Branching Distributional Equations and their Applications

Size: px
Start display at page:

Download "Branching Distributional Equations and their Applications"

Transcription

1 Branching Distributional Equations and their Applications Mariana Olvera-Cravioto UNC Chapel Hill August 22nd, 2018 Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 1/18

2 Google s PageRank PageRank computes the rank of a webpage as: r i =(1 c)q i + c X j!i r j D j, where, {1, 2,...,n} are the pages under consideration, the sum is taken over all pages pointing to i, D j is the number of outbound links of page j, q =(q 1,...,q n ) is a personalization vector, and c is a damping factor, usually c =0.85. Multiply both sides by n to obtain a scale free rank. n matrix notation, R =(1 c)q + RM, M = matrix of weights q = personalization vector. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 2/18

3 The problem to solve We want to analyze the typical behavior of a large class of ranking algorithms on large directed graphs. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 3/18

4 The problem to solve We want to analyze the typical behavior of a large class of ranking algorithms on large directed graphs. Can we characterize nodes with very high ranks? Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 3/18

5 The problem to solve We want to analyze the typical behavior of a large class of ranking algorithms on large directed graphs. Can we characterize nodes with very high ranks? Can we determine the distribution of the ranks? Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 3/18

6 The problem to solve We want to analyze the typical behavior of a large class of ranking algorithms on large directed graphs. Can we characterize nodes with very high ranks? Can we determine the distribution of the ranks? Can we propose new algorithms that will have a pre specified typical behavior? Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 3/18

7 The problem to solve We want to analyze the typical behavior of a large class of ranking algorithms on large directed graphs. Can we characterize nodes with very high ranks? Can we determine the distribution of the ranks? Can we propose new algorithms that will have a pre specified typical behavior? Our approach: Step 1: Step 2: Step 3: Start with an appropriate random graph model. Show that we can analyze the rank via a fixed-point equation. Characterize the solutions to this fixed-point equation. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 3/18

8 The WWW graph WWW seen as a directed graph (webpages = nodes, links = edges). For ranking purposes we can think of it as being a simple graph. Empirical observations: fraction pages >kin-links / k, =1.1 fraction pages >kout-links / k, =1.72 We want a directed random graph model that matches the degree distributions. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 4/18

9 The WWW graph WWW seen as a directed graph (webpages = nodes, links = edges). For ranking purposes we can think of it as being a simple graph. Empirical observations: fraction pages >kin-links / k, =1.1 fraction pages >kout-links / k, =1.72 We want a directed random graph model that matches the degree distributions. nterestingly, fraction pages with PageRank >k/ k The power law hypothesis: This is true in any scale-free graph. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 4/18

10 Afirstrandomgraphmodel We consider a directed version of the configuration model. Directed graph on n nodes V = {1, 2,...,n}. n-degree and out-degree: d + i = in-degree of node i = number of edges pointing to i. di = out-degree of node i = number of edges pointing from i. (D +, D )=({d + i }, {d i }) is called a bi-degree-sequence. Target distributions: n-degree: F =(f k : k =0, 1, 2,...), and Out-degree: G =(g k : k =0, 1, 2,...). Assume F has finite 1+ moments and G has finite 2+ moments. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 5/18

11 The directed configuration model Assume we have a bi-degree sequence (D +, D ) that is graphical with high probability and whose in-degree and out-degree distributions are F and G, respectively. A method based on i.i.d. samples was given in (Chen-OC, 12). Given the bi-degree sequence, assign to each node i a number of inbound and outbound half edges according to the sequence. We obtain a graph by randomly pairing the inbound half edges with the outbound ones. The result is a multigraph (e.g., with self-loops and multiple edges in the same direction) on nodes {1, 2,...,n}. Theorem: (Chen-OC, 12) By erasing the self loops and multiple edges in the same direction we obtain a simple graph with asymptotic degree distributions F and G as n!1. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 6/18

12 Pros and cons of the configuration model Pros: t can be used to fit any degree distribution. Conditionally on the pairing process resulting in a simple graph, the graph is uniformly chosen among all simple graphs having that bi-degree sequence. (Exercise) A uniformly chosen graph is a good null model. Cons: The model is somewhat artificial. t does not provide any explanation as to why some nodes have high degrees whereas others do not. The probability of the pairing process resulting in a simple graph is asymptotically zero if the degrees have infinite variance, and erasing self-loops and multiple-edges destroy the uniformity. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 7/18

13 nhomogeneous random digraphs A beautifully simple model: the Erdős-Rényi graph. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 8/18

14 nhomogeneous random digraphs A beautifully simple model: the Erdős-Rényi graph. The (undirected) Erdős-Rényi graph on n vertices is constructed by n deciding whether each of the possible edges is present according to 2 an independent coin-flip with probability p = /n. The resulting graph is simple by construction. Problem... it produces degrees that are too homogeneous (Poisson to be precise... Exercise). Goal: generalize the Erdős-Rényi graph to produce directed inhomogeneous graphs with heavy-tailed degrees. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 8/18

15 Alargefamilyofmodels Consider a digraph G(V n,e n ) on the set of vertices V n = {1, 2,...,n} having edges in E n. Each vertex i 1 is assigned a type x i 2S. Types are distributed according to some measure µ. Let apple(x, y) :S 2! R + and construct the graph by independently drawing an edge from i to j with probability p (n) ij = P n ((i, j) 2 E n )=apple(x i, x j )(1+' n (x i, x j ))^1, 1 apple i 6= j apple n, where P n ( ) =P ( {x i } n i=1 ) and ' n(x i, x j )!0 su ciently fast. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 9/18

16 Some examples included in the family Examples with x =(x +,x ) and apple(x, y) = 1 x y + : Directed Erdős-Rényi model: p (n) ij = n Directed Chung-Lu model: p (n) ij = x i x+ j l n ^ 1, l n = Directed generalized random graph: nx (x + i + x i ) i=1 p (n) ij = x i x+ j l n + x i x + j Directed Poissonian random graph or Norros-Reittu model: p (n) ij =1 e x i x+ j /ln Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 10/18

17 Degree distributions Let (D + i,d i ) denote the in-degree and out-degree of vertex i. Define Z + (x) = S Z apple(x, y)µ(dy) and (x) = S apple(y, x)µ(dy) Theorem: (Cao-OC, 17) Let be the index of a uniformly chosen vertex in V n. Under some regularity conditions on the kernel apple, wehave (D +,D ) ) (Z+,Z ), n!1, where (Z +,Z ) is a pair of mixed Poisson r.v. s with mixing parameters + (X) and (X), respectively, conditionally independent given X, and X distributed according to µ. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 11/18

18 Joint degree distribution Does the model produce scale-free graphs? Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 12/18

19 Joint degree distribution Does the model produce scale-free graphs? Theorem: (Cao-OC, 17) Suppose that µ is such that if X is distributed according to µ, then( + (X), (X)) has a (non-standard) multivariate regularly varying distribution with scaling functions a(t) 2RV(1/ ) and b(t) 2RV(1/ ). Then(Z +,Z ) is also multivariate regularly varying with the same scaling functions. Remark: in the examples, ( + (x), (x)) = (cx +, (1 c)x ). Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 12/18

20 Pros and cons of the inhomogeneous random digraph Pros: t always produces simple graphs. t provides an explanation for the inhomogeneity of the degrees based on that of the types. Arcs are independent of each other. Cons: We can only obtain degree distributions that are mixed Poisson (with arbitrary mixing distributions). The graphs produced, although inhomogeneous, are not necessarily realistic. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 13/18

21 The local tree-like structure Many random graph models have a local tree-like behavior. Both the configuration model and the inhomogeneous random digraph do. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 14/18

22 Analysis through branching processes The analysis of random graphs in general is based in many cases on their local tree-like structure. The key idea is that the exploration of the graph starting from a randomly chosen node can be coupled with a suitable branching process. Examples: the Erdős-Rényi graph can be coupled with a Galton-Watson tree with a Poisson number of o spring, and the inhomogeneous random graph can be coupled with a multi-type branching process. Directed graphs such as the ones described earlier can be coupled with marked branching processes. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 15/18

23 The bow-tie structure We say that vertices i and j belong to a strongly connected component if there is a path from i to j and a path from j to i. The largest strongly connected component is said to be giant if it has at least n vertices for some >0. Both the DCM and the RD have a phase transition for the existence of a giant strongly connected component. Fan out Strongly connected component Fan in The phase transition is determined by the survival probabilities of the coupled branching processes. Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 16/18

24 Coupling for analyzing PageRank We only need to analyze the fan-in of a randomly chosen vertex. We need to keep track of both the in-degrees and out-degrees. Randomly chosen node Tree structure up to distance c log n Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 17/18

25 More on coupling n general, the in-degree becomes the o spring and the out-degree becomes a mark. Tree is rooted at the randomly chosen vertex. All other nodes have a size bias. For the DCM: The coupling tree is a Galton-Watson process. The root has o spring according to F,allothernodesaccordingto: For the RD: h(m) =P (N = m) = E[1(D+ = m)d ] E[D ] Coupling tree is a multi-type BP with types distributed according to µ. For rank-1 kernels, i.e. x =(x +,x ), apple(x i, x j)= 1 x i x + j,itcanbe reduced to a single-type. The root has o spring according to Z +,amixedpoissonwithmixing distribution + (X), X µ, allothernodesaccordingto: h(m) =P (N = m) = E[1(Z+ = m)x ] E[X ] Bath-UNAM-CMAT, Lecture 3 Branching Distributional Equations and their Applications 18/18

1 More configuration model

1 More configuration model 1 More configuration model In the last lecture, we explored the definition of the configuration model, a simple method for drawing networks from the ensemble, and derived some of its mathematical properties.

More information

Directed Graph and Binary Trees

Directed Graph and Binary Trees and Dr. Nahid Sultana December 19, 2012 and Degrees Paths and Directed graphs are graphs in which the edges are one-way. This type of graphs are frequently more useful in various dynamic systems such as

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns This is a closed-book exam. You should have no material on your desk other than the exam itself and a pencil or pen.

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

Section 10.1: Graphs and Graph Models. Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs

Section 10.1: Graphs and Graph Models. Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs Graphs Chapter 10 Section 10.1: Graphs and Graph Models Introduction to Graphs Definition of a Graph Types of Graphs Examples of Graphs a b c e d Introduction to Graphs Graphs are Discrete Structures that

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

Random Simplicial Complexes

Random Simplicial Complexes Random Simplicial Complexes Duke University CAT-School 2015 Oxford 8/9/2015 Part I Random Combinatorial Complexes Contents Introduction The Erdős Rényi Random Graph The Random d-complex The Random Clique

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Solution to Graded Problem Set 4

Solution to Graded Problem Set 4 Graph Theory Applications EPFL, Spring 2014 Solution to Graded Problem Set 4 Date: 13.03.2014 Due by 18:00 20.03.2014 Problem 1. Let V be the set of vertices, x be the number of leaves in the tree and

More information

Info 2950, Lecture 6

Info 2950, Lecture 6 Info 2950, Lecture 6 14 Feb 2017 More Programming and Statistics Boot Camps? Prob Set 2: due Fri night 24 Feb Brief Summary Expectation value: E[X] = P s2s p(s)x(s) Variance: V [X] = P s2s p(s)(x(s) E[X])2

More information

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS DR. ANDREW SCHWARTZ, PH.D. 10.1 Graphs and Graph Models (1) A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes)

More information

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 18: Introduction to Spectral Graph Theory I. Basics of Graph Theory

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 18: Introduction to Spectral Graph Theory I. Basics of Graph Theory MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 18: Introduction to Spectral Graph Theory I. Basics of Graph Theory Lecturer: Naoki Saito Scribe: Adam Dobrin/Allen Xue

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility

Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility Phase Transitions in Random Graphs- Outbreak of Epidemics to Network Robustness and fragility Mayukh Nilay Khan May 13, 2010 Abstract Inspired by empirical studies researchers have tried to model various

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Some important models

Some important models Chapter 1 Some important models In this chapter, we describe a few essential discrete probability models. We also formulate various questions about these models and give references to later sections where

More information

Clustering coefficients in large directed graphs

Clustering coefficients in large directed graphs Clustering coefficients in large directed graphs Lasse Leskelä Aalto University, Finland joint work with Mindaugas Bloznelis, U Vilnius Proc. WAW 06, https://arxiv.org/abs/607.078 0 Dec 06 Statistical

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Discrete Math: Selected Homework Problems

Discrete Math: Selected Homework Problems Discrete Math: Selected Homework Problems 2006 2.1 Prove: if d is a common divisor of a and b and d is also a linear combination of a and b then d is a greatest common divisor of a and b. (5 3.1 Prove:

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.)

Web search before Google. (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) ' Sta306b May 11, 2012 $ PageRank: 1 Web search before Google (Taken from Page et al. (1999), The PageRank Citation Ranking: Bringing Order to the Web.) & % Sta306b May 11, 2012 PageRank: 2 Web search

More information

Random Graph Model; parameterization 2

Random Graph Model; parameterization 2 Agenda Random Graphs Recap giant component and small world statistics problems: degree distribution and triangles Recall that a graph G = (V, E) consists of a set of vertices V and a set of edges E V V.

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 239 11 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

AMATH 383 Lecture Notes Linear Programming

AMATH 383 Lecture Notes Linear Programming AMATH 8 Lecture Notes Linear Programming Jakob Kotas (jkotas@uw.edu) University of Washington February 4, 014 Based on lecture notes for IND E 51 by Zelda Zabinsky, available from http://courses.washington.edu/inde51/notesindex.htm.

More information

Distribution of tree parameters

Distribution of tree parameters Distribution of tree parameters Stephan Wagner Stellenbosch University Strathmore conference, 23 June 2017 Trees Trees are one of the simplest and best-studied classes of graphs. They are characterised

More information

5. Lecture notes on matroid intersection

5. Lecture notes on matroid intersection Massachusetts Institute of Technology Handout 14 18.433: Combinatorial Optimization April 1st, 2009 Michel X. Goemans 5. Lecture notes on matroid intersection One nice feature about matroids is that a

More information

Sequential Algorithms for Generating Random Graphs. Amin Saberi Stanford University

Sequential Algorithms for Generating Random Graphs. Amin Saberi Stanford University Sequential Algorithms for Generating Random Graphs Amin Saberi Stanford University Outline Generating random graphs with given degrees (joint work with M Bayati and JH Kim) Generating random graphs with

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

The 2-core of a Non-homogeneous Hypergraph

The 2-core of a Non-homogeneous Hypergraph July 16, 2012 k-cores A Hypergraph G on vertex set V is a collection E of subsets of V. E is the set of hyperedges. For ordinary graphs, e = 2 for all e E. The k-core of a (hyper)graph is the maximal subgraph

More information

Regular Hypergraphs: Asymptotic Counting and Loose Hamilton Cycles

Regular Hypergraphs: Asymptotic Counting and Loose Hamilton Cycles Regular Hypergraphs: Asymptotic Counting and Loose Hamilton Cycles ANDRZEJ DUDEK ALAN FRIEZE ANDRZEJ RUCIŃSKI MATAS ŠILEIKIS March 15, 2013 Abstract We present results from two papers by the authors on

More information

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Social Networks Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Introduction Political blogs Organizations Facebook networks Ingredient networks SN representation Networks

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model

6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model 6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model Daron Acemoglu and Asu Ozdaglar MIT September 23, 2009 1 Outline Generalized random graph models Graphs with prescribed

More information

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees

Logic: The Big Picture. Axiomatizing Arithmetic. Tautologies and Valid Arguments. Graphs and Trees Axiomatizing Arithmetic Logic: The Big Picture Suppose we restrict the domain to the natural numbers, and allow only the standard symbols of arithmetic (+,, =, >, 0, 1). Typical true formulas include:

More information

Algorithms, Games, and Networks February 21, Lecture 12

Algorithms, Games, and Networks February 21, Lecture 12 Algorithms, Games, and Networks February, 03 Lecturer: Ariel Procaccia Lecture Scribe: Sercan Yıldız Overview In this lecture, we introduce the axiomatic approach to social choice theory. In particular,

More information

Algorithms Activity 6: Applications of BFS

Algorithms Activity 6: Applications of BFS Algorithms Activity 6: Applications of BFS Suppose we have a graph G = (V, E). A given graph could have zero edges, or it could have lots of edges, or anything in between. Let s think about the range of

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs p.1/25

On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs p.1/25 On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs Lincoln Lu lu@math.sc.edu. University of South Carolina On a problem of Erdős and Lovász on Coloring Non-Uniform Hypergraphs p.1/25

More information

Path Length. 2) Verification of the Algorithm and Code

Path Length. 2) Verification of the Algorithm and Code Path Length ) Introduction In calculating the average path length, we must find the shortest path from a source node to all other nodes contained within the graph. Previously, we found that by using an

More information

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank

Page rank computation HPC course project a.y Compute efficient and scalable Pagerank Page rank computation HPC course project a.y. 2012-13 Compute efficient and scalable Pagerank 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and used by the Google Internet

More information

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks CSE 258 Lecture 12 Web Mining and Recommender Systems Social networks Social networks We ve already seen networks (a little bit) in week 3 i.e., we ve studied inference problems defined on graphs, and

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Discrete Mathematics Course Review 3

Discrete Mathematics Course Review 3 21-228 Discrete Mathematics Course Review 3 This document contains a list of the important definitions and theorems that have been covered thus far in the course. It is not a complete listing of what has

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks CSE 158 Lecture 11 Web Mining and Recommender Systems Social networks Assignment 1 Due 5pm next Monday! (Kaggle shows UTC time, but the due date is 5pm, Monday, PST) Assignment 1 Assignment 1 Social networks

More information

CS6200 Information Retreival. The WebGraph. July 13, 2015

CS6200 Information Retreival. The WebGraph. July 13, 2015 CS6200 Information Retreival The WebGraph The WebGraph July 13, 2015 1 Web Graph: pages and links The WebGraph describes the directed links between pages of the World Wide Web. A directed edge connects

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6702 - GRAPH THEORY AND APPLICATIONS Anna University 2 & 16 Mark Questions & Answers Year / Semester: IV /

More information

On Page Rank. 1 Introduction

On Page Rank. 1 Introduction On Page Rank C. Hoede Faculty of Electrical Engineering, Mathematics and Computer Science University of Twente P.O.Box 217 7500 AE Enschede, The Netherlands Abstract In this paper the concept of page rank

More information

Supplementary material to Epidemic spreading on complex networks with community structures

Supplementary material to Epidemic spreading on complex networks with community structures Supplementary material to Epidemic spreading on complex networks with community structures Clara Stegehuis, Remco van der Hofstad, Johan S. H. van Leeuwaarden Supplementary otes Supplementary ote etwork

More information

Low Latency via Redundancy

Low Latency via Redundancy Low Latency via Redundancy Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, Scott Shenker Presenter: Meng Wang 2 Low Latency Is Important Injecting just 400 milliseconds

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch.

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch. Iterative Improvement Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change the current feasible

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

The number of spanning trees of random 2-trees

The number of spanning trees of random 2-trees The number of spanning trees of random 2-trees Stephan Wagner (joint work with Elmar Teufl) Stellenbosch University AofA 15 Strobl, 8 June, 2015 2-trees 2-trees are constructed recursively: Spanning trees

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

CS522: Advanced Algorithms

CS522: Advanced Algorithms Lecture 1 CS5: Advanced Algorithms October 4, 004 Lecturer: Kamal Jain Notes: Chris Re 1.1 Plan for the week Figure 1.1: Plan for the week The underlined tools, weak duality theorem and complimentary slackness,

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

Graphs. Introduction To Graphs: Exercises. Definitions:

Graphs. Introduction To Graphs: Exercises. Definitions: Graphs Eng.Jehad Aldahdooh Introduction To Graphs: Definitions: A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated

More information

Mathematics of networks. Artem S. Novozhilov

Mathematics of networks. Artem S. Novozhilov Mathematics of networks Artem S. Novozhilov August 29, 2013 A disclaimer: While preparing these lecture notes, I am using a lot of different sources for inspiration, which I usually do not cite in the

More information

4 non-obvious examples/results. 2. The core idea in our probabilistic reformulation

4 non-obvious examples/results. 2. The core idea in our probabilistic reformulation 1. Local weak convergence of graphs/networks Stuff that s obvious when you think about it 4 non-obvious examples/results 2. The core idea in our probabilistic reformulation of special cases of the cavity

More information

A brief history of Google

A brief history of Google the math behind Sat 25 March 2006 A brief history of Google 1995-7 The Stanford days (aka Backrub(!?)) 1998 Yahoo! wouldn't buy (but they might invest...) 1999 Finally out of beta! Sergey Brin Larry Page

More information

E6885 Network Science Lecture 5: Network Estimation and Modeling

E6885 Network Science Lecture 5: Network Estimation and Modeling E 6885 Topics in Signal Processing -- Network Science E6885 Network Science Lecture 5: Network Estimation and Modeling Ching-Yung Lin, Dept. of Electrical Engineering, Columbia University October 7th,

More information

Lecture 2 The k-means clustering problem

Lecture 2 The k-means clustering problem CSE 29: Unsupervised learning Spring 2008 Lecture 2 The -means clustering problem 2. The -means cost function Last time we saw the -center problem, in which the input is a set S of data points and the

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

Coloring Random Graphs

Coloring Random Graphs Coloring Random Graphs A Short and Biased Survey Lefteris M. Kirousis RA Computer Technology Institute and Department of Computer Engineering and Informatics, University of Patras 5th Athens Colloquium

More information

Link Analysis and Web Search

Link Analysis and Web Search Link Analysis and Web Search Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ based on material by prof. Bing Liu http://www.cs.uic.edu/~liub/webminingbook.html

More information

Part II. Graph Theory. Year

Part II. Graph Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 53 Paper 3, Section II 15H Define the Ramsey numbers R(s, t) for integers s, t 2. Show that R(s, t) exists for all s,

More information

Analyzing the Peeling Decoder

Analyzing the Peeling Decoder Analyzing the Peeling Decoder Supplemental Material for Advanced Channel Coding Henry D. Pfister January 5th, 01 1 Introduction The simplest example of iterative decoding is the peeling decoder introduced

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 18 Luca Trevisan March 3, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 8 Luca Trevisan March 3, 20 Lecture 8 In which we prove properties of expander graphs. Quasirandomness of Expander Graphs Recall that

More information

Geometric Inhomogeneous Random Graphs (GIRGs)

Geometric Inhomogeneous Random Graphs (GIRGs) Geometric Inhomogeneous Random Graphs (GIRGs) (ETH Zürich) joint work with K. Bringmann, R. Keusch, C. Koch Motivation: Network Models want to develop good algorithms for large real-world networks want

More information

Peer-to-peer clustering

Peer-to-peer clustering Peer-to-peer clustering Po-Shen Loh Carnegie Mellon University Joint work with Eyal Lubetzky How to add Question Each of us has a number. How fast can we calculate the sum? 5 2 3 1 2 4 3 5 How to add Question

More information

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( )

Let denote the number of partitions of with at most parts each less than or equal to. By comparing the definitions of and it is clear that ( ) ( ) Calculating exact values of without using recurrence relations This note describes an algorithm for calculating exact values of, the number of partitions of into distinct positive integers each less than

More information

In this lecture, we ll look at applications of duality to three problems:

In this lecture, we ll look at applications of duality to three problems: Lecture 7 Duality Applications (Part II) In this lecture, we ll look at applications of duality to three problems: 1. Finding maximum spanning trees (MST). We know that Kruskal s algorithm finds this,

More information

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph Graphs and Trees Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) who is connected to whom Web search views web pages as a graph Who points to whom Niche graphs (Ecology):

More information

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path. Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

More information

Design and Analysis of Algorithms (VII)

Design and Analysis of Algorithms (VII) Design and Analysis of Algorithms (VII) An Introduction to Randomized Algorithms Guoqiang Li School of Software, Shanghai Jiao Tong University Randomized Algorithms algorithms which employ a degree of

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

Gauss for Econometrics: Simulation

Gauss for Econometrics: Simulation Gauss for Econometrics: Simulation R.G. Pierse 1. Introduction Simulation is a very useful tool in econometric modelling. It allows the economist to examine the properties of models and estimators when

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis 1 Warm-Up to Ponder

Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis   1 Warm-Up to Ponder Lattice Polygon s and Pick s Theorem From Dana Paquin and Tom Davis http://www.geometer.org/mathcircles/pick.pdf 1 Warm-Up to Ponder 1. Is it possible to draw an equilateral triangle on graph paper so

More information

Law of the Iterated Logarithm in G(n, p)

Law of the Iterated Logarithm in G(n, p) Law of the Iterated Logarithm in G(n, p) Austen James Matt Larson Andrew Salmon Yale University 4 August 2016 of the Iterated Logarithm in G(n, p) 4August2016 1/18 G(n, p) G(n, p) is a random graph model.

More information

Jing Gao 1, Feng Liang 1, Wei Fan 2, Chi Wang 1, Yizhou Sun 1, Jiawei i Han 1 University of Illinois, IBM TJ Watson.

Jing Gao 1, Feng Liang 1, Wei Fan 2, Chi Wang 1, Yizhou Sun 1, Jiawei i Han 1 University of Illinois, IBM TJ Watson. Jing Gao 1, Feng Liang 1, Wei Fan 2, Chi Wang 1, Yizhou Sun 1, Jiawei i Han 1 University of Illinois, IBM TJ Watson Debapriya Basu Determine outliers in information networks Compare various algorithms

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

Lecture 6: Spectral Graph Theory I

Lecture 6: Spectral Graph Theory I A Theorist s Toolkit (CMU 18-859T, Fall 013) Lecture 6: Spectral Graph Theory I September 5, 013 Lecturer: Ryan O Donnell Scribe: Jennifer Iglesias 1 Graph Theory For this course we will be working on

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

Graph Theory. Network Science: Graph theory. Graph theory Terminology and notation. Graph theory Graph visualization

Graph Theory. Network Science: Graph theory. Graph theory Terminology and notation. Graph theory Graph visualization Network Science: Graph Theory Ozalp abaoglu ipartimento di Informatica Scienza e Ingegneria Università di ologna www.cs.unibo.it/babaoglu/ ranch of mathematics for the study of structures called graphs

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

Mathematical Analysis of Google PageRank

Mathematical Analysis of Google PageRank INRIA Sophia Antipolis, France Ranking Answers to User Query Ranking Answers to User Query How a search engine should sort the retrieved answers? Possible solutions: (a) use the frequency of the searched

More information

Social Networks 2015 Lecture 10: The structure of the web and link analysis

Social Networks 2015 Lecture 10: The structure of the web and link analysis 04198250 Social Networks 2015 Lecture 10: The structure of the web and link analysis The structure of the web Information networks Nodes: pieces of information Links: different relations between information

More information