting the Sample Size in Particle Filters Through KLD-Sampling Dieter Fox Department of Computer Science & Engineering University of Washington Seattle, WA 98195 Email: fox@cs.washington.edu Abstract

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

Active Monte Carlo Localization in Outdoor Terrains using Multi-Level Surface Maps

Active Monte Carlo Localization in Outdoor Terrains using Multi-Level Surface Maps Active Monte Carlo Localization in Outdoor Terrains using Multi-Level Surface Maps Rainer Kümmerle 1, Patrick Pfaff 1, Rudolph Triebel 2, and Wolfram Burgard 1 1 Department of Computer Science, University

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

Robust Monte-Carlo Localization using Adaptive Likelihood Models

Robust Monte-Carlo Localization using Adaptive Likelihood Models Robust Monte-Carlo Localization using Adaptive Likelihood Models Patrick Pfaff 1, Wolfram Burgard 1, and Dieter Fox 2 1 Department of Computer Science, University of Freiburg, Germany, {pfaff,burgard}@informatik.uni-freiburg.de

More information

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Simon Thompson and Satoshi Kagami Digital Human Research Center National Institute of Advanced

More information

Using Artificial Landmarks to Reduce the Ambiguity in the Environment of a Mobile Robot

Using Artificial Landmarks to Reduce the Ambiguity in the Environment of a Mobile Robot Using Artificial Landmarks to Reduce the Ambiguity in the Environment of a Mobile Robot Daniel Meyer-Delius Maximilian Beinhofer Alexander Kleiner Wolfram Burgard Abstract Robust and reliable localization

More information

A New Omnidirectional Vision Sensor for Monte-Carlo Localization

A New Omnidirectional Vision Sensor for Monte-Carlo Localization A New Omnidirectional Vision Sensor for Monte-Carlo Localization E. Menegatti 1, A. Pretto 1, and E. Pagello 12 1 Intelligent Autonomous Systems Laboratory Department of Information Engineering The University

More information

USING 3D DATA FOR MONTE CARLO LOCALIZATION IN COMPLEX INDOOR ENVIRONMENTS. Oliver Wulf, Bernardo Wagner

USING 3D DATA FOR MONTE CARLO LOCALIZATION IN COMPLEX INDOOR ENVIRONMENTS. Oliver Wulf, Bernardo Wagner USING 3D DATA FOR MONTE CARLO LOCALIZATION IN COMPLEX INDOOR ENVIRONMENTS Oliver Wulf, Bernardo Wagner Institute for Systems Engineering (RTS/ISE), University of Hannover, Germany Mohamed Khalaf-Allah

More information

Monte Carlo Localization

Monte Carlo Localization Monte Carlo Localization P. Hiemstra & A. Nederveen August 24, 2007 Abstract In this paper we investigate robot localization with the Augmented Monte Carlo Localization (amcl) algorithm. The goal of the

More information

An Experimental Comparison of Localization Methods Continued

An Experimental Comparison of Localization Methods Continued An Experimental Comparison of Localization Methods Continued Jens-Steffen Gutmann Digital Creatures Laboratory Sony Corporation, Tokyo, Japan Email: gutmann@ieee.org Dieter Fox Department of Computer Science

More information

Mobile Robot Mapping and Localization in Non-Static Environments

Mobile Robot Mapping and Localization in Non-Static Environments Mobile Robot Mapping and Localization in Non-Static Environments Cyrill Stachniss Wolfram Burgard University of Freiburg, Department of Computer Science, D-790 Freiburg, Germany {stachnis burgard @informatik.uni-freiburg.de}

More information

Particle Attraction Localisation

Particle Attraction Localisation Particle Attraction Localisation Damien George (dpgeorge@students.cs.mu.oz.au) Nick Barnes (nmb@cs.mu.oz.au) Dept. Computer Science and Software Engineering The University of Melbourne, Vic, 31, AUSTRALIA

More information

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics SLAM Grid-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 The SLAM Problem SLAM stands for simultaneous localization

More information

Monte Carlo Localization for Mobile Robots

Monte Carlo Localization for Mobile Robots Monte Carlo Localization for Mobile Robots Frank Dellaert 1, Dieter Fox 2, Wolfram Burgard 3, Sebastian Thrun 4 1 Georgia Institute of Technology 2 University of Washington 3 University of Bonn 4 Carnegie

More information

This chapter explains two techniques which are frequently used throughout

This chapter explains two techniques which are frequently used throughout Chapter 2 Basic Techniques This chapter explains two techniques which are frequently used throughout this thesis. First, we will introduce the concept of particle filters. A particle filter is a recursive

More information

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms L17. OCCUPANCY MAPS NA568 Mobile Robotics: Methods & Algorithms Today s Topic Why Occupancy Maps? Bayes Binary Filters Log-odds Occupancy Maps Inverse sensor model Learning inverse sensor model ML map

More information

Monte Carlo Localization for Mobile Robots

Monte Carlo Localization for Mobile Robots Monte Carlo Localization for Mobile Robots Frank Dellaert y Dieter Fox y Wolfram Burgard z Sebastian Thrun y y Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213 z Institute of

More information

What is the SLAM problem?

What is the SLAM problem? SLAM Tutorial Slides by Marios Xanthidis, C. Stachniss, P. Allen, C. Fermuller Paul Furgale, Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart What is the SLAM problem? The

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

Practical Extensions to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain

Practical Extensions to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain Practical Extensions to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain Kemal Kaplan 1, Buluç Çelik 1, Tekin Meriçli 2, Çetin Meriçli 1 and H. Levent Akın 1 1 Boğaziçi University

More information

Robotics. Chapter 25-b. Chapter 25-b 1

Robotics. Chapter 25-b. Chapter 25-b 1 Robotics Chapter 25-b Chapter 25-b 1 Particle Filtering Particle filtering uses a population of particles (each particle is a state estimate) to localize a robot s position. This is called Monte Carlo

More information

Particle Filter for Robot Localization ECE 478 Homework #1

Particle Filter for Robot Localization ECE 478 Homework #1 Particle Filter for Robot Localization ECE 478 Homework #1 Phil Lamb pjl@pdx.edu November 15, 2012 1 Contents 1 Introduction 3 2 Implementation 3 2.1 Assumptions and Simplifications.............................

More information

Localization of Multiple Robots with Simple Sensors

Localization of Multiple Robots with Simple Sensors Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls, Canada July 2005 Localization of Multiple Robots with Simple Sensors Mike Peasgood and Christopher Clark Lab

More information

Computer Vision 2 Lecture 8

Computer Vision 2 Lecture 8 Computer Vision 2 Lecture 8 Multi-Object Tracking (30.05.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

More information

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING

CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING CAMERA POSE ESTIMATION OF RGB-D SENSORS USING PARTICLE FILTERING By Michael Lowney Senior Thesis in Electrical Engineering University of Illinois at Urbana-Champaign Advisor: Professor Minh Do May 2015

More information

Robotic Mapping. Outline. Introduction (Tom)

Robotic Mapping. Outline. Introduction (Tom) Outline Robotic Mapping 6.834 Student Lecture Itamar Kahn, Thomas Lin, Yuval Mazor Introduction (Tom) Kalman Filtering (Itamar) J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2018 Localization II Localization I 16.04.2018 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2016 Localization II Localization I 25.04.2016 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

A Polymorph Particle Filter for State Estimation used by a Visual Observer

A Polymorph Particle Filter for State Estimation used by a Visual Observer Proceedings of the RAAD 20 20th International Workshop on Robotics in Alpe-Adria-Danube Region October 5-7, 20, Brno, Czech Republic A Polymorph Particle Filter for State Estimation used by a Visual Observer

More information

Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data

Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data Lin Liao, Dieter Fox, Jeffrey Hightower, Henry Kautz, and Dirk Schulz Deptartment of Computer Science & Engineering University of

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

SLAM: Robotic Simultaneous Location and Mapping

SLAM: Robotic Simultaneous Location and Mapping SLAM: Robotic Simultaneous Location and Mapping William Regli Department of Computer Science (and Departments of ECE and MEM) Drexel University Acknowledgments to Sebastian Thrun & others SLAM Lecture

More information

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore

Particle Filtering. CS6240 Multimedia Analysis. Leow Wee Kheng. Department of Computer Science School of Computing National University of Singapore Particle Filtering CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore (CS6240) Particle Filtering 1 / 28 Introduction Introduction

More information

Jurnal Teknologi PARTICLE FILTER IN SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) USING DIFFERENTIAL DRIVE MOBILE ROBOT. Full Paper

Jurnal Teknologi PARTICLE FILTER IN SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) USING DIFFERENTIAL DRIVE MOBILE ROBOT. Full Paper Jurnal Teknologi PARTICLE FILTER IN SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) USING DIFFERENTIAL DRIVE MOBILE ROBOT Norhidayah Mohamad Yatim a,b, Norlida Buniyamin a a Faculty of Engineering, Universiti

More information

Detecting and Solving the Kidnapped Robot Problem Using Laser Range Finder and Wifi Signal

Detecting and Solving the Kidnapped Robot Problem Using Laser Range Finder and Wifi Signal Detecting and Solving the Kidnapped Robot Problem Using Laser Range Finder and Wifi Signal Yiploon Seow, Renato Miyagusuku, Atsushi Yamashita and Hajime Asama 1 Abstract This paper presents an approach

More information

Multi Robot Object Tracking and Self Localization Using Visual Percept Relations

Multi Robot Object Tracking and Self Localization Using Visual Percept Relations Multi Robot Object Tracking and Self Localization Using Visual Percept Relations Daniel Göhring and Hans-Dieter Burkhard Department of Computer Science Artificial Intelligence Laboratory Humboldt-Universität

More information

Tracking Multiple Moving Objects with a Mobile Robot

Tracking Multiple Moving Objects with a Mobile Robot Tracking Multiple Moving Objects with a Mobile Robot Dirk Schulz 1 Wolfram Burgard 2 Dieter Fox 3 Armin B. Cremers 1 1 University of Bonn, Computer Science Department, Germany 2 University of Freiburg,

More information

Testing omnidirectional vision-based Monte-Carlo Localization under occlusion

Testing omnidirectional vision-based Monte-Carlo Localization under occlusion Testing omnidirectional vision-based Monte-Carlo Localization under occlusion E. Menegatti, A. Pretto and E. Pagello Intelligent Autonomous Systems Laboratory Department of Information Engineering The

More information

Image-Based Monte-Carlo Localisation with Omnidirectional Images

Image-Based Monte-Carlo Localisation with Omnidirectional Images Image-Based Monte-Carlo Localisation with Omnidirectional Images Emanuele Menegatti, Mauro Zoccarato, Enrico Pagello, Hiroshi Ishiguro Intelligent Autonomous Systems Laboratory Department of Information

More information

NERC Gazebo simulation implementation

NERC Gazebo simulation implementation NERC 2015 - Gazebo simulation implementation Hannan Ejaz Keen, Adil Mumtaz Department of Electrical Engineering SBA School of Science & Engineering, LUMS, Pakistan {14060016, 14060037}@lums.edu.pk ABSTRACT

More information

Using the Extended Information Filter for Localization of Humanoid Robots on a Soccer Field

Using the Extended Information Filter for Localization of Humanoid Robots on a Soccer Field Using the Extended Information Filter for Localization of Humanoid Robots on a Soccer Field Tobias Garritsen University of Amsterdam Faculty of Science BSc Artificial Intelligence Using the Extended Information

More information

Robust Monte Carlo Localization for Mobile Robots

Robust Monte Carlo Localization for Mobile Robots To appear in Artificial Intelligence, Summer 2001 Robust Monte Carlo Localization for Mobile Robots Sebastian Thrun, Dieter Fox y, Wolfram Burgard z, and Frank Dellaert School of Computer Science, Carnegie

More information

Multi-Cue Localization for Soccer Playing Humanoid Robots

Multi-Cue Localization for Soccer Playing Humanoid Robots Multi-Cue Localization for Soccer Playing Humanoid Robots Hauke Strasdat, Maren Bennewitz, and Sven Behnke University of Freiburg, Computer Science Institute, D-79110 Freiburg, Germany strasdat@gmx.de,{maren,behnke}@informatik.uni-freiburg.de,

More information

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM

CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM CSE 490R P1 - Localization using Particle Filters Due date: Sun, Jan 28-11:59 PM 1 Introduction In this assignment you will implement a particle filter to localize your car within a known map. This will

More information

Robot Mapping. Grid Maps. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Grid Maps. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Grid Maps Gian Diego Tipaldi, Wolfram Burgard 1 Features vs. Volumetric Maps Courtesy: D. Hähnel Courtesy: E. Nebot 2 Features So far, we only used feature maps Natural choice for Kalman

More information

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang Localization, Mapping and Exploration with Multiple Robots Dr. Daisy Tang Two Presentations A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping, by Thrun, Burgard

More information

Monte Carlo Localization using 3D Texture Maps

Monte Carlo Localization using 3D Texture Maps Monte Carlo Localization using 3D Texture Maps Yu Fu, Stephen Tully, George Kantor, and Howie Choset Abstract This paper uses KLD-based (Kullback-Leibler Divergence) Monte Carlo Localization (MCL) to localize

More information

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM

Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Introduction to Mobile Robotics SLAM Landmark-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Partial slide courtesy of Mike Montemerlo 1 The SLAM Problem

More information

Active Monte Carlo Recognition

Active Monte Carlo Recognition Active Monte Carlo Recognition Felix v. Hundelshausen 1 and Manuela Veloso 2 1 Computer Science Department, Freie Universität Berlin, 14195 Berlin, Germany hundelsh@googlemail.com 2 Computer Science Department,

More information

Hybrid Inference for Sensor Network Localization using a Mobile Robot

Hybrid Inference for Sensor Network Localization using a Mobile Robot Hybrid Inference for Sensor Network Localization using a Mobile Robot Dimitri Marinakis, CIM, McGill University dmarinak@cim.mcgill.ca David Meger, University of British Columbia dpmeger@cs.ubc.ca Ioannis

More information

2D localization of outdoor mobile robots using 3D laser range data

2D localization of outdoor mobile robots using 3D laser range data 2D localization of outdoor mobile robots using 3D laser range data Takeshi Takahashi CMU-RI-TR-07-11 May 2007 Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213 c Carnegie Mellon

More information

Application of Vision-based Particle Filter and Visual Odometry for UAV Localization

Application of Vision-based Particle Filter and Visual Odometry for UAV Localization Application of Vision-based Particle Filter and Visual Odometry for UAV Localization Rokas Jurevičius Vilnius University Institute of Mathematics and Informatics Akademijos str. 4 LT-08663 Vilnius, Lithuania

More information

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule:

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule: Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Evaluation

More information

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009 Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

PROGRAMA DE CURSO. Robotics, Sensing and Autonomous Systems. SCT Auxiliar. Personal

PROGRAMA DE CURSO. Robotics, Sensing and Autonomous Systems. SCT Auxiliar. Personal PROGRAMA DE CURSO Código Nombre EL7031 Robotics, Sensing and Autonomous Systems Nombre en Inglés Robotics, Sensing and Autonomous Systems es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra

More information

Real Time Data Association for FastSLAM

Real Time Data Association for FastSLAM Real Time Data Association for FastSLAM Juan Nieto, Jose Guivant, Eduardo Nebot Australian Centre for Field Robotics, The University of Sydney, Australia fj.nieto,jguivant,nebotg@acfr.usyd.edu.au Sebastian

More information

A Framework for Bearing-Only Sparse Semantic Self-Localization for Visually Impaired People

A Framework for Bearing-Only Sparse Semantic Self-Localization for Visually Impaired People A Framework for Bearing-Only Sparse Semantic Self-Localization for Visually Impaired People Irem Uygur, Renato Miyagusuku, Sarthak Pathak, Alessandro Moro, Atsushi Yamashita, and Hajime Asama Abstract

More information

Monte Carlo Localization in Outdoor Terrains using Multilevel Surface Maps

Monte Carlo Localization in Outdoor Terrains using Multilevel Surface Maps Monte Carlo Localization in Outdoor Terrains using Multilevel Surface Maps Rainer Kümmerle Department of Computer Science University of Freiburg 79110 Freiburg, Germany kuemmerl@informatik.uni-freiburg.de

More information

COMPARING GLOBAL MEASURES OF IMAGE SIMILARITY FOR USE IN TOPOLOGICAL LOCALIZATION OF MOBILE ROBOTS

COMPARING GLOBAL MEASURES OF IMAGE SIMILARITY FOR USE IN TOPOLOGICAL LOCALIZATION OF MOBILE ROBOTS COMPARING GLOBAL MEASURES OF IMAGE SIMILARITY FOR USE IN TOPOLOGICAL LOCALIZATION OF MOBILE ROBOTS Syeda Nusrat Ferdaus, Andrew Vardy, George Mann and Ray Gosine Intelligent Systems Lab, Faculty of Engineering

More information

HUMAN COMPUTER INTERFACE BASED ON HAND TRACKING

HUMAN COMPUTER INTERFACE BASED ON HAND TRACKING Proceedings of MUSME 2011, the International Symposium on Multibody Systems and Mechatronics Valencia, Spain, 25-28 October 2011 HUMAN COMPUTER INTERFACE BASED ON HAND TRACKING Pedro Achanccaray, Cristian

More information

Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera

Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera 52. Internationales Wissenschaftliches Kolloquium Technische Universität Ilmenau 10. - 13. September 2007 M. Schenderlein / K. Debes / A. Koenig / H.-M. Gross Appearance-based Visual Localisation in Outdoor

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Probabilistic Motion and Sensor Models Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book SA-1 Sensors for Mobile

More information

Hybrid Localization Using the Hierarchical Atlas

Hybrid Localization Using the Hierarchical Atlas Hybrid Localization Using the Hierarchical Atlas Stephen Tully, Hyungpil Moon, Deryck Morales, George Kantor, and Howie Choset Abstract This paper presents a hybrid localization scheme for a mobile robot

More information

DD2426 Robotics and Autonomous Systems Lecture 6-7: Localization and Mapping

DD2426 Robotics and Autonomous Systems Lecture 6-7: Localization and Mapping DD2426 Robotics and Autonomous Systems Lecture 6-7: Localization and Mapping Patric Jensfelt Kungliga Tekniska Högskolan patric@kth.se April 15 & 17,2007 Course admin Everyone completed milestone0 on time.

More information

Robotic exploration for mapping and change detection

Robotic exploration for mapping and change detection Masterarbeit Sebastian Gangl Robotic exploration for mapping and change detection Robotische Exploration zur Kartierung und Änderungsdetektion Erstprüfer: apl. Prof. Dr.-Ing. Claus Brenner Zweitprüfer:

More information

Particle-Filter-Based Self-Localization Using Landmarks and Directed Lines

Particle-Filter-Based Self-Localization Using Landmarks and Directed Lines Particle-Filter-Based Self-Localization Using Landmarks and Directed Lines Thomas Röfer 1, Tim Laue 1, and Dirk Thomas 2 1 Center for Computing Technology (TZI), FB 3, Universität Bremen roefer@tzi.de,

More information

Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data

Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data Voronoi Tracking: Location Estimation Using Sparse and Noisy Sensor Data Lin Liao, Dieter Fox, Jeffrey Hightower, Henry Kautz, and Dirk Schulz Deptartment of Computer Science & Engineering University of

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

Matching Evaluation of 2D Laser Scan Points using Observed Probability in Unstable Measurement Environment

Matching Evaluation of 2D Laser Scan Points using Observed Probability in Unstable Measurement Environment Matching Evaluation of D Laser Scan Points using Observed Probability in Unstable Measurement Environment Taichi Yamada, and Akihisa Ohya Abstract In the real environment such as urban areas sidewalk,

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

SHARPKUNGFU TEAM DESCRIPTION 2006

SHARPKUNGFU TEAM DESCRIPTION 2006 SHARPKUNGFU TEAM DESCRIPTION 2006 Qining Wang, Chunxia Rong, Yan Huang, Guangming Xie, Long Wang Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China http://www.mech.pku.edu.cn/robot/fourleg/

More information

IN recent years, NASA s Mars Exploration Rovers (MERs)

IN recent years, NASA s Mars Exploration Rovers (MERs) Robust Landmark Estimation for SLAM in Dynamic Outdoor Environment Atsushi SAKAI, Teppei SAITOH and Yoji KURODA Meiji University, Department of Mechanical Engineering, 1-1-1 Higashimita, Tama-ku, Kawasaki,

More information

GT "Calcul Ensembliste"

GT Calcul Ensembliste GT "Calcul Ensembliste" Beyond the bounded error framework for non linear state estimation Fahed Abdallah Université de Technologie de Compiègne 9 Décembre 2010 Fahed Abdallah GT "Calcul Ensembliste" 9

More information

Accurate Indoor Localization for RGB-D Smartphones and Tablets given 2D Floor Plans

Accurate Indoor Localization for RGB-D Smartphones and Tablets given 2D Floor Plans Accurate Indoor Localization for RGB-D Smartphones and Tablets given 2D Floor Plans Wera Winterhalter Freya Fleckenstein Bastian Steder Luciano Spinello Wolfram Burgard Abstract Accurate localization in

More information

Grid-Based Models for Dynamic Environments

Grid-Based Models for Dynamic Environments Grid-Based Models for Dynamic Environments Daniel Meyer-Delius Maximilian Beinhofer Wolfram Burgard Abstract The majority of existing approaches to mobile robot mapping assume that the world is, an assumption

More information

Appearance-based Concurrent Map Building and Localization

Appearance-based Concurrent Map Building and Localization Appearance-based Concurrent Map Building and Localization Josep M. Porta and Ben J.A. Kröse IAS Group, Informatics Institute, University of Amsterdam Kruislaan 403, 1098SJ, Amsterdam, The Netherlands {porta,krose}@science.uva.nl

More information

Particle Filters for Visual Tracking

Particle Filters for Visual Tracking Particle Filters for Visual Tracking T. Chateau, Pascal Institute, Clermont-Ferrand 1 Content Particle filtering: a probabilistic framework SIR particle filter MCMC particle filter RJMCMC particle filter

More information

Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters

Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters Christian Plagemann, Cyrill Stachniss, and Wolfram Burgard University of Freiburg Georges-Koehler-Allee 7911 Freiburg,

More information

Environment Identification by Comparing Maps of Landmarks

Environment Identification by Comparing Maps of Landmarks Environment Identification by Comparing Maps of Landmarks Jens-Steffen Gutmann Masaki Fukuchi Kohtaro Sabe Digital Creatures Laboratory Sony Corporation -- Kitashinagawa, Shinagawa-ku Tokyo, 4- Japan Email:

More information