Detecting Geometric Primitives in 3D Data

Size: px
Start display at page:

Download "Detecting Geometric Primitives in 3D Data"

Transcription

1 Detecting Geometric Primitives in 3D Data MVTec Software GmbH Any use of content and images outside of this presentation or their extraction is not allowed without prior permission by MVTec Software GmbH

2 Background: Building Blocks for Point-Pair-Voting Feature 3D Point Pairs Feature Matching Implicit Model Description Parameter Space Local, Data-Driven Parameters Detection Voting Scheme

3 Background: Point Pair Features Fast, invariant, discriminative, define local reference frame

4 Background: Point Pair Feature Database Find similar point pairs in O(1)

5 Background: Local Pose Parameters Rigid 6D pose: Large, complex parameter space

6 Background: Local Pose Parameters Rigid 6D pose: Large, complex parameter space Assume one 3D point to be aligned

7 Background: Local Pose Parameters Rigid 6D pose: Large, complex parameter space Assume one 3D point to be aligned Fix scene point ( reference point ) Find corresponding model point and rotation around normal vector

8 Background: Local Pose Parameters

9 Voting Scheme For each scene point, find best local parameters (corresponding model point, rotation angle) through voting Initialize accumulator array with zeros Iterate over other points For each point pairs, vote

10 Voting Scheme Select a 3D scene point, create the local voting space

11 Voting Scheme Pair the 3D point with all other 3D points

12 Voting Scheme Compute the point pair feature

13 Voting Scheme Find corresponding point pairs on the model

14 Voting Scheme Vote for every possible correspondence

15 Voting Scheme Maximum in the voting space is the locally optimal pose

16 Geometric Primitives Geometric primitives often arise in practical applications Calibration using spheres Find background planes Navigation Remove background plane before object detection Raw cylinders with varying radii (rigid shape is too constraining) The base method works for primitives, but local parameters contain redundancies that make the voting slower Propose to adapt the method to Remove redundancies Exploit explicit nature of primitives for faster feature matching Add shape parameters (radius / scale)

17 Optimizations for Geometric Primitives Feature 3D Point Pairs Feature Matching Implicit Model Description Parameter Space Local, Data-Driven Parameters Detection Voting Scheme

18 Geometric Primitives: Using Symmetry Information

19 Implicit Point Pairs for Planes

20 Implicit Point Pairs for Spheres

21 Implicit Point Pairs for Cylinders

22 Pipeline

23 Results on the SegComp ABW Dataset

24 Results on a Synthetic Dataset

25 Results on Synthetic Data

26 Results on Real Data

27 Results on Real Data

28 Outlook: Solids of Revolution

29 Iterative Voting though Graph Matching Feature 3D Point Pairs Feature Matching Implicit Model Description Parameter Space Local, Data-Driven Parameters Detection Voting Scheme

30 Graph Matching correspondences between model and scene points connect consistent correspondences Correct correspondences form a dense subgraph Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. PAMI 33(12) (2011)

31 Graph Matching correspondences between model and scene points connect consistent correspondences Correct correspondences form a dense subgraph Assignment vector: Relax:

32 Graph Matching correspondences between model and scene points connect consistent correspondences Correct correspondences form a dense subgraph Assignment vector: Relax: Solved using gradient descend: Equivalent to the power iteration with proven convergence Equivalent to multiple rounds of voting

33 Graph Intuition

34 Graph Pruning

35 Results

36 Results

37 References Bertram Drost, Slobodan Ilic: Local Hough Transform for 3D Primitive Detection; in: International Conference on 3D Vision (3DV), , Bertram Drost: Point Cloud Computing for Rigid and Deformable 3D Object Recognition; PhD Thesis, Faculty of Informatics, Technical University of Munich, Bertram Drost, Slobodan Ilic: Graph-based deformable 3d object matching; in: German Conference on Pattern Recognition, Adam Hoover, Gillian Jean-Baptiste, Xiaoyi Jiang, Patrick J. Flynn, Horst Bunke, Dmitry B. Goldgof, Kevin W. Bowyer, David W. Eggert, Andrew W. Fitzgibbon, Robert B. Fisher: An Experimental Comparison of Range Image Segmentation Algorithms; in: IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (7): , 1996.

Model-based segmentation and recognition from range data

Model-based segmentation and recognition from range data Model-based segmentation and recognition from range data Jan Boehm Institute for Photogrammetry Universität Stuttgart Germany Keywords: range image, segmentation, object recognition, CAD ABSTRACT This

More information

3D Complex Scenes Segmentation from a Single Range Image Using Virtual Exploration

3D Complex Scenes Segmentation from a Single Range Image Using Virtual Exploration 3D Complex Scenes Segmentation from a Single Range Image Using Virtual Exploration P. Merchán 1, A. Adán 2, S. Salamanca 1, C. Cerrada 3 1 Escuela de Ingenierías Industriales, Universidad de Extremadura,

More information

British Machine Vision Conference 2 The established approach for automatic model construction begins by taking surface measurements from a number of v

British Machine Vision Conference 2 The established approach for automatic model construction begins by taking surface measurements from a number of v Segmentation of Range Data into Rigid Subsets using Planar Surface Patches A. P. Ashbrook, R. B. Fisher, C. Robertson and N. Wergi Department of Articial Intelligence The University of Edinburgh 5, Forrest

More information

Extraction of Geometric Primitives from Point Cloud Data

Extraction of Geometric Primitives from Point Cloud Data ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea Extraction of Geometric Primitives from Point Cloud Data Sung Il Kim and Sung Joon Ahn Department of Golf Systems, Tamna University, 697-703 Seogwipo, Korea

More information

Announcements. Recognition (Part 3) Model-Based Vision. A Rough Recognition Spectrum. Pose consistency. Recognition by Hypothesize and Test

Announcements. Recognition (Part 3) Model-Based Vision. A Rough Recognition Spectrum. Pose consistency. Recognition by Hypothesize and Test Announcements (Part 3) CSE 152 Lecture 16 Homework 3 is due today, 11:59 PM Homework 4 will be assigned today Due Sat, Jun 4, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying

More information

Recognition (Part 4) Introduction to Computer Vision CSE 152 Lecture 17

Recognition (Part 4) Introduction to Computer Vision CSE 152 Lecture 17 Recognition (Part 4) CSE 152 Lecture 17 Announcements Homework 5 is due June 9, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images

More information

Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds

Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds In Proceedings of the 4th International Conference on Intelligent Robotics and Applications (ICIRA), Aachen, Germany, 2011 Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds Bastian Oehler

More information

Triangular Mesh Segmentation Based On Surface Normal

Triangular Mesh Segmentation Based On Surface Normal ACCV2002: The 5th Asian Conference on Computer Vision, 23--25 January 2002, Melbourne, Australia. Triangular Mesh Segmentation Based On Surface Normal Dong Hwan Kim School of Electrical Eng. Seoul Nat

More information

Fitting of Constrained Feature Models to Poor 3D Data

Fitting of Constrained Feature Models to Poor 3D Data Fitting of Constrained Feature Models to Poor 3D Data C. Robertson, R. B. Fisher, N. Werghi, A. P. Ashbrook Machine Vision Unit, Institute for Perception, Action and Behaviour, Division of Informatics,

More information

Segmentation of Range Data for the Automatic Construction of Models of Articulated Objects

Segmentation of Range Data for the Automatic Construction of Models of Articulated Objects Segmentation of Range Data for the Automatic Construction of Models of Articulated Objects A. P. Ashbrook Department of Artificial Intelligence The University of Edinburgh Edinburgh, Scotland anthonya@dai.ed.ac.uk

More information

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on

Compu&ng Correspondences in Geometric Datasets. 4.2 Symmetry & Symmetriza/on Compu&ng Correspondences in Geometric Datasets 4.2 Symmetry & Symmetriza/on Symmetry Invariance under a class of transformations Reflection Translation Rotation Reflection + Translation + global vs. partial

More information

HSM3D: Feature-Less Global 6DOF Scan-Matching in the Hough/Radon Domain

HSM3D: Feature-Less Global 6DOF Scan-Matching in the Hough/Radon Domain HSM3D: Feature-Less Global 6DOF Scan-Matching in the Hough/Radon Domain Andrea Censi Stefano Carpin Caltech 3D data alignment how-to The data is 3D, but the sensor motion is 2D? (e.g., 3D scanner on a

More information

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE

Recognizing Deformable Shapes. Salvador Ruiz Correa Ph.D. UW EE Recognizing Deformable Shapes Salvador Ruiz Correa Ph.D. UW EE Input 3-D Object Goal We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

More information

Division of Informatics, University of Edinburgh

Division of Informatics, University of Edinburgh T E H U N I V E R S I T Y O H F R G Division of Informatics, University of Edinburgh E D I N B U Institute of Perception, Action and Behaviour An Evolutionary Approach to Fitting Constrained Degenerate

More information

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

Robust Range Image Registration using a Common Plane

Robust Range Image Registration using a Common Plane VRVis Technical Report 1 Robust Range Image Registration using a Common Plane Joachim Bauer bauer@icg.vrvis.at Konrad Karner karner@vrvis.at Andreas Klaus klaus@vrvis.at Roland Perko University of Technology

More information

CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018

CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018 CS233: The Shape of Data Handout # 3 Geometric and Topological Data Analysis Stanford University Wednesday, 9 May 2018 Homework #3 v4: Shape correspondences, shape matching, multi-way alignments. [100

More information

Cover Page. Abstract ID Paper Title. Automated extraction of linear features from vehicle-borne laser data

Cover Page. Abstract ID Paper Title. Automated extraction of linear features from vehicle-borne laser data Cover Page Abstract ID 8181 Paper Title Automated extraction of linear features from vehicle-borne laser data Contact Author Email Dinesh Manandhar (author1) dinesh@skl.iis.u-tokyo.ac.jp Phone +81-3-5452-6417

More information

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

Object Recognition. Computer Vision. Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce Object Recognition Computer Vision Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce How many visual object categories are there? Biederman 1987 ANIMALS PLANTS OBJECTS

More information

INFO0948 Fitting and Shape Matching

INFO0948 Fitting and Shape Matching INFO0948 Fitting and Shape Matching Renaud Detry University of Liège, Belgium Updated March 31, 2015 1 / 33 These slides are based on the following book: D. Forsyth and J. Ponce. Computer vision: a modern

More information

2. Related work. 3. Method Overview

2. Related work. 3. Method Overview Procedia Computer Science (214) 1 15 Procedia Computer Science Efficient pose estimation of rotationally symmetric objects Rui Pimentel de Figueiredo, Plinio Moreno, Alexandre Bernardino Abstract In this

More information

Template Matching Rigid Motion

Template Matching Rigid Motion Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Mobile Point Fusion. Real-time 3d surface reconstruction out of depth images on a mobile platform

Mobile Point Fusion. Real-time 3d surface reconstruction out of depth images on a mobile platform Mobile Point Fusion Real-time 3d surface reconstruction out of depth images on a mobile platform Aaron Wetzler Presenting: Daniel Ben-Hoda Supervisors: Prof. Ron Kimmel Gal Kamar Yaron Honen Supported

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS Yun-Ting Su James Bethel Geomatics Engineering School of Civil Engineering Purdue University 550 Stadium Mall Drive, West Lafayette,

More information

3D Shape Registration using Regularized Medial Scaffolds

3D Shape Registration using Regularized Medial Scaffolds 3D Shape Registration using Regularized Medial Scaffolds 3DPVT 2004 Thessaloniki, Greece Sep. 6-9, 2004 Ming-Ching Chang Frederic F. Leymarie Benjamin B. Kimia LEMS, Division of Engineering, Brown University

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

RECOGNISING STRUCTURE IN LASER SCANNER POINT CLOUDS 1

RECOGNISING STRUCTURE IN LASER SCANNER POINT CLOUDS 1 RECOGNISING STRUCTURE IN LASER SCANNER POINT CLOUDS 1 G. Vosselman a, B.G.H. Gorte b, G. Sithole b, T. Rabbani b a International Institute of Geo-Information Science and Earth Observation (ITC) P.O. Box

More information

Active Recognition and Manipulation of Simple Parts Exploiting 3D Information

Active Recognition and Manipulation of Simple Parts Exploiting 3D Information experiment ActReMa Active Recognition and Manipulation of Simple Parts Exploiting 3D Information Experiment Partners: Rheinische Friedrich-Wilhelms-Universität Bonn Metronom Automation GmbH Experiment

More information

Proof of Constant Width of Spheroform with Tetrahedral Symmetry

Proof of Constant Width of Spheroform with Tetrahedral Symmetry Proof of Constant Width of Spheroform with Tetrahedral Symmetry Patrick Roberts Corvallis, Oregon August 20, 2012 The four faces of the Reuleaux tetrahedron are sections of sphere surface, each centered

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

UNIT 10: Basic Geometric Shapes

UNIT 10: Basic Geometric Shapes UNIT 10: Basic Geometric Shapes SOLIDCast allows you to create basic geometric shapes that can be part of a casting model. Some simple castings may be created entirely with this type of shape. In other

More information

CS 223B Computer Vision Problem Set 3

CS 223B Computer Vision Problem Set 3 CS 223B Computer Vision Problem Set 3 Due: Feb. 22 nd, 2011 1 Probabilistic Recursion for Tracking In this problem you will derive a method for tracking a point of interest through a sequence of images.

More information

Joint Vanishing Point Extraction and Tracking. 9. June 2015 CVPR 2015 Till Kroeger, Dengxin Dai, Luc Van Gool, Computer Vision ETH Zürich

Joint Vanishing Point Extraction and Tracking. 9. June 2015 CVPR 2015 Till Kroeger, Dengxin Dai, Luc Van Gool, Computer Vision ETH Zürich Joint Vanishing Point Extraction and Tracking 9. June 2015 CVPR 2015 Till Kroeger, Dengxin Dai, Luc Van Gool, Computer Vision Lab @ ETH Zürich Definition: Vanishing Point = Intersection of 2D line segments,

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

HISTOGRAMS OF ORIENTATIO N GRADIENTS

HISTOGRAMS OF ORIENTATIO N GRADIENTS HISTOGRAMS OF ORIENTATIO N GRADIENTS Histograms of Orientation Gradients Objective: object recognition Basic idea Local shape information often well described by the distribution of intensity gradients

More information

3D Object Segmentation of Point Clouds using Profiling Techniques

3D Object Segmentation of Point Clouds using Profiling Techniques 3D Object Segmentation of Point Clouds using Profiling Techniques G. Sithole 1, W.T. Mapurisa 2 1 Geomatics Division, University of Cape Town, South Africa, George.Sithole@uct.ac.za 2 Research and Development,

More information

Object Recognition 1

Object Recognition 1 Object Recognition 1 The Margaret Thatcher Illusion by Peter Thompson Lighting affects appearance The Margaret Thatcher Illusion by Peter Thompson 2 Recognition Problems Face Detection What is it? Object

More information

Object Recognition 1

Object Recognition 1 Object Recognition 1 2 Lighting affects appearance The Margaret Thatcher Illusion by Peter Thompson 3 The Margaret Thatcher Illusion by Peter Thompson 4 Recognition Problems What is it? Object detection

More information

Three-Dimensional Computer Vision

Three-Dimensional Computer Vision \bshiaki Shirai Three-Dimensional Computer Vision With 313 Figures ' Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Table of Contents 1 Introduction 1 1.1 Three-Dimensional Computer Vision

More information

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics CS 4495 Computer Vision Kelsey Hawkins Robotics Motivation What do animals, people, and robots want to do with vision? Detect and recognize objects/landmarks Find location of objects with respect to themselves

More information

Technical Report No D Object Recognition using Local Shape Descriptors. Mustafa Mohamad

Technical Report No D Object Recognition using Local Shape Descriptors. Mustafa Mohamad Technical Report No. 2013-614 3D Object Recognition using Local Shape Descriptors Mustafa Mohamad School of Computing Queen s University Kingston, Ontario, Canada mustafa@cs.queensu.ca November 7, 2013

More information

Efficient Surface and Feature Estimation in RGBD

Efficient Surface and Feature Estimation in RGBD Efficient Surface and Feature Estimation in RGBD Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München RGB-D Workshop on 3D Perception

More information

Shape Matching. Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007

Shape Matching. Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007 Shape Matching Brandon Smith and Shengnan Wang Computer Vision CS766 Fall 2007 Outline Introduction and Background Uses of shape matching Kinds of shape matching Support Vector Machine (SVM) Matching with

More information

Introducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry

Introducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry Introducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry Bertram Drost Markus Ulrich Paul Bergmann Philipp Härtinger Carsten Steger MVTec Software GmbH Munich, Germany http://www.mvtec.com

More information

Object Recognition. The Chair Room

Object Recognition. The Chair Room Object Recognition high-level interpretations objects scene elements image elements raw images Object recognition object recognition is a typical goal of image analysis object recognition includes - object

More information

On Resolving Ambiguities in Arbitrary-Shape extraction by the Hough Transform

On Resolving Ambiguities in Arbitrary-Shape extraction by the Hough Transform On Resolving Ambiguities in Arbitrary-Shape extraction by the Hough Transform Eugenia Montiel 1, Alberto S. Aguado 2 and Mark S. Nixon 3 1 imagis, INRIA Rhône-Alpes, France 2 University of Surrey, UK 3

More information

BOP: Benchmark for 6D Object Pose Estimation

BOP: Benchmark for 6D Object Pose Estimation BOP: Benchmark for 6D Object Pose Estimation Hodan, Michel, Brachmann, Kehl, Buch, Kraft, Drost, Vidal, Ihrke, Zabulis, Sahin, Manhardt, Tombari, Kim, Matas, Rother 4th International Workshop on Recovering

More information

3D Reconstruction of a Hopkins Landmark

3D Reconstruction of a Hopkins Landmark 3D Reconstruction of a Hopkins Landmark Ayushi Sinha (461), Hau Sze (461), Diane Duros (361) Abstract - This paper outlines a method for 3D reconstruction from two images. Our procedure is based on known

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

Object Detection. Sanja Fidler CSC420: Intro to Image Understanding 1/ 1

Object Detection. Sanja Fidler CSC420: Intro to Image Understanding 1/ 1 Object Detection Sanja Fidler CSC420: Intro to Image Understanding 1/ 1 Object Detection The goal of object detection is to localize objects in an image and tell their class Localization: place a tight

More information

Course 23: Multiple-View Geometry For Image-Based Modeling

Course 23: Multiple-View Geometry For Image-Based Modeling Course 23: Multiple-View Geometry For Image-Based Modeling Jana Kosecka (CS, GMU) Yi Ma (ECE, UIUC) Stefano Soatto (CS, UCLA) Rene Vidal (Berkeley, John Hopkins) PRIMARY REFERENCE 1 Multiple-View Geometry

More information

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius. NAME DATE PER. REVIEW #18: SPHERES, COMPOSITE FIGURES, & CHANGING DIMENSIONS PART 1: SURFACE AREA & VOLUME OF SPHERES Find the measure(s) indicated. Answers to even numbered problems should be rounded

More information

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing

The correspondence problem. A classic problem. A classic problem. Deformation-Drive Shape Correspondence. Fundamental to geometry processing The correspondence problem Deformation-Drive Shape Correspondence Hao (Richard) Zhang 1, Alla Sheffer 2, Daniel Cohen-Or 3, Qingnan Zhou 2, Oliver van Kaick 1, and Andrea Tagliasacchi 1 July 3, 2008 1

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Bridging the Gap Between Local and Global Approaches for 3D Object Recognition. Isma Hadji G. N. DeSouza

Bridging the Gap Between Local and Global Approaches for 3D Object Recognition. Isma Hadji G. N. DeSouza Bridging the Gap Between Local and Global Approaches for 3D Object Recognition Isma Hadji G. N. DeSouza Outline Introduction Motivation Proposed Methods: 1. LEFT keypoint Detector 2. LGS Feature Descriptor

More information

3D datasets segmentation based on local attribute variation

3D datasets segmentation based on local attribute variation 3D datasets segmentation based on local attribute variation Carla Silva Rocha Aguiar, André Crosnier, Sébastien Druon To cite this version: Carla Silva Rocha Aguiar, André Crosnier, Sébastien Druon. 3D

More information

Segmentation of Architecture Shape Information from 3D Point Cloud

Segmentation of Architecture Shape Information from 3D Point Cloud Segmentation of Architecture Shape Information from 3D Point Cloud Xiaojuan NING Dept. Comp. Sci. & Eng., Xi an Univ. of Tech., Xi an, China. LIAMA-NLPR, Institute of Automation, CAS, Beijing, China. Xiaopeng

More information

Applying Synthetic Images to Learning Grasping Orientation from Single Monocular Images

Applying Synthetic Images to Learning Grasping Orientation from Single Monocular Images Applying Synthetic Images to Learning Grasping Orientation from Single Monocular Images 1 Introduction - Steve Chuang and Eric Shan - Determining object orientation in images is a well-established topic

More information

Registration D.A. Forsyth, UIUC

Registration D.A. Forsyth, UIUC Registration D.A. Forsyth, UIUC Registration Place a geometric model in correspondence with an image could be 2D or 3D model up to some transformations possibly up to deformation Applications very important

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

String distance for automatic image classification

String distance for automatic image classification String distance for automatic image classification Nguyen Hong Thinh*, Le Vu Ha*, Barat Cecile** and Ducottet Christophe** *University of Engineering and Technology, Vietnam National University of HaNoi,

More information

Monocular Tracking and Reconstruction in Non-Rigid Environments

Monocular Tracking and Reconstruction in Non-Rigid Environments Monocular Tracking and Reconstruction in Non-Rigid Environments Kick-Off Presentation, M.Sc. Thesis Supervisors: Federico Tombari, Ph.D; Benjamin Busam, M.Sc. Patrick Ruhkamp 13.01.2017 Introduction Motivation:

More information

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth?

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth? Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth? [Figure from Prados & Faugeras 2006] Shading Focus/defocus Images from same point of view, different camera parameters

More information

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES Jie Shao a, Wuming Zhang a, Yaqiao Zhu b, Aojie Shen a a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

Supervised learning. y = f(x) function

Supervised learning. y = f(x) function Supervised learning y = f(x) output prediction function Image feature Training: given a training set of labeled examples {(x 1,y 1 ),, (x N,y N )}, estimate the prediction function f by minimizing the

More information

Efficient 3D Object Detection by Fitting Superquadrics to Range Image Data for Robot s Object Manipulation

Efficient 3D Object Detection by Fitting Superquadrics to Range Image Data for Robot s Object Manipulation 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 WeD2.1 Efficient 3D Object Detection by Fitting Superquadrics to Range Image Data for Robot s Object Manipulation

More information

Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. Alexandre Boulch. Renaud Marlet

Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. Alexandre Boulch. Renaud Marlet Deep Learning for Robust Normal Estimation in Unstructured Point Clouds Alexandre Boulch Renaud Marlet Normal estimation in point clouds Normal: 3D normalized vector At each point: local orientation of

More information

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Sikai Zhong February 14, 2018 COMPUTER SCIENCE Table of contents 1. PointNet 2. PointNet++ 3. Experiments 1 PointNet Property

More information

Data analysis with ParaView CSMP Workshop 2009 Gillian Gruen

Data analysis with ParaView CSMP Workshop 2009 Gillian Gruen Data analysis with ParaView 3.4.0 CSMP Workshop 2009 Gillian Gruen How to...... display a data set ( Contour, Glyph, Clip, Slice) be efficient in displaying similar data sets ( work with Lookmarks )...

More information

Silhouette-based Multiple-View Camera Calibration

Silhouette-based Multiple-View Camera Calibration Silhouette-based Multiple-View Camera Calibration Prashant Ramanathan, Eckehard Steinbach, and Bernd Girod Information Systems Laboratory, Electrical Engineering Department, Stanford University Stanford,

More information

DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES

DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES W. T. Mapurisa a, G. Sithole b a South African National Space Agency, Pretoria, South Africa willmapurisa@sansa.org.za b Dept. of

More information

Comparison of HK and SC curvature description methods

Comparison of HK and SC curvature description methods Comparison of and SC curvature description methods H. Cantzler and R. B. Fisher Machine Vision Unit, Institute for Perception, Action and Behaviour, Division of Informatics, University of Edinburgh, Edinburgh,

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Bowling for Calibration: An Undemanding Camera Calibration Procedure Using a Sphere

Bowling for Calibration: An Undemanding Camera Calibration Procedure Using a Sphere Bowling for Calibration: An Undemanding Camera Calibration Procedure Using a Sphere Pietro Cerri, Oscar Gerelli, and Dario Lodi Rizzini Dipartimento di Ingegneria dell Informazione Università degli Studi

More information

CS 231A Computer Vision (Winter 2014) Problem Set 3

CS 231A Computer Vision (Winter 2014) Problem Set 3 CS 231A Computer Vision (Winter 2014) Problem Set 3 Due: Feb. 18 th, 2015 (11:59pm) 1 Single Object Recognition Via SIFT (45 points) In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition

More information

3D Motion Estimation By Evidence Gathering

3D Motion Estimation By Evidence Gathering 1 3D Motion Estimation By Evidence Gathering Anas Abuzaina, Mark S. Nixon, John N. Carter School of Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton,

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques

Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques Target Shape Identification for Nanosatellites using Monocular Point Cloud Techniques 6th European CubeSat Symposium Oct. 16, 2014 Mark A. Post and Xiu.T. Yan Space Mechatronic Systems Technology (SMeSTech)

More information

Visual Hulls from Single Uncalibrated Snapshots Using Two Planar Mirrors

Visual Hulls from Single Uncalibrated Snapshots Using Two Planar Mirrors Visual Hulls from Single Uncalibrated Snapshots Using Two Planar Mirrors Keith Forbes 1 Anthon Voigt 2 Ndimi Bodika 2 1 Digital Image Processing Group 2 Automation and Informatics Group Department of Electrical

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Global Non-Rigid Alignment. Benedict J. Brown Katholieke Universiteit Leuven

Global Non-Rigid Alignment. Benedict J. Brown Katholieke Universiteit Leuven Global Non-Rigid Alignment Benedict J. Brown Katholieke Universiteit Leuven 3-D Scanning Pipeline Acquisition Scanners acquire data from a single viewpoint 3-D Scanning Pipeline Acquisition Alignment 3-D

More information

A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles

A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of Laser Profiles Carlo Colombo, Dario Comanducci, and Alberto Del Bimbo Dipartimento di Sistemi ed Informatica Via S. Marta 3, I-5139

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition CS 534: Computer Vision 3D Model-based recognition Spring 2004 Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 Outlines Geometric Model-Based Object Recognition Choosing features

More information

POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE. Matthew P. Tait

POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE. Matthew P. Tait POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE Matthew P. Tait Content 1. Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) 2. The prospects for automatic cloud registration

More information

Detecting Multiple Symmetries with Extended SIFT

Detecting Multiple Symmetries with Extended SIFT 1 Detecting Multiple Symmetries with Extended SIFT 2 3 Anonymous ACCV submission Paper ID 388 4 5 6 7 8 9 10 11 12 13 14 15 16 Abstract. This paper describes an effective method for detecting multiple

More information

SEGMENTATION AND CLASSIFICATION OF POINT CLOUDS FROM DENSE AERIAL IMAGE MATCHING

SEGMENTATION AND CLASSIFICATION OF POINT CLOUDS FROM DENSE AERIAL IMAGE MATCHING SEGMENTATION AND CLASSIFICATION OF POINT CLOUDS FROM DENSE AERIAL IMAGE MATCHING ABSTRACT Mohammad Omidalizarandi 1 and Mohammad Saadatseresht 2 1 University of Stuttgart, Germany mohammadzarandi@gmail.com

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Model Based Object Recognition 2 Object Recognition Overview Instance recognition Recognize a known

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information