Recent developments for the multigrid scheme of the DLR TAU-Code

Size: px
Start display at page:

Download "Recent developments for the multigrid scheme of the DLR TAU-Code"

Transcription

1 Chart 1 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Recent developments for the multigrid scheme of the DLR TAU-Code Axel Schwöppe Institute of Aerodynamics and Flow Technology Center of Computer Applications in Aerospace Science and Engineering - C 2 A 2 S 2 E

2 Chart 2 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Content Introduction (repeat) Investigated multigrid components Coarse grid discretization Semi-coarsening Prolongation Order of fine grid turbulence equation Summary and open questions

3 Chart 3 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Repeat: Difficulties using TAU multigrid Stall of residual after several iteration steps Inaccurate coefficients Default agglomeration does not take account of semi-coarsening or line-coarsening

4 Chart 4 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Repeat: Difficulties using TAU multigrid Stall of residual after several iteration steps Inaccurate coefficients Default agglomeration does not take account of semi-coarsening or line-coarsening

5 Chart 5 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Repeat: Difficulties using TAU multigrid Stall of residual after several iteration steps Inaccurate coefficients Default agglomeration does not take account of semi-coarsening or line-coarsening Stefan Langer

6 Chart 6 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Repeat: Difficulties using TAU multigrid Stall of residual after several iteration steps Inaccurate coefficients Default agglomeration does not take account of semi-coarsening or line-coarsening Full multigrid does not provide a sufficient start solution Some cases need a smaller CFL number and/or more artificial dissipation for multigrid than for singlegrid to converge

7 Chart 7 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Repeat: Questions Where does the improvement come from? Aggregation = Galerkin projection Line-coarsening Retain fine grid geometry Are there other points for improvement? Coarse grid discretization Order of prolongation

8 Chart 8 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Repeat: Questions Where does the improvement come from? Aggregation = Galerkin projection Line-coarsening Retain fine grid geometry Are there other points for improvement? Coarse grid discretization Order of prolongation Fine grid cells Agglomerated cell 1. Inject coarse grid values to finest grid level 2. Compute fluxes over all edges 3. Coarse grid residual = sum over boundary edges of fused cells Stefan Langer

9 Chart 9 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Test case: 2D Zero Pressure Gradient Flat Plate Turbulence Modeling Resource: 3 finest quadrilateral grids 137x97 273x x385 TAU singlegrid converges on each grid TAU multigrid converges sometimes using adjusted parameter setting dependent on grid level

10 Chart 10 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Investigated multigrid components Implemented/tested Semi-coarsening Fixed first cell layer at wall on coarse meshes Linear interpolation for prolongation Face-Tangent and Edge-Normal discretization of coarse diffusive terms Time step control (linear system of relaxation scheme) Limiting of corrections of main and turbulence updates Pitfalls Inconsistent low Mach number preconditioning for LUSGS SGS relaxation solver can fail in parallel mode

11 Chart 11 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Check of coarse grid discretization again Convective terms Central scheme with 1 st order dissipation 1 st order upwind schemes Viscous terms Averaged gradients without correction Gradient construction Green-Gauss W W ij ij = W = 1 2 ij W ( W + W ) i ij e j ij U j U x ij i e ij Turbulence equations (Fully coupled)

12 Chart 12 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Check of coarse grid discretization again Convective terms Central scheme with 1 st order dissipation 1 st order upwind schemes Viscous terms Averaged gradients without correction Gradient construction Green-Gauss W W ij ij = W = 1 2 ij W ( W + W ) i ij e j ij U j U x ij i e ij Turbulence equations (Fully coupled without sources)

13 Chart 13 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Coarse grid discretization components Test case: flat plate GC viscous fluxes Fine grid GC turb. diffusion Turbulent Sources Coarse grid GC viscous fluxes GC turb. diffusion Solution process stalls converges converges stalls stalls stalls stalls converges stalls stalls converges

14 Chart 14 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Coarse grid discretization components Test case: 2D Zero Pressure Gradient Flat Plate Row 1 Current TAU discretization Row 2 Consistent fine and coarse grid discretization Row 3 Without face gradient correction for fine and coarse grid discretization

15 Chart 15 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Corrected coarse grid discretization Convective terms Central scheme with 1 st order dissipation 1 st order upwind schemes Viscous terms Averaged gradients + face-tangent or edge-normal argumentation Gradient construction Green-Gauss Turbulence equations Fully coupled + sources

16 Chart 16 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Test case: 2D Zero Pressure Gradient Flat Plate Corrected coarse grid discretization Turbulence Modeling Resource: 3 finest quadrilateral grids 137x97 273x x385 TAU multigrid converges using same parameter setting on each grid level

17 Chart 17 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Intermediate results Corrected coarse grid discretization Seems to be much more stable Test case flat plate: same parameter setting on each grid level 3D test cases: same CFL-number as for singlegrid can be used Same artificial dissipation levels can be used for single and multigrid Full multigrid provides much better start solution Additional questions Quality of coarse grid gradients (Green Gauss, Least Squares, ) Agglomeration: cell centers of coarse grid cells

18 Chart 18 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Intermediate results Corrected coarse grid discretization Seems to be much more stable Test case flat plate: same parameter setting on each grid level 3D test cases: same CFL-number as for singlegrid can be used Same artificial dissipation levels can be used for single and multigrid Full multigrid provides much better start solution Additional questions Quality of coarse grid gradients (Green Gauss, Least Squares, ) Agglomeration: centers of coarse grid cells

19 Chart 19 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Intermediate results Corrected coarse grid discretization Seems to be much more stable Test case flat plate: same parameter setting on each grid level 3D test cases: same CFL-number as for singlegrid can be used Same artificial dissipation levels can be used for single and multigrid Full multigrid provides much better start solution Additional questions Quality of coarse grid gradients (Green Gauss, Least Squares, ) Agglomeration: centers of coarse grid cells

20 Chart 20 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Intermediate results Corrected coarse grid discretization Seems to be much more stable Test case flat plate: same parameter setting on each grid level 3D test cases: same CFL-number as for singlegrid can be used Same artificial dissipation levels can be used for single and multigrid Full multigrid provides much better start solution Additional questions Quality of coarse grid gradients (Green Gauss, Least Squares, ) Agglomeration: centers of coarse grid cells

21 Chart 21 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Intermediate results Corrected coarse grid discretization Seems to be much more stable Test case flat plate: same parameter setting on each grid level 3D test cases: same CFL-number as for singlegrid can be used Same artificial dissipation levels can be used for single and multigrid Full multigrid provides much better start solution Additional questions Quality of coarse grid gradients (Green Gauss, Least Squares, ) Agglomeration: centers of coarse grid cells

22 Chart 22 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Intermediate results Corrected coarse grid discretization Seems to be much more stable Test case flat plate: same parameter setting on each grid level 3D test cases: same CFL-number as for singlegrid can be used Same artificial dissipation levels can be used for single and multigrid Full multigrid provides much better start solution Additional questions Quality of coarse grid gradients (Green Gauss, Least Squares, ) Agglomeration: centers of coarse grid cells

23 Chart 23 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Semi-coarsening of TAU Schematic A type of semi-coarsening for the advancing front algorithm Used in structured grid parts (hexahedrons, prisms) Controlled by parameter s b a already fused free neighbor seeding volume From free neighbors select the neighbor whose facet fulfill: mmm a 0,b 0 s < a 1,b 2

24 Chart 24 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Semi-coarsening of TAU Test case: flat plate Grid level 1 Semi-coarsening off Semi-coarsening 0.5

25 Chart 25 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Semi-coarsening of TAU Test case: flat plate Grid level 2 Semi-coarsening off Semi-coarsening 0.5

26 Chart 26 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Semi-coarsening of TAU Test case: flat plate Grid level 3 Semi-coarsening off Semi-coarsening 0.5

27 Chart 27 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Semi-coarsening of TAU Test case: flat plate Obvious improvement of converges s has influence on thickness of semi-coarsening in boundary layer number of coarse grid cells

28 Chart 28 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Structured grid coarsening of TAU Test case: flat plate Obvious improvement of converges by semi-coarsening s has influence on thickness of semi-coarsening in boundary layer number of coarse grid cells and thus on runtime

29 Chart 29 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Prolongation Test case: flat plate Coarse grid corrections Added to finer grid by injection (constant) Smoothed using an explicit Laplacian type smoother Tested Linear interpolation using triangle interpolation

30 Chart 30 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Order of fine grid turbulence equation Test case: RAE2822 Convective terms of fine grid discretization Main equations : 2 nd order Turbulence equation: 1 st / 2 nd order Convective terms of coarse grid discretization Main equations : 1 st order Turbulence equation: 1 st order

31 Chart 31 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, D test case: NASA trap wing configuration (High Lift Prediction Workshop) Grid Structured coarse mesh (by JAXA) 12 million points Flow field AoA = 13 Ma = 0.2 Re = 4.3e6

32 Chart 32 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, D test case: NASA trap wing configuration (High Lift Prediction Workshop) Grid Structured coarse mesh (by JAXA) 12 million points Flow field AoA = 13 Ma = 0.2 Re = 4.3e6 Singlegrid converges

33 Chart 33 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, D test case: NASA trap wing configuration (High Lift Prediction Workshop) Grid Structured coarse mesh (by JAXA) 12 million points Flow field AoA = 13 Ma = 0.2 Re = 4.3e6 3w stalls

34 Chart 34 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, D test case: NASA trap wing configuration (High Lift Prediction Workshop) Grid Structured coarse mesh (by JAXA) 12 million points Flow field AoA = 13 Ma = 0.2 Re = 4.3e6 Turbulence equation of 2v stalls

35 Chart 35 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Summary Coarse grid discretization Sources of turbulence equation are required Face gradient: Average of gradients requires correction (FT or EN) Agglomeration Some type of semi-coarsening (line-coarsening) is very helpful Prolongation Order of interpolation influences convergence Fine/coarse grid discretization Order of fine grid turbulence equation influences multigrid convergence There are still many open questions

36 Chart 36 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Open questions Influence of Retaining fine grid geometry Order of prolongation (3D) Gradients of coarse grid discretization Order of turbulence equations Benefit of Galerkin-Projection Retains fine grid geometry Does not need new location of coarse cell centers Does not support linear interpolation for prolongation Efficiency Cycle strategy Multigrid vs. singlegrid

Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver

Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver www.dlr.de Folie 1 > HONOM 2013 > Marcel Wallraff, Tobias Leicht 21. 03. 2013 Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver Marcel Wallraff, Tobias Leicht DLR Braunschweig (AS - C

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

An Investigation of Directional-Coarsening And Line-Implicit Smoothing Applied to Agglomeration Multigrid

An Investigation of Directional-Coarsening And Line-Implicit Smoothing Applied to Agglomeration Multigrid An Investigation of Directional-Coarsening And Line-Implicit Smoothing Applied to Agglomeration Multigrid J. V. Lassaline Ryerson University 35 Victoria St, Toronto, ON, M5B 2K3, Canada D. W. Zingg University

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver

Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver Multigrid Algorithms for Three-Dimensional RANS Calculations - The SUmb Solver Juan J. Alonso Department of Aeronautics & Astronautics Stanford University CME342 Lecture 14 May 26, 2014 Outline Non-linear

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Efficient Aero-Acoustic Simulation of the HART II Rotor with the Compact Pade Scheme Gunther Wilke DLR AS-HEL Sept 6th nd ERF Lille, France

Efficient Aero-Acoustic Simulation of the HART II Rotor with the Compact Pade Scheme Gunther Wilke DLR AS-HEL Sept 6th nd ERF Lille, France www.dlr.de Chart 1 Efficient Aero-Acoustic Simulation of the HART II Rotor with the Compact Pade Scheme Gunther Wilke DLR AS-HEL Sept 6th 2016 42nd ERF Lille, France www.dlr.de Chart 2 Overview - Motivation

More information

Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach

Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach www.dlr.de Chart 1 Aero-elastic Multi-point Optimization, M.Abu-Zurayk, MUSAF II, 20.09.2013 Constrained Aero-elastic Multi-Point Optimization Using the Coupled Adjoint Approach M. Abu-Zurayk MUSAF II

More information

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 -

More information

Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011

Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011 Missile External Aerodynamics Using Star-CCM+ Star European Conference 03/22-23/2011 StarCCM_StarEurope_2011 4/6/11 1 Overview 2 Role of CFD in Aerodynamic Analyses Classical aerodynamics / Semi-Empirical

More information

Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils

Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils A. Soda, T. Knopp, K. Weinman German Aerospace Center DLR, Göttingen/Germany Symposium on Hybrid RANS-LES Methods Stockholm/Sweden,

More information

Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil. Summary of Results. Marco Ceze

Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil. Summary of Results. Marco Ceze Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil Summary of Results Marco Ceze (mceze@umich.edu) 2 nd International Workshop on High-Order CFD Methods, May 27-28, Cologne, Germany C3.1 1/14 Case

More information

Unstructured Mesh Solution Techniques using the NSU3D Solver

Unstructured Mesh Solution Techniques using the NSU3D Solver Unstructured Mesh Solution echniques using the NSU3D Solver Dimitri J. Mavriplis Karthik Mani Department of Mechanical Engineering, University of Wyoming, Laramie, WY 82071 NSU3D is an unstructured mesh

More information

A PARALLEL AGGLOMERATION MULTIGRID METHOD FOR THE ACCELERATION OF COMPRESSIBLE FLOW COMPUTATIONS ON 3D HYBRID UNSTRUCTURED GRIDS

A PARALLEL AGGLOMERATION MULTIGRID METHOD FOR THE ACCELERATION OF COMPRESSIBLE FLOW COMPUTATIONS ON 3D HYBRID UNSTRUCTURED GRIDS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

Algorithmic Developments in TAU

Algorithmic Developments in TAU Algorithmic Developments in TAU Ralf Heinrich, Richard Dwight, Markus Widhalm, and Axel Raichle DLR Institute of Aerodynamics and Flow Technology, Lilienthalplatz 7, 38108, Germany ralf.heinrich@dlr.de,

More information

A linear solver based on algebraic multigrid and defect correction for the solution of adjoint RANS equations

A linear solver based on algebraic multigrid and defect correction for the solution of adjoint RANS equations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2014; 74:846 855 Published online 24 January 2014 in Wiley Online Library (wileyonlinelibrary.com)..3878 A linear solver

More information

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017 Numerical Modelling in Fortran: day 6 Paul Tackley, 2017 Today s Goals 1. Learn about pointers, generic procedures and operators 2. Learn about iterative solvers for boundary value problems, including

More information

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems

Smoothers. < interactive example > Partial Differential Equations Numerical Methods for PDEs Sparse Linear Systems Smoothers Partial Differential Equations Disappointing convergence rates observed for stationary iterative methods are asymptotic Much better progress may be made initially before eventually settling into

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method

State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method DLR - German Aerospace Center State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method J. Brezillon, C. Ilic, M. Abu-Zurayk, F. Ma, M. Widhalm

More information

TAU mesh deformation. Thomas Gerhold

TAU mesh deformation. Thomas Gerhold TAU mesh deformation Thomas Gerhold The parallel mesh deformation of the DLR TAU-Code Introduction Mesh deformation method & Parallelization Results & Applications Conclusion & Outlook Introduction CFD

More information

The Numerical Simulation of Civil Transportation High-lift Configuration

The Numerical Simulation of Civil Transportation High-lift Configuration Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme. A. West & D. Caraeni

High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme. A. West & D. Caraeni High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme ECCOMAS, June 6 th -11 th 2016, Crete Island, Greece A. West & D. Caraeni Outline Industrial Motivation Numerical

More information

A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS

A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS A DRAG PREDICTION VALIDATION STUDY FOR AIRCRAFT AERODYNAMIC ANALYSIS Akio OCHI, Eiji SHIMA Kawasaki Heavy Industries, ltd Keywords: CFD, Drag prediction, Validation Abstract A CFD drag prediction validation

More information

Computational Fluid Dynamics for Engineers

Computational Fluid Dynamics for Engineers Tuncer Cebeci Jian P. Shao Fassi Kafyeke Eric Laurendeau Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs With 152 Figures, 19 Tables, 84 Problems and

More information

Grid. Apr 09, 1998 FLUENT 5.0 (2d, segregated, lam) Grid. Jul 31, 1998 FLUENT 5.0 (2d, segregated, lam)

Grid. Apr 09, 1998 FLUENT 5.0 (2d, segregated, lam) Grid. Jul 31, 1998 FLUENT 5.0 (2d, segregated, lam) Tutorial 2. Around an Airfoil Transonic Turbulent Flow Introduction: The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a non-zero angle of attack. You will use the

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

An Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes

An Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes An Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes by Daryl Lawrence Bonhaus B.S. June 1990, University of Cincinnati A Thesis submitted to The Faculty of The School

More information

The Spalart Allmaras turbulence model

The Spalart Allmaras turbulence model The Spalart Allmaras turbulence model The main equation The Spallart Allmaras turbulence model is a one equation model designed especially for aerospace applications; it solves a modelled transport equation

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

Usage of CFX for Aeronautical Simulations

Usage of CFX for Aeronautical Simulations Usage of CFX for Aeronautical Simulations Florian Menter Development Manager Scientific Coordination ANSYS Germany GmbH Overview Elements of CFD Technology for aeronautical simulations: Grid generation

More information

Team 194: Aerodynamic Study of Airflow around an Airfoil in the EGI Cloud

Team 194: Aerodynamic Study of Airflow around an Airfoil in the EGI Cloud Team 194: Aerodynamic Study of Airflow around an Airfoil in the EGI Cloud CFD Support s OpenFOAM and UberCloud Containers enable efficient, effective, and easy access and use of MEET THE TEAM End-User/CFD

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions 1 n Efficient, Geometric Multigrid Solver for the nisotropic Diffusion Equation in Two and Three Dimensions Tolga Tasdizen, Ross Whitaker UUSCI-2004-002 Scientific Computing and Imaging Institute University

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS L. Mangani Maschinentechnik CC Fluidmechanik und Hydromaschinen Hochschule Luzern Technik& Architektur

More information

In-Tunnel CFD Simulation of the HL-CRM in the LaRC 14 x 22 ft. Wind Tunnel Part I: Empty Tunnel Simulation Approaches and Verification Using TAU-DRSM

In-Tunnel CFD Simulation of the HL-CRM in the LaRC 14 x 22 ft. Wind Tunnel Part I: Empty Tunnel Simulation Approaches and Verification Using TAU-DRSM In-Tunnel CFD Simulation of the HL-CRM in the LaRC 14 x 22 ft. Wind Tunnel Part I: Empty Tunnel Simulation Approaches and Verification Using TAU-DRSM R. Rudnik, S. Melber-Wilkending DLR, Institute of Aerodynamics

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1 Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 2 (ANSYS 19.1; Last Updated: Aug. 7, 2018) By Timur Dogan, Michael Conger,

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Wei Liao National Institute of Aerospace, Hampton, Virginia Collaborators: Mujeeb R. Malik, Elizabeth M. Lee- Rausch,

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

A B C D E. Settings Choose height, H, free stream velocity, U, and fluid (dynamic viscosity and density ) so that: Reynolds number

A B C D E. Settings Choose height, H, free stream velocity, U, and fluid (dynamic viscosity and density ) so that: Reynolds number Individual task Objective To derive the drag coefficient for a 2D object, defined as where D (N/m) is the aerodynamic drag force (per unit length in the third direction) acting on the object. The object

More information

Development of a Consistent Discrete Adjoint Solver for the SU 2 Framework

Development of a Consistent Discrete Adjoint Solver for the SU 2 Framework Development of a Consistent Discrete Adjoint Solver for the SU 2 Framework Tim Albring, Max Sagebaum, Nicolas Gauger Chair for Scientific Computing TU Kaiserslautern 16th Euro-AD Workshop, Jena December

More information

Keisuke Sawada. Department of Aerospace Engineering Tohoku University

Keisuke Sawada. Department of Aerospace Engineering Tohoku University March 29th, 213 : Next Generation Aircraft Workshop at Washington University Numerical Study of Wing Deformation Effect in Wind-Tunnel Testing Keisuke Sawada Department of Aerospace Engineering Tohoku

More information

Digital-X. Towards Virtual Aircraft Design and Testing based on High-Fidelity Methods - Recent Developments at DLR -

Digital-X. Towards Virtual Aircraft Design and Testing based on High-Fidelity Methods - Recent Developments at DLR - Digital-X Towards Virtual Aircraft Design and Testing based on High-Fidelity Methods - Recent Developments at DLR - O. Brodersen, C.-C. Rossow, N. Kroll DLR Institute of Aerodynamics and Flow Technology

More information

FAR-Wake Workshop, Marseille, May 2008

FAR-Wake Workshop, Marseille, May 2008 Wake Vortices generated by an Aircraft Fuselage : Comparison of Wind Tunnel Measurements on the TAK Model with RANS and RANS-LES Simulations T. Louagie, L. Georges & P. Geuzaine Cenaero CFD-Multiphysics

More information

Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) Based Analysis And Design

Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) Based Analysis And Design Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) Based Analysis And Design Dimitri J. Mavriplis ICASE NASA Langley Research Center Hampton, VA 23681 USA 11 th International Meshing

More information

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE

More information

Numerical Simulation of Fuel Filling with Volume of Fluid

Numerical Simulation of Fuel Filling with Volume of Fluid Numerical Simulation of Fuel Filling with Volume of Fluid Master of Science Thesis [Innovative and Sustainable Chemical Engineering] Kristoffer Johansson Department of Chemistry and Bioscience Division

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail DLR.de Folie 1 HPCN-Workshop 14./15. Mai 2018 HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail Cornelia Grabe, Marco Burnazzi, Axel Probst, Silvia Probst DLR, Institute of Aerodynamics

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench He Wang 1, a, Changzheng Zhao 1, b and Hongzhi Chen 1, c 1 Shandong University of Science and Technology, Qingdao

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung Explicit and Implicit Coupling Strategies for s Outline FreSCo+ Grid Coupling Interpolation Schemes Implementation Mass Conservation Examples Lid-driven Cavity Flow Cylinder in a Channel Oscillating Cylinder

More information

A Two-Dimensional Multigrid-Driven Navier-Stokes Solver for Multiprocessor Architectures

A Two-Dimensional Multigrid-Driven Navier-Stokes Solver for Multiprocessor Architectures A wo-dimensional Multigrid-Driven Navier-Stokes Solver for Multiprocessor Architectures Juan J. Alonso, odd J. Mitty, Luigi Martinelli, and Antony Jameson Department of Mechanical and Aerospace Engineering

More information

Modeling Unsteady Compressible Flow

Modeling Unsteady Compressible Flow Tutorial 4. Modeling Unsteady Compressible Flow Introduction In this tutorial, FLUENT s density-based implicit solver is used to predict the timedependent flow through a two-dimensional nozzle. As an initial

More information

Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration

Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration Kedar C. Chitale MANE Dept., Rensselaer Polytechnic Institute, NY 12180 Michel Rasquin Leadership Computing Facility, Argonne

More information

PROGRAMMING OF MULTIGRID METHODS

PROGRAMMING OF MULTIGRID METHODS PROGRAMMING OF MULTIGRID METHODS LONG CHEN In this note, we explain the implementation detail of multigrid methods. We will use the approach by space decomposition and subspace correction method; see Chapter:

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

German Aerospace Center, Institute of Aerodynamics and Flow Technology, Numerical Methods

German Aerospace Center, Institute of Aerodynamics and Flow Technology, Numerical Methods Automatische Transitionsvorhersage im DLR TAU Code Status der Entwicklung und Validierung Automatic Transition Prediction in the DLR TAU Code - Current Status of Development and Validation Andreas Krumbein

More information

Calculate a solution using the pressure-based coupled solver.

Calculate a solution using the pressure-based coupled solver. Tutorial 19. Modeling Cavitation Introduction This tutorial examines the pressure-driven cavitating flow of water through a sharpedged orifice. This is a typical configuration in fuel injectors, and brings

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

Summary of the C2.3 test case results

Summary of the C2.3 test case results 1st International Workshop on High-Order CFD Methods, Nashville, January 7-8, 2012 Institute of Aerodynamics and Flow Technology German Aerospace Center 8. Jan. 2012 1 / 19 Test case C2.3 Compressible

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Multigrid Third-Order Least-Squares Solution of Cauchy-Riemann Equations on Unstructured Triangular Grids

Multigrid Third-Order Least-Squares Solution of Cauchy-Riemann Equations on Unstructured Triangular Grids INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids ; : 6 Prepared using fldauth.cls [Version: /9/8 v.] Multigrid Third-Order Least-Squares Solution of Cauchy-Riemann Equations

More information

METHOD IMPROVEMENTS IN THERMAL ANALYSIS OF MACH 10 LEADING EDGES

METHOD IMPROVEMENTS IN THERMAL ANALYSIS OF MACH 10 LEADING EDGES METHOD IMPROVEMENTS IN THERMAL ANALYSIS OF MACH 10 LEADING EDGES Ruth M. Amundsen National Aeronautics and Space Administration Langley Research Center Hampton VA 23681-2199 ABSTRACT Several improvements

More information

NSU3D Results for the Fourth AIAA Drag Prediction Workshop

NSU3D Results for the Fourth AIAA Drag Prediction Workshop NSU3D Results for the Fourth AIAA Drag Prediction Workshop Dimitri Mavriplis Mike Long Department of Mechanical Engineering University of Wyoming, Laramie, Wyoming, 82072-3295 Simulation results for the

More information

On the high order FV schemes for compressible flows

On the high order FV schemes for compressible flows Applied and Computational Mechanics 1 (2007) 453-460 On the high order FV schemes for compressible flows J. Fürst a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nám. 13, 121 35 Praha, Czech

More information

NASA Rotor 67 Validation Studies

NASA Rotor 67 Validation Studies NASA Rotor 67 Validation Studies ADS CFD is used to predict and analyze the performance of the first stage rotor (NASA Rotor 67) of a two stage transonic fan designed and tested at the NASA Glenn center

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Seed Point. Agglomerated Points

Seed Point. Agglomerated Points AN ASSESSMENT OF LINEAR VERSUS NON-LINEAR MULTIGRID METHODS FOR UNSTRUCTURED MESH SOLVERS DIMITRI J. MAVRIPLIS Abstract. The relative performance of a non-linear FAS multigrid algorithm and an equivalent

More information

Solver Settings. Introductory FLUENT Training ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Solver Settings. Introductory FLUENT Training ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary Solver Settings Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 5-2 Outline Using the Solver Setting Solver Parameters Convergence Definition Monitoring

More information

Modeling Flow Through Porous Media

Modeling Flow Through Porous Media Tutorial 7. Modeling Flow Through Porous Media Introduction Many industrial applications involve the modeling of flow through porous media, such as filters, catalyst beds, and packing. This tutorial illustrates

More information

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS U. Bieder, C. Calvin, G. Fauchet CEA Saclay, CEA/DEN/DANS/DM2S P. Ledac CS-SI HPCC 2014 - First International Workshop

More information

NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT

NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT NUMERICAL SIMULATIONS OF FLOW THROUGH AN S-DUCT 1 Pravin Peddiraju, 1 Arthur Papadopoulos, 2 Vangelis Skaperdas, 3 Linda Hedges 1 BETA CAE Systems USA, Inc., USA, 2 BETA CAE Systems SA, Greece, 3 CFD Consultant,

More information

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle ICES Student Forum The University of Texas at Austin, USA November 4, 204 Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

Aerodynamic Study of a Realistic Car W. TOUGERON

Aerodynamic Study of a Realistic Car W. TOUGERON Aerodynamic Study of a Realistic Car W. TOUGERON Tougeron CFD Engineer 2016 Abstract This document presents an aerodynamic CFD study of a realistic car geometry. The aim is to demonstrate the efficiency

More information

Multigrid solvers M. M. Sussman sussmanm@math.pitt.edu Office Hours: 11:10AM-12:10PM, Thack 622 May 12 June 19, 2014 1 / 43 Multigrid Geometrical multigrid Introduction Details of GMG Summary Algebraic

More information

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc.

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc. Aero-Vibro Acoustics For Wind Noise Application David Roche and Ashok Khondge ANSYS, Inc. Outline 1. Wind Noise 2. Problem Description 3. Simulation Methodology 4. Results 5. Summary Thursday, October

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

7 宇宙航空研究開発機構特別資料 JAXA-SP-7- Background APC-I, II Lift curve slope obtained by CFD did not agree with * test despite taking wing deformation into accou

7 宇宙航空研究開発機構特別資料 JAXA-SP-7- Background APC-I, II Lift curve slope obtained by CFD did not agree with * test despite taking wing deformation into accou Third Aerodynamics Prediction Challenge (APC-Ⅲ) 75 3 rd Aerodynamic Prediction Challenge. Jun. 7 @ National Olympics Memorial Youth Center, Tokyo Cflow による NASA-CRM の JAXA 及び 風試条件での解析 CFD Result of NASA-CRM

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria MASSACHUSETTS INSTITUTE OF TECHNOLOGY Analyzing wind flow around the square plate using ADINA 2.094 - Project Ankur Bajoria May 1, 2008 Acknowledgement I would like to thank ADINA R & D, Inc for the full

More information

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean 5 Kragujevac J. Math. 25 (2003) 5 18. PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS Ioana Chiorean Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania (Received May 28,

More information

Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm

Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm Single and multi-point aerodynamic optimizations of a supersonic transport aircraft using strategies involving adjoint equations and genetic algorithm Prepared by : G. Carrier (ONERA, Applied Aerodynamics/Civil

More information