Conquering Massive Clinical Models with GPU. GPU Parallelized Logistic Regression

Size: px
Start display at page:

Download "Conquering Massive Clinical Models with GPU. GPU Parallelized Logistic Regression"

Transcription

1 Conquering Massive Clinical Models with GPU Parallelized Logistic Regression M.D./Ph.D. candidate in Biomathematics University of California, Los Angeles Joint Statistical Meetings Vancouver, Canada, July 30, 2018 joint work with Trevor Shaddox, Marc Suchard Funding: NSF grant IIS (Suchard), F31 LM (Tian), Paul and Daisy Soros Fellowships for New Americans (Tian)

2 Introduction Observational data provides an enormity of information How Enormous? Truven CCAE has 122 million patients A study can have 100,000 patients, 100,000 covariates Using an enormity of data requires massive statistical models Fitting massive models is computationally prohibitive (especially with cross-validation) Exploit graphics processing units (GPUs) for massive parallelization potential

3 Propensity Score Fitting Propensity scores (PS) are used to reduce confounding in comparative effectiveness studies Fitting a PS involves modeling [binary] treatment assignment probability LOGISTIC REGRESSION is standard classification model for PS If include all covariates, requires fitting huge logistic regression with regularization (can take hours to tens of hours)

4 Graphics Processing Units (GPUs) Thousands of threads execute the same piece of code simultaneously Ideal for simple but highly parallel tasks Why GPUs? Relatively cheap ($2k), portable, easy to use Can buy an enclosure for plug-and-play Buying a big desktop: more expensive, less portable Using cloud services: costs add up, difficult to use

5 GPU Architecture

6 How a GPU Works All processors run one kernel" (piece of code) Job broken down into thread blocks" for multiprocessors Thread block broken down into 32 thread warps" for single processors Each multiprocessor has its own local memory NVIDIA Tesla K40 has 2880 threads on 90 SPs across 15 MPs Global memory access costs hundreds of clock cycles Host to device transfer is measured in 10s of microseconds!

7 Logistic Regression Fitting a propensity score with all pretreatment covariates treatment y i outcome z i pretreatment covariates x i,j time Log likelihood to maximize is: l(β) = n i=1 y i x T i β log[1 + exp(x T i β)] + λ p β j j=2

8 Cyclic Coordinate Descent Updates one coordinate at a time with one-dimensional Newton steps initialize initial search β; while not yet converged do for j 1 to J do gradient β j l(β) = n i=1 y ix i,j x i,j exp(x T hessian 2 l(β) = n βj 2 i=1 delta gradient/ hessian; β j β j +delta; i β) 1+exp(xi T x 2 i,k exp(x T i β) ; (1+exp(xi T β)) 2 β) + Sign(β j)λ; update x T i β and exp(x T i β) for subjects with x i,j 0; end end Algorithm 1: Cyclic coordinate descent

9 CCD Optimization initialize initial search β; while not yet converged do for j 1 to J do gradient β j l(β) = n i=1 y ix i,j x i,j exp(x T hessian 2 l(β) = n βj 2 i=1 delta gradient/ hessian; β j β j +delta; i β) 1+exp(xi T x 2 i,k exp(x T i β) ; (1+exp(xi T β)) 2 β) + Sign(β j)λ; update x T i β and exp(x T i β) for subjects with x i,j 0; end end n i=1 y ix i,j is constant, compute once

10 CCD Optimization initialize initial search β; while not yet converged do for j 1 to J do gradient β j l(β) = n i=1 y ix i,j x i,j exp(x T hessian 2 l(β) = n βj 2 i=1 delta gradient/ hessian; β j β j +delta; i β) 1+exp(xi T x 2 i,k exp(x T i β) ; (1+exp(xi T β)) 2 β) + Sign(β j)λ; update x T i β and exp(x T i β) for subjects with x i,j 0; end end n i=1 x i,j exp(x T i β) 1+exp(x T x 2 i,k exp(xt i β) (1+exp(x T i β)) 2 i β) and n i=1 can be distributed and reduced across multiple processes

11 CCD Optimization initialize initial search β; while not yet converged do for j 1 to J do gradient β j l(β) = n i=1 y ix i,j x i,j exp(x T hessian 2 l(β) = n βj 2 i=1 delta gradient/ hessian; β j β j +delta; i β) 1+exp(xi T x 2 i,k exp(x T i β) ; (1+exp(xi T β)) 2 β) + Sign(β j)λ; update x T i β and exp(x T i β) for subjects with x i,j 0; end end updating xi T β and exp(xi T β) can be done across multiple independent processes

12 CCD on GPU local gradient[512], hessian[512]; task id; sum0, sum1 0; while task <N j do k K[task]; xb XB[k]; xb sum0 sum0 + 1+exb(xb) ; sum1 sum1 + xb (1+exb(xb)) 2 ; task task + 512; end gradient[id] sum0; hessian[id] sum1; local parallel reduction to sum gradient and hessian; if id = 0 then delta - gradient / hessian; end task id; while task <N j do k K[task]; XB[k] XB[k] + delta; task task + 512; end

13 Performance Comparison Sparse n x p matrix (5% nonzero) 80% of β set to 0, rest are Norm(0, 2) Fixed lasso regularization penalty Compare Tesla K40 to my Macbook Pro (3.1GHz, 4 cores, 8GB) n p iterations GPU CPU s 18.5 s s 296 s s 214 s s 8998 s (est)

14 Cross Validation Search for optimal regularization hyperparameter is most expensive part of model fit Partition 1 Partition 2 Partition 3 Partition 4 Leave one fold out of each partition when training model Compute out-of-sample likelihood on the left out fold Running CCD on partitions is completely independent, can be parallelized

15 CCD on GPU warp reads in 32 contiguous values from global K Our problems are sparse, so k are non-contiguous Here, warp will request 28 blocks from global memory Will need to wait for 500 x 28 = clock cycles Memory access is not coalesced

16 Cross Validation on GPU Naive way to run different partitions: run each partition in separate work group or kernel Each partition accesses the same indices of a different XB vector 28 x 4 = 112 global memory accesses

17 Cross Validation on GPU Improved way to run different partitions: lay out global memory XB so partitions access contiguous memory Each partition accesses a different XB value of the same index, but are next to each other 29 global memory accesses

18 Performance Comparison Sparse n x p matrix (5% nonzero) 80% of β set to 0, rest are Norm(0, 2) Fit cyclops: model lr", lasso with cross validation Compare Tesla K40 to my Macbook Pro (3.1GHz, 4 cores, 8GB) n p CV iterations GPU CPU x s 5.5 s x s 47.5 s x s 81.3 s x s 738 s x s 9579 s (est) x s 36.3 h (est) GPU performance dominated by global memory access

19 What About glmnet? Without CV: glmnet seemingly much faster than Cyclops BUT Cyclops agrees with glm glmnet takes a shortcut" with quadratic approximations that have no descent guarantee With CV: comparable run time on mediocre GPU, different results good GPU may outcompete glmnet very difficult to make direct comparisons

20 Conditional Logistic Regression (CLR) For stratified data, condition on outcomes per stratum Avoid estimating intercept for each stratum (ULR) Less biased than ULR if do exact" CLR and not approximation More challenging than regular LR, involves computationally large terms We implemented CLR as well Outperforms clogit, compares well with clogitl1

21 Conclusions GPUs offer parallelization for large observational studies Uniquely suited to run CV, or different weights, bootstrap Implementation involves exploiting memory hierarchy

22 glm Results n x p matrix (5% nonzero) 80% of β set to 0, rest are Norm(0, 2) No regularization Compare all on my Macbook Pro dense Size Cyclops CPU Cyclops GPU glmnet glm 10k / 1k 121 s [182] 40.9 s [215] 2.77 s* [143] 73.4 [9] sparse Size Cyclops CPU Cyclops GPU glmnet 10k / 1k 9.03 s [235] 4.42 s [212] s* [143] 10k / 5k 42.2 s [ 310]? 2.29 s** [158]

23 Performance Comparison Warfarin vs dabigatran dataset Call createps from CohortMethod Fit cyclops: model lr", lasso with cross validation Compare Tesla K40 to imac (3.9GHz, 8 cores, 16GB) n p CV iterations GPU CPU x m 46.1 m x h x h 12.5 h GPU several times faster for 10x10 CV Shows the parallelization limits of LR Might not be better for 10x1, but could also be running multiple lambda

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

Machine Learning Techniques for Detecting Hierarchical Interactions in GLM s for Insurance Premiums

Machine Learning Techniques for Detecting Hierarchical Interactions in GLM s for Insurance Premiums Machine Learning Techniques for Detecting Hierarchical Interactions in GLM s for Insurance Premiums José Garrido Department of Mathematics and Statistics Concordia University, Montreal EAJ 2016 Lyon, September

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Lasso. November 14, 2017

Lasso. November 14, 2017 Lasso November 14, 2017 Contents 1 Case Study: Least Absolute Shrinkage and Selection Operator (LASSO) 1 1.1 The Lasso Estimator.................................... 1 1.2 Computation of the Lasso Solution............................

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Michael Boyer, David Tarjan, Scott T. Acton, and Kevin Skadron University of Virginia IPDPS 2009 Outline Leukocyte

More information

The picasso Package for High Dimensional Regularized Sparse Learning in R

The picasso Package for High Dimensional Regularized Sparse Learning in R The picasso Package for High Dimensional Regularized Sparse Learning in R X. Li, J. Ge, T. Zhang, M. Wang, H. Liu, and T. Zhao Abstract We introduce an R package named picasso, which implements a unified

More information

Asynchronous Stochastic Gradient Descent on GPU: Is It Really Better than CPU?

Asynchronous Stochastic Gradient Descent on GPU: Is It Really Better than CPU? Asynchronous Stochastic Gradient Descent on GPU: Is It Really Better than CPU? Florin Rusu Yujing Ma, Martin Torres (Ph.D. students) University of California Merced Machine Learning (ML) Boom Two SIGMOD

More information

Comparison of Optimization Methods for L1-regularized Logistic Regression

Comparison of Optimization Methods for L1-regularized Logistic Regression Comparison of Optimization Methods for L1-regularized Logistic Regression Aleksandar Jovanovich Department of Computer Science and Information Systems Youngstown State University Youngstown, OH 44555 aleksjovanovich@gmail.com

More information

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi SEASHORE SARUMAN Summary 1 / 24 SEASHORE / SARUMAN Short Read Matching using GPU Programming Tobias Jakobi Center for Biotechnology (CeBiTec) Bioinformatics Resource Facility (BRF) Bielefeld University

More information

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

Package EBglmnet. January 30, 2016

Package EBglmnet. January 30, 2016 Type Package Package EBglmnet January 30, 2016 Title Empirical Bayesian Lasso and Elastic Net Methods for Generalized Linear Models Version 4.1 Date 2016-01-15 Author Anhui Huang, Dianting Liu Maintainer

More information

Machine Learning Basics. Sargur N. Srihari

Machine Learning Basics. Sargur N. Srihari Machine Learning Basics Sargur N. srihari@cedar.buffalo.edu 1 Overview Deep learning is a specific type of ML Necessary to have a solid understanding of the basic principles of ML 2 Topics Stochastic Gradient

More information

Optimization for Machine Learning

Optimization for Machine Learning with a focus on proximal gradient descent algorithm Department of Computer Science and Engineering Outline 1 History & Trends 2 Proximal Gradient Descent 3 Three Applications A Brief History A. Convex

More information

Performance impact of dynamic parallelism on different clustering algorithms

Performance impact of dynamic parallelism on different clustering algorithms Performance impact of dynamic parallelism on different clustering algorithms Jeffrey DiMarco and Michela Taufer Computer and Information Sciences, University of Delaware E-mail: jdimarco@udel.edu, taufer@udel.edu

More information

Gradient LASSO algoithm

Gradient LASSO algoithm Gradient LASSO algoithm Yongdai Kim Seoul National University, Korea jointly with Yuwon Kim University of Minnesota, USA and Jinseog Kim Statistical Research Center for Complex Systems, Korea Contents

More information

Class 6 Large-Scale Image Classification

Class 6 Large-Scale Image Classification Class 6 Large-Scale Image Classification Liangliang Cao, March 7, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Visual

More information

Machine Learning: Think Big and Parallel

Machine Learning: Think Big and Parallel Day 1 Inderjit S. Dhillon Dept of Computer Science UT Austin CS395T: Topics in Multicore Programming Oct 1, 2013 Outline Scikit-learn: Machine Learning in Python Supervised Learning day1 Regression: Least

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

MULTICORE LEARNING ALGORITHM

MULTICORE LEARNING ALGORITHM MULTICORE LEARNING ALGORITHM CHENG-TAO CHU, YI-AN LIN, YUANYUAN YU 1. Summary The focus of our term project is to apply the map-reduce principle to a variety of machine learning algorithms that are computationally

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

Logistic Regression. Abstract

Logistic Regression. Abstract Logistic Regression Tsung-Yi Lin, Chen-Yu Lee Department of Electrical and Computer Engineering University of California, San Diego {tsl008, chl60}@ucsd.edu January 4, 013 Abstract Logistic regression

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

Identifying and Understanding Differential Transcriptor Binding

Identifying and Understanding Differential Transcriptor Binding Identifying and Understanding Differential Transcriptor Binding 15-899: Computational Genomics David Koes Yong Lu Motivation Under different conditions, a transcription factor binds to different genes

More information

Large-scale Deep Unsupervised Learning using Graphics Processors

Large-scale Deep Unsupervised Learning using Graphics Processors Large-scale Deep Unsupervised Learning using Graphics Processors Rajat Raina Anand Madhavan Andrew Y. Ng Stanford University Learning from unlabeled data Classify vs. car motorcycle Input space Unlabeled

More information

Sparse Training Data Tutorial of Parameter Server

Sparse Training Data Tutorial of Parameter Server Carnegie Mellon University Sparse Training Data Tutorial of Parameter Server Mu Li! CSD@CMU & IDL@Baidu! muli@cs.cmu.edu High-dimensional data are sparse Why high dimension?! make the classifier s job

More information

Apache SystemML Declarative Machine Learning

Apache SystemML Declarative Machine Learning Apache Big Data Seville 2016 Apache SystemML Declarative Machine Learning Luciano Resende About Me Luciano Resende (lresende@apache.org) Architect and community liaison at Have been contributing to open

More information

Solution 1 (python) Performance: Enron Samples Rate Recall Precision Total Contribution

Solution 1 (python) Performance: Enron Samples Rate Recall Precision Total Contribution Summary Each of the ham/spam classifiers has been tested against random samples from pre- processed enron sets 1 through 6 obtained via: http://www.aueb.gr/users/ion/data/enron- spam/, or the entire set

More information

CS535 Big Data Fall 2017 Colorado State University 10/10/2017 Sangmi Lee Pallickara Week 8- A.

CS535 Big Data Fall 2017 Colorado State University   10/10/2017 Sangmi Lee Pallickara Week 8- A. CS535 Big Data - Fall 2017 Week 8-A-1 CS535 BIG DATA FAQs Term project proposal New deadline: Tomorrow PA1 demo PART 1. BATCH COMPUTING MODELS FOR BIG DATA ANALYTICS 5. ADVANCED DATA ANALYTICS WITH APACHE

More information

Voxel selection algorithms for fmri

Voxel selection algorithms for fmri Voxel selection algorithms for fmri Henryk Blasinski December 14, 2012 1 Introduction Functional Magnetic Resonance Imaging (fmri) is a technique to measure and image the Blood- Oxygen Level Dependent

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic

Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit with Double Double and Quad Double Arithmetic Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago

More information

A High Performance Implementation of Likelihood Estimators on GPUs

A High Performance Implementation of Likelihood Estimators on GPUs A High Performance Implementation of Likelihood Estimators on GPUs Michael Creel 1 and Mohammad Zubair 2 1 Department of Economics, U. Autnoma de Barcelona, Barcelona Graduate School of Economics and MOVE,

More information

Using Existing Numerical Libraries on Spark

Using Existing Numerical Libraries on Spark Using Existing Numerical Libraries on Spark Brian Spector Chicago Spark Users Meetup June 24 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients

Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients 1 Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients 1,2 Keyue Ding, Ph.D. Nov. 8, 2014 1 NCIC Clinical Trials Group, Kingston, Ontario, Canada 2 Dept. Public

More information

High Quality DXT Compression using OpenCL for CUDA. Ignacio Castaño

High Quality DXT Compression using OpenCL for CUDA. Ignacio Castaño High Quality DXT Compression using OpenCL for CUDA Ignacio Castaño icastano@nvidia.com March 2009 Document Change History Version Date Responsible Reason for Change 0.1 02/01/2007 Ignacio Castaño First

More information

Efficient Lists Intersection by CPU- GPU Cooperative Computing

Efficient Lists Intersection by CPU- GPU Cooperative Computing Efficient Lists Intersection by CPU- GPU Cooperative Computing Di Wu, Fan Zhang, Naiyong Ao, Gang Wang, Xiaoguang Liu, Jing Liu Nankai-Baidu Joint Lab, Nankai University Outline Introduction Cooperative

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

scikit-learn (Machine Learning in Python)

scikit-learn (Machine Learning in Python) scikit-learn (Machine Learning in Python) (PB13007115) 2016-07-12 (PB13007115) scikit-learn (Machine Learning in Python) 2016-07-12 1 / 29 Outline 1 Introduction 2 scikit-learn examples 3 Captcha recognize

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2014 Paper 321 A Scalable Supervised Subsemble Prediction Algorithm Stephanie Sapp Mark J. van der Laan

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means 1 MACHINE LEARNING Kernel for Clustering ernel K-Means Outline of Today s Lecture 1. Review principle and steps of K-Means algorithm. Derive ernel version of K-means 3. Exercise: Discuss the geometrical

More information

Overview of the CohortMethod package. Martijn Schuemie

Overview of the CohortMethod package. Martijn Schuemie Overview of the CohortMethod package Martijn Schuemie CohortMethod is part of the OHDSI Methods Library Estimation methods Cohort Method New-user cohort studies using large-scale regression s for propensity

More information

Package Cyclops. June 15, 2018

Package Cyclops. June 15, 2018 Type Package Package Cyclops June 15, 2018 Title Cyclic Coordinate Descent for Logistic, Poisson and Survival Analysis Version 1.3.4 This model fitting tool incorporates cyclic coordinate descent and majorization-minimization

More information

A Multilevel Acceleration for l 1 -regularized Logistic Regression

A Multilevel Acceleration for l 1 -regularized Logistic Regression A Multilevel Acceleration for l 1 -regularized Logistic Regression Javier S. Turek Intel Labs 2111 NE 25th Ave. Hillsboro, OR 97124 javier.turek@intel.com Eran Treister Earth and Ocean Sciences University

More information

06: Logistic Regression

06: Logistic Regression 06_Logistic_Regression 06: Logistic Regression Previous Next Index Classification Where y is a discrete value Develop the logistic regression algorithm to determine what class a new input should fall into

More information

Stat 342 Exam 3 Fall 2014

Stat 342 Exam 3 Fall 2014 Stat 34 Exam 3 Fall 04 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed There are questions on the following 6 pages. Do as many of them as you can

More information

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3 Neural Network Optimization and Tuning 11-785 / Spring 2018 / Recitation 3 1 Logistics You will work through a Jupyter notebook that contains sample and starter code with explanations and comments throughout.

More information

Logistic Regression: Probabilistic Interpretation

Logistic Regression: Probabilistic Interpretation Logistic Regression: Probabilistic Interpretation Approximate 0/1 Loss Logistic Regression Adaboost (z) SVM Solution: Approximate 0/1 loss with convex loss ( surrogate loss) 0-1 z = y w x SVM (hinge),

More information

GLMSELECT for Model Selection

GLMSELECT for Model Selection Winnipeg SAS User Group Meeting May 11, 2012 GLMSELECT for Model Selection Sylvain Tremblay SAS Canada Education Copyright 2010 SAS Institute Inc. All rights reserved. Proc GLM Proc REG Class Statement

More information

Scaled Machine Learning at Matroid

Scaled Machine Learning at Matroid Scaled Machine Learning at Matroid Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Machine Learning Pipeline Learning Algorithm Replicate model Data Trained Model Serve Model Repeat entire pipeline Scaling

More information

Statistical Physics of Community Detection

Statistical Physics of Community Detection Statistical Physics of Community Detection Keegan Go (keegango), Kenji Hata (khata) December 8, 2015 1 Introduction Community detection is a key problem in network science. Identifying communities, defined

More information

CS294-1 Assignment 2 Report

CS294-1 Assignment 2 Report CS294-1 Assignment 2 Report Keling Chen and Huasha Zhao February 24, 2012 1 Introduction The goal of this homework is to predict a users numeric rating for a book from the text of the user s review. The

More information

Multi-Class Logistic Regression and Perceptron

Multi-Class Logistic Regression and Perceptron Multi-Class Logistic Regression and Perceptron Instructor: Wei Xu Some slides adapted from Dan Jurfasky, Brendan O Connor and Marine Carpuat MultiClass Classification Q: what if we have more than 2 categories?

More information

On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy

On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy On Massively Parallel Algorithms to Track One Path of a Polynomial Homotopy Jan Verschelde joint with Genady Yoffe and Xiangcheng Yu University of Illinois at Chicago Department of Mathematics, Statistics,

More information

Accelerated Machine Learning Algorithms in Python

Accelerated Machine Learning Algorithms in Python Accelerated Machine Learning Algorithms in Python Patrick Reilly, Leiming Yu, David Kaeli reilly.pa@husky.neu.edu Northeastern University Computer Architecture Research Lab Outline Motivation and Goals

More information

Optimization solutions for the segmented sum algorithmic function

Optimization solutions for the segmented sum algorithmic function Optimization solutions for the segmented sum algorithmic function ALEXANDRU PÎRJAN Department of Informatics, Statistics and Mathematics Romanian-American University 1B, Expozitiei Blvd., district 1, code

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability 1 History of GPU

More information

NVIDIA s Compute Unified Device Architecture (CUDA)

NVIDIA s Compute Unified Device Architecture (CUDA) NVIDIA s Compute Unified Device Architecture (CUDA) Mike Bailey mjb@cs.oregonstate.edu Reaching the Promised Land NVIDIA GPUs CUDA Knights Corner Speed Intel CPUs General Programmability History of GPU

More information

Coding for Random Projects

Coding for Random Projects Coding for Random Projects CS 584: Big Data Analytics Material adapted from Li s talk at ICML 2014 (http://techtalks.tv/talks/coding-for-random-projections/61085/) Random Projections for High-Dimensional

More information

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation Xingguo Li Tuo Zhao Xiaoming Yuan Han Liu Abstract This paper describes an R package named flare, which implements

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python J. Ge, X. Li, H. Jiang, H. Liu, T. Zhang, M. Wang and T. Zhao Abstract We describe a new library named picasso, which

More information

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography 1 A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Seismic Tomography He Huang, Liqiang Wang, Po Chen(University of Wyoming) John Dennis (NCAR) 2 LSQR in Seismic Tomography

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R

The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R Journal of Machine Learning Research (2013) Submitted ; Published The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R Haotian Pang Han Liu Robert Vanderbei Princeton

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

Cartoon parallel architectures; CPUs and GPUs

Cartoon parallel architectures; CPUs and GPUs Cartoon parallel architectures; CPUs and GPUs CSE 6230, Fall 2014 Th Sep 11! Thanks to Jee Choi (a senior PhD student) for a big assist 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ~ socket 14 ~ core 14 ~ HWMT+SIMD

More information

Scalable and Fast SVM Regression using Modern Hardware

Scalable and Fast SVM Regression using Modern Hardware Scalable and Fast SVM Regression using Modern Hardware Zeyi Wen, Rui Zhang, Kotagiri Ramamohanarao, Li Yang #1 wenzeyi@gmail.com, {rui.zhang, kotagiri}@unimelb.edu.au, hbyangli@hue.edu.cn Department of

More information

1 Training/Validation/Testing

1 Training/Validation/Testing CPSC 340 Final (Fall 2015) Name: Student Number: Please enter your information above, turn off cellphones, space yourselves out throughout the room, and wait until the official start of the exam to begin.

More information

Stochastic Gradient Descent on Highly-Parallel Architectures

Stochastic Gradient Descent on Highly-Parallel Architectures Stochastic Gradient Descent on Highly-Parallel Architectures Yujing Ma Florin Rusu Martin Torres University of California Merced {yma33, frusu, mtorres58}@ucmerced.edu February 28 arxiv:82.88v [cs.db]

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

N-Body Simulation using CUDA. CSE 633 Fall 2010 Project by Suraj Alungal Balchand Advisor: Dr. Russ Miller State University of New York at Buffalo

N-Body Simulation using CUDA. CSE 633 Fall 2010 Project by Suraj Alungal Balchand Advisor: Dr. Russ Miller State University of New York at Buffalo N-Body Simulation using CUDA CSE 633 Fall 2010 Project by Suraj Alungal Balchand Advisor: Dr. Russ Miller State University of New York at Buffalo Project plan Develop a program to simulate gravitational

More information

Subsemble: A Flexible Subset Ensemble Prediction Method. Stephanie Karen Sapp. A dissertation submitted in partial satisfaction of the

Subsemble: A Flexible Subset Ensemble Prediction Method. Stephanie Karen Sapp. A dissertation submitted in partial satisfaction of the Subsemble: A Flexible Subset Ensemble Prediction Method by Stephanie Karen Sapp A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Statistics

More information

arxiv: v1 [stat.ml] 24 Nov 2014

arxiv: v1 [stat.ml] 24 Nov 2014 Distributed Coordinate Descent for L1-regularized Logistic Regression arxiv:1411.6520v1 [stat.ml] 24 Nov 2014 Ilya Trofimov Yandex trofim@yandex-team.ru Abstract Alexander Genkin AVG Consulting alexander.genkin@gmail.com

More information

Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class

Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class Mini-project 2 CMPSCI 689 Spring 2015 Due: Tuesday, April 07, in class Guidelines Submission. Submit a hardcopy of the report containing all the figures and printouts of code in class. For readability

More information

Two algorithms for large-scale L1-type estimation in regression

Two algorithms for large-scale L1-type estimation in regression Two algorithms for large-scale L1-type estimation in regression Song Cai The University of British Columbia June 3, 2012 Song Cai (UBC) Two algorithms for large-scale L1-type regression June 3, 2012 1

More information

Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms

Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms Liang Men, Miaoqing Huang, John Gauch Department of Computer Science and Computer Engineering University of Arkansas {mliang,mqhuang,jgauch}@uark.edu

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

OpenCL implementation of PSO: a comparison between multi-core CPU and GPU performances

OpenCL implementation of PSO: a comparison between multi-core CPU and GPU performances OpenCL implementation of PSO: a comparison between multi-core CPU and GPU performances Stefano Cagnoni 1, Alessandro Bacchini 1,2, Luca Mussi 1 1 Dept. of Information Engineering, University of Parma,

More information

Block Lanczos-Montgomery method over large prime fields with GPU accelerated dense operations

Block Lanczos-Montgomery method over large prime fields with GPU accelerated dense operations Block Lanczos-Montgomery method over large prime fields with GPU accelerated dense operations Nikolai Zamarashkin and Dmitry Zheltkov INM RAS, Gubkina 8, Moscow, Russia {nikolai.zamarashkin,dmitry.zheltkov}@gmail.com

More information

Sampling Using GPU Accelerated Sparse Hierarchical Models

Sampling Using GPU Accelerated Sparse Hierarchical Models Sampling Using GPU Accelerated Sparse Hierarchical Models Miroslav Stoyanov Oak Ridge National Laboratory supported by Exascale Computing Project (ECP) exascaleproject.org April 9, 28 Miroslav Stoyanov

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Parallel Approach for Implementing Data Mining Algorithms

Parallel Approach for Implementing Data Mining Algorithms TITLE OF THE THESIS Parallel Approach for Implementing Data Mining Algorithms A RESEARCH PROPOSAL SUBMITTED TO THE SHRI RAMDEOBABA COLLEGE OF ENGINEERING AND MANAGEMENT, FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

More information

Polynomial Homotopy Continuation on Graphics Processing Units

Polynomial Homotopy Continuation on Graphics Processing Units Polynomial Homotopy Continuation on Graphics Processing Units Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

Machine Learning. Chao Lan

Machine Learning. Chao Lan Machine Learning Chao Lan Machine Learning Prediction Models Regression Model - linear regression (least square, ridge regression, Lasso) Classification Model - naive Bayes, logistic regression, Gaussian

More information

A Cloud System for Machine Learning Exploiting a Parallel Array DBMS

A Cloud System for Machine Learning Exploiting a Parallel Array DBMS 2017 28th International Workshop on Database and Expert Systems Applications A Cloud System for Machine Learning Exploiting a Parallel Array DBMS Yiqun Zhang, Carlos Ordonez, Lennart Johnsson Department

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing Real-Time Rigid id 2D-3D Medical Image Registration ti Using RapidMind Multi-Core Platform Georgia Tech/AFRL Workshop on Computational Science Challenge Using Emerging & Massively Parallel Computer Architectures

More information

Yelp Recommendation System

Yelp Recommendation System Yelp Recommendation System Jason Ting, Swaroop Indra Ramaswamy Institute for Computational and Mathematical Engineering Abstract We apply principles and techniques of recommendation systems to develop

More information